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Abstract

This paper proposes a new method for change detection and
analysis using tensor regression. Change detection in our set-
ting is to detect changes in the relationship between the input
tensor and the output scalar while change analysis is to com-
pute the responsibility score of individual tensor modes and
dimensions for the change detected. We develop a new prob-
abilistic tensor regression method, which can be viewed as a
probabilistic generalization of the alternating least squares al-
gorithm. Thanks to the probabilistic formulation, the derived
change scores have a clear information-theoretic interpreta-
tion. We apply our method to semiconductor manufacturing
to demonstrate the utility. To the best of our knowledge, this is
the first work of change analysis based on probabilistic tensor
regression.

Introduction
Change detection in temporal data has a variety of appli-
cations across many industries. Depending on the specific
type of data and changes expected, a number of different
machine learning tasks can be defined. Of particular impor-
tance is change detection in the supervised setting, whose
goal is to detect a change in the relationship between the
input and output variables. By analyzing the nature of the
detected change in terms of controllable input variables, we
can obtain actionable insights into the system.

In the supervised setting, change detection has been
treated typically as a regression problem. For a recent
comprehensive review from an application perspective,
see (Ge et al. 2017). As a natural extension of conventional
vector-based regression approaches, condition-based mon-
itoring based on tensor regression has attracted recent at-
tention (Zhu, He, and Lawrence 2012; Fanaee-T and Gama
2016). As a real-world example, Fig. 1 illustrates the etch-
ing process in semiconductor manufacturing. One etching
round consists of many, say 20, etching steps (chemical gas
introduction, plasma exposure, etc.) and each of the steps is
monitored with the same set of sensors (pressure, temper-
ature, etc.), resulting in a two-way tensor X as the input.
Note that neither y nor X is constant even under the normal
condition due to different production recipes, random fluc-
tuations, aging of the tool, etc. After etching, semiconductor
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Figure 1: Illustration of industrial change analysis using ten-
sor regression in semiconductor etching. A scalar y repre-
senting the goodness of etching is predicted as a function of
etching trace data X in a tensor format. How can we quanti-
tatively compare the time period A with a “golden period”?

wafers are sent to an inspection tool, which gives each of the
wafers a scalar y representing the goodness of etching.

When monitoring the process, imagine that we observed
an unusual trend in y for a certain time period (“time period
A” in the figure). In order to get insights into how to fine-
tune process parameters, we need to know how the current
situation is different from a “golden period”, in which ev-
erything looked in good shape, in terms of the relationship
between X and y. This is indeed a motivating example of
the regression-based tensorial change analysis.

For practical change analysis, three major requirements
should be met. First, obviously, a change analysis model
must be able to quantitatively explain which tensor modes
and dimensions contribute most to the changes detected.
Second, it must be built on a probabilistic model between
X and y. The input tensor generally includes different phys-
ical quantities. To make them comparable on the same
ground, change scores should be formalized information-
theoretically. Third, the change scores must be efficiently
computed in both the training and testing phases.

To meet these requirements, we propose a new change
analysis framework based on a probabilistic tensor regres-
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sion. Our tensor regression model can be viewed as a
Bayesian re-formulation of the conventional alternating least
squares (ALS) algorithm (Signoretto et al. 2014; Yu and
Liu 2016; Zhou, Li, and Zhu 2013; Zhu, He, and Lawrence
2012). Although exact Bayesian inference is not possible,
we derive an iterative inference algorithm using a varia-
tional expectation-maximization framework (Tzikas, Likas,
and Galatsanos 2008). Our contribution is the first proposal
of (1) a Bayesian extension of ALS for tensor regression
and (2) information-theoretic tensorial change analysis us-
ing probabilistic tensor regression.

Related work
There are two categories of related work: tensorial change
detection and probabilistic tensor regression models.

For the former, although much work has been done in se-
quential tensor tracking using tensor factorization (Sun et al.
2008; Dunlavy, Kolda, and Acar 2011; de Araujo, Ribeiro,
and Faloutsos 2017), most of them are based on the unsuper-
vised setting. Little is known about the supervised setting,
especially information-theoretic approaches to performing
both change detection and analysis.

For the latter, unlike tensor factorization, which has been
a major research topic in machine learning for years, ten-
sor regression is relatively new. For probabilistic tensor re-
gression, two major approaches can be found in the litera-
ture: kernel methods and non-kernel methods. For the for-
mer, most of the existing studies attempt to extend Gaus-
sian process regression (GPR) for tensors (Zhao et al. 2014;
Hou, Wang, and Chaib-draa 2015; Suzuki 2015; Kana-
gawa et al. 2016; Imaizumi and Hayashi 2016). It may
look straightforward to mechanically use the well-known
formula of GPR (Rasmussen and Williams 2006), assum-
ing that a kernel function between tensors is given. How-
ever, the tricky part is that naive distance metrics such as
‖X (n)−X (n′)‖2F, where ‖·‖F is the Frobenius norm, do not
properly preserve structural information of tensors because
they are reduced to the summation of the element-wise dis-
tance, giving exactly the same expression as the naive vec-
torized formulation.

To handle this issue, Zhao et al. (2014) and
Ho et al. (2015) proposed to use a kernel func-
tion defined through mode-wise matricization. Kana-
gawa et al. (2016) considered GPR for the individual tensor
modes l = 1, . . . ,M and combine them for predicting
y. A similar approach was also used in (Suzuki 2015;
Imaizumi and Hayashi 2016). For real-world industrial
applications, however, these methods have significant
limitations because, unlike the proposed Bayesian ALS,
they need either Monte Carlo (MC) sampling on training or
expensive computation of tensor factorization on testing.

For the non-kernel methods, only a limited number of
studies is found in the literature. One of the earliest studies
is Goldsmith et al. (2014) but it is based on a few strong as-
sumptions specific to 3D imaging. Recently, Guhaniyogi et
al. (2017) proposed a fully Bayesian tensor regression model
with variable selection, using the CP (canonical polyadic)
decomposition assumption for the regression coefficients.

As a result of its multi-layered hierarchical model with
a fully Bayesian treatment, however, their model requires
MC sampling for inference, making practical implementa-
tion hard especially in the context of change analysis. Also,
mainly due to the complexity of the model, how it is related
to the existing alternating least squares and other regression
work is not necessarily clear. In contrast, in the proposed
probabilistic model all the steps for inference have a simple
analytic expression thanks to a variational approximation.
To the best of our knowledge, this is the first work to use a
variational inference approach for tensor regression.

Tensor notations
We follow Kolda and Bader (2009) for most of the tensor
notations. We denote (column) vectors, matrices, and ten-
sors by bold italic (x, etc.), sanserif (A, etc.), and bold calli-
graphic (X , etc.) letters, respectively. The elements of them
are typically denoted by corresponding non-bold letters with
a subscript (xi,Ai,j ,Xi1,...,iM , etc.). We may also use [·] as
the operator to select a specific element ([w]i ≡ wi, etc.),
with ≡ being used to define the left hand side (l.h.s.) by the
right hand side (r.h.s.). To simplify the notation, we may use
non-italic bold letters to collectively represent the indexes of
the M modes as i = (i1, . . . , iM ). Superscripts are used to
distinguish the tensor modes such as al.

The inner product of two same-sized tensors X ,A ∈
Rd1×···×dM is defined as

(X ,A) ≡
∑

i1,...,iM

Xi1,...,iMAi1,...,iM . (1)

The outer product between vectors is an operation to cre-
ate a tensor from a set of vectors. For example, the outer
product of a1 ∈ Rd1 ,a2 ∈ Rd3 ,a3 ∈ Rd3 makes a 3-mode
tensor of d1 × d2 × d3 dimension as

[a1 ◦ a2 ◦ a3]i1,i2,i3 = a1i1a
2
i2a

3
i3 . (2)

The inner product between a tensor and a rank-1 tensor
plays a major role in this paper. For example,

(X ,a1 ◦ · · · ◦ aM ) =
∑

i1,...,iM

Xi1,...,iMa1i1 · · · a
M
iM . (3)

This can be viewed as a “convolution” of a tensor by a set of
vectors. The m-mode product is an operation to convolute a
tensor with a matrix as

[X ×m S]i1,...,jm,...,iM ≡
dm∑
im=1

Xi1,...,im,...,iM Sjm,im . (4)

Tensorial Change Analysis Framework
This section summarizes the problem setting and tensorial
change detection framework at a high level.

Problem setting
We are given a training dataset D consisting of N pairs of a
scalar target variable y and an input tensor X :

D = {(y(n),X (n)) | n = 1, . . . , N}, (5)
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where the superscript in the round parenthesis is used to de-
note the n-th sample. Both the input tensor and the target
variable are assumed to be centered. X (n)’s have M modes
in which the l-th mode has dl dimensions.

We assume a linear relationship as y ∼ (A,X ), in which
the coefficient tensor follows the CP expansion of order R:

A =

R∑
r=1

a1,r ◦ a2,r ◦ · · · ◦ aM,r. (6)

Using a probabilistic model described in the next subsec-
tion, our first goal is to obtain the predictive distribution
p(y | X ,D) for an unseen sample X , based on the poste-
rior distribution for {ar,l} and the other model parameters
learned from the training data.

Change analysis scores

We give the definition of change scores for three sub-tasks
in tensorial change analysis: Outlier detection, change de-
tection, and change analysis.

First, the outlier score is defined for a single pair of obser-
vation (y,X ) to quantify how much uncommon they are in
reference to the training data. Given the predictive distribu-
tion p(y | X ,D), we define the outlier score as the logarith-
mic loss (Yamanishi et al. 2004):

c(y,X ) ≡ − ln p(y|X ,D)

=
{y − µ(X )}2

2σ2(X )
+

1

2
ln{2πσ2(X )}, (7)

where the second line follows from the explicit from of p(y |
X ,D) given later (Eq. (40)).

Second, we define the change-point score by averaging
the outlier score over a set D̃:

c(D̃,D) =
1

Ñ

∑
n∈D̃

c(y(n),X (n)), (8)

where Ñ is the sample size of D̃. The set D̃ is typically de-
fined using a sliding window for temporal change-point de-
tection.

Third, for change analysis, we leverage the posterior
distribution of the CP-decomposed regression coefficient
{al,r}. As shown in the next section, the posterior distribu-
tion, denoted as ql,r1 (al,r), given by a Gaussian distribution:

ql,r1 (al,r) = N (al,r | µl,r,Σl,r), (9)

where the first and second arguments after the bar repre-
sents the mean and the covariance matrix, respectively. As
explained in Fig. 1, the goal of change analysis is to quantify
the contribution of each tensorial mode to the distributional
difference between two datasets, say D, D̃. For the (l, r)-
mode, this can be calculated as the Kullback-Leibler (KL)
divergence of ql,r1 (al,ri |a

l,r
−i), the conditional distribution for

the i-th dimension given the rest:

cli(D̃,D) ≡ 1

R

R∑
r=1

∫
dal,rql,r1 (al,r) ln

ql,r1 (al,ri | a
l,r
−i)

q̃l,r1 (al,ri | a
l,r
−i)

=
1

2R

R∑
r=1

{
[Λ̃
l,r

(µ̃l,r − µl,r)]2i
Λ̃l,ri,i

+ ln
Λl,ri,i

Λ̃l,ri,i

+
[Λ̃
l,r

Σl,rΛ̃
l,r

]i,i

Λ̃l,ri,i
− 1

}
(10)

where the tilde ˜ specifies the model learned on D̃ and
Λl,r ≡ (Σl,r)−1 etc., whose explicit form is given later (see
Eq. (22)).

Note that in the above definitions the capability of produc-
ing probabilistic output is critical. Also, they can be straight-
forwardly computed without any expensive computations
such as tensor factorization and MC sampling.

Probabilistic model for tensor regression
This section derives the inference algorithm of the proposed
probabilistic tensor regression model.

Observation model and priors
Our probabilistic tensor regression model consists of only
two primary ingredients: an observation model to describe
measurement noise and a prior distribution to represent the
uncertainty of regression coefficients.

First, the observation model for the centered data is de-
fined as

p(y | X ,A, λ) = N (y | (A,X ), λ−1), (11)
where N (y | ·, ·) denotes the univariate Gaussian distribu-
tion with the mean (A,X ) and the precision λ.

Second, for the prior distribution of the coefficient vectors
al,r, we use the Gauss-gamma distribution as

p({al,r}) =

M∏
l=1

R∏
r=1

N (al,r | 0, (bl,r)−1Idl), (12)

p(bl,r|α0, β0) = G(α0, β0) ≡ β0
α0

Γ(α0)
(bl,r)α0−1e−β0b

l,r

(13)

where Idl is the dl-dimensional identity matrix and Γ(·)
is the gamma function. The hyper-parameters α0, β0 are
assumed to be given. Note that the parameter λ is deter-
mined as part of learning and there is no need for cross-
validation. This is one of the advantages of probabilistic for-
mulation and is in contrast to the existing frequentist tensor
regression work (Signoretto et al. 2014; Yu and Liu 2016;
Zhou, Li, and Zhu 2013; Zhu, He, and Lawrence 2012).

Variational inference strategy
For model inference, we employ the variational expectation-
maximization (vEM) framework (Tzikas, Likas, and Galat-
sanos 2008). The idea of vEM is to integrate point-
estimation into the variational Bayes (VB) method. Specif-
ically, the variational E (VE) step finds the posterior distri-
bution of {ar,l, br,l} in the same way as VB, given the latest
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point-estimated parameters. Then, given the posterior just
estimated, the variational M (VM) step point-estimates the
parameters λ by maximizing the posterior expectation of the
log complete likelihood. The log complete likelihood of the
model plays the central role here:

L(A, b, λ) = c.+
1

2

N∑
n=1

{
lnλ− λ∆(y(n),X (n))2

}
+

M∑
l=1

R∑
r=1

{
1

2
dl ln b

l,r − 1

2
bl,r‖al,r‖22

}

+

M∑
l=1

R∑
r=1

{
(α0 − 1) ln bl,r − β0bl,r

}
, (14)

where c. is a symbolic notation for an unimportant constant,
‖ · ‖2 is the 2-norm, and b is a shorthand notation for {br,l}.
We also defined

∆(y,X ) ≡ y −
R∑
r=1

(X ,a1,r ◦ · · · ◦ aM,r), (15)

where we have omitted the dependency on A on the l.h.s.
for simplicity.

VE step: Posterior for coefficient vectors
The VB step finds an approximated posterior in a factorized
form. In our case, we seek a VB posterior in the form

Q({al,r, bl,r}) =

M∏
l=1

R∏
r=1

ql,r1 (al,r)ql,r2 (bl,r). (16)

The distributions ql,r1 , ql,r2 are determined so that they min-
imize the KL divergence from the true posterior. The key
fact here is that the true posterior is proportional to the com-
plete likelihood by Bayes’ rule. Thus, the KL divergence is
represented as

KL = c.+ 〈lnQ〉 − 〈L(A, b, λ)〉,

where 〈·〉 represents the expectation with respect to Q. Here
the unknowns are not variables but functions. However,
according to calculus of variations (see e.g. Appendix D
in (Bishop 2006)), roughly speaking, we can formally take
the derivative with respect to ql,r1 or ql,r2 and equate the
derivatives to zero. In that way, the condition of optimality
is given by

VE step: ln ql,r1 (al,r) = c.+ 〈L(A, b, λ)〉\al,r , (17)

ln ql,r2 (bl,r) = c.+ 〈L(A, b, λ)〉\bl,r , (18)

where 〈·〉\al,r and 〈·〉\bl,r denotes the expectation with
Q/ql,r1 and Q/ql,r2 , respectively.

Now let us solve the first equation. Unlike the case of
single-mode vector-based regression, L(A, b, λ) has a com-
plex nonlinear dependency on {al,r}, especially in the term
of ∆2. However, to compute 〈·〉\al,r , we can leverage the

fact that each of the al,rs can be factored out in the inner
product:

(X ,a1,r ◦ · · · ◦ aM,r) = (al,r)>φl,r(X ), (19)

where > denotes the transpose. The j-th element of
φl,r(X ) ∈ Rdl is defined by

[φl,r(X )]j ≡
∑

i1,...,iM

Xi1,...,iM δ(j, il)
∏
m6=l

am,rim
, (20)

where δ(j, il) is Kronecker’s delta, which takes one only if
j = il zero otherwise. Using this and µl,r ≡ 〈al,r〉, we have

〈∆(y,X )2〉\al,r = c.+ al,r
>〈φl,rφl,r>〉al,r

− 2al,r
>〈φl,r〉[y −

∑
r′ 6=r

(X ,µ1,r′ ◦ · · · ◦ µM,r′)], (21)

where c. is a constant not including the al,r and 〈·〉 with-
out subscript denotes the expectation by Q (Eq. (16)). We
dropped the subscript \al,r on the r.h.s. because φl,r does
not include the al,r.

The VB equation (17) now looks like:

ln ql,r1 (al,r) = c.− 1

2
al,r
>

(Σl,r)−1al,r + λal,r
>

Φl,ryl,rN ,

where

Σl,r ≡

{
λ

N∑
n=1

〈φl,r,(n)φl,r,(n)
>
〉+ 〈bl,r〉Idl

}−1
(22)

Φl,r ≡ [〈φl,r,(1)〉, . . . , 〈φl,r,(N)〉] (23)

[yl,rN ]n ≡ y(n) −
∑
r′ 6=r

(X (n),µ1,r′ ◦ · · · ◦ µM,r′), (24)

with φl,r,(n) being a shorthand notation for φl,r(X (n)).
Thus we conclude that ql,r1 (al,r) = N (al,r | µl,r,Σl,r)

with Σl,r being Eq. (24) and

µl,r = λΣl,rΦl,ryl,rN . (25)

Using ql,r1 , we can explicitly compute 〈φl,rφl,r>〉 as

[〈φl,rφl,r>〉]i,j =
∑
i,j

XiXj δ(i, il)δ(jl, j)
∏
m 6=l

Sm,rim,jm
,

(26)

Sm,r ≡ 〈am,ram,r>〉 = Σm,r + µm,r(µm,r)> (27)

where we used the notation of i = (i1, . . . , iM ) etc. Sim-
ilarly, 〈φl,r〉 is given just by replacing am,rim

with µm,rim
in

Eq. (23).
The posterior mean (25) has clear similarities with ordi-

nary least squares. For al,r, the vector φl,r acts as the pre-
dictor and Φ can be interpreted as the data matrix. Also,
given the other µl,r

′
(r′ 6= r), the vector yl,rN represents the

residual that has not been explained by the intercept and the
other variables. Taking this residual as the target variable,
Eq. (25) corresponds to the well-known solution of ordinary
least squares.
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VE step: Posterior for {bl,r}
Now let us consider the second VE equation (18). Arranging
the last terms of L in Eq. (14), we have

ln ql,r2 (bl,r) = c.+ (αl,r − 1) ln bl,r − βl,rbl,r,

αl,r ≡ α0 +
1

2
dl (28)

βl,r ≡ β0 +
1

2
Tr(Σl,r) + ‖µl,r‖22 (29)

which leads to the solution

ql,r2 (bl,r) = G(bl,r | αl,r, βl,r), (30)

where G denotes the Gamma distribution defined in Eq. (13).
Using this we can compute 〈bl,r〉 in Eq. (22). By the basic

property of the gamma distribution,

〈bl,r〉 =
αl,r

βl,r
=

dl + 2α0

Tr(Σl,r) + ‖µl,r‖22 + 2β0
, (31)

where we have used Eq. (27) for Eq. (29).

VM step: Point estimation of λ
The next step of the vEM procedure is to point-estimateλ
by maximizing the posterior expectation of the log complete
likelihood. Formally, our task is

VM step: λ = arg max
λ
〈L(A, b, λ)〉. (32)

To do this, we need an explicit representation of
〈L(A, b, λ)〉. Again, the most challenging part is to find the
expression of 〈∆2〉. In this case, we do not need to factor out
a specific al,r. By simply expanding the square, we have

〈∆(y,X )2〉 = y2 − 2y
∑
r

〈(X ,a1,r ◦ · · · ◦ aM,r′)〉

+
∑
r,r′

〈(X ,a1,r ◦ · · · ◦ aM,r)(a1,r′ ◦ · · · ◦ aM,r′ ,X )〉

=

{
y −

∑
r

(X ,µ1,r ◦ · · · ◦ µM,r)

}2

+
∑
r

Γr(X ),

where we used 〈am,rim
am,rjm
〉 = [Sm,r]im,jm to define

Γr(X ) ≡ (X ×1 S1,r×2 · · · ×M SM,r,X )

− (X ,µ1,r ◦ · · · ◦ µM,r)2. (33)

The condition of optimality for λ is now given by

0 =
∂〈L〉
∂λ

=
N

2λ
− 1

2

N∑
n=1

〈∆(y(n),X (n))2〉, (34)

resulting in

λ−1 =
1

N

N∑
n=1

{
y(n) −

R∑
r=1

(X (n),µ1,r ◦ · · · ◦ µM,r)

}2

+
1

N

N∑
n=1

R∑
r=1

Γr(X (n)) (35)

Algorithm 1 Bayesian ALS (BALS) for Tensor Regression.

Input:{(y(n),X (n))}Nn=1, R.
Output: {µl,r,Σl,r, αl,r, βl,r}, λ.
Initialize: µl,r as random vector and 〈b〉l,r as 1 for
∀(l, r).
repeat
λ−1 ← Eq. (35)
for l← 1, . . . ,M do

for r ← 1, . . . , R do
Σl,r ←

{
λ
∑N

n=1〈φ
l,r,(n)φl,r,(n)>〉+ 〈bl,r〉Idl

}−1

µl,r ← λΣl,rΦl,ryl,rN
βl,r ← β0 + 1

2Tr(Σl,r) + ‖µl,r‖22
end for

end for
until convergence

Although the multi-way nature of tensors makes things
significantly complicated, this has a clear interpretation.
Since 〈A〉 =

∑R
r=1 µ

1,r ◦ · · · ◦ µM,r, the first term is the
same as the standard definition of the variance as the squared
deviation from the mean. The second term comes from in-
teractions between different modes.

Algorithm 1 summarizes the entire vEM inference pro-
cedure, which we call the Bayesian ALS (BALS) for ten-
sor regression, as this algorithm is most naturally viewed
as a Bayesian extension of the ALS algorithm (see Propo-
sition 1). Following (Kohn, Smith, and Chan 2001), we
fix α0 = 1, β0 = 10−6 so the prior becomes near non-
informative. The rankR is virtually the only input parameter
to be tuned. For e.g. anomaly detection,R can be determined
by evaluating AUC (area under curve) of the ROC (receiver
operating characteristic) curve for each of R = 1, 2, 3, . . ..

Despite its seeming simplicity, implementing BALS is not
necessarily straightforward. For actual implementation, it is
advisable to use a few tensor algebraic tricks. It is also some-
time useful to use mean-field-like approximations for nu-
merical stabilities, as shown in the next subsection. The total
complexity of the algorithm depends on the formulas to use
and there is a subtle trade-off among codability, efficiency,
numerical stability, and memory usage. We omit the details
here for space limitations.

Relationship with classical ALS
Here we discuss the following proposition:

Proposition 1 The classical ALS solution is the maximum
a posteriori (MAP) approximation of the Bayesian ALS.

To prove this, let bl,r = ρλ for a constant ρ. The MAP
solution is the one to maximize the log likelihood with re-
spect to {al,r}. By differentiating Eq. (14), we easily get the
condition of optimality

N∑
n=1

{
y(n) −

R∑
r′=1

(al,r
′
)>φl,r

′,(n)

}
φl,r,(n) + ρal,r = 0,
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which readily gives an iterative formula:

Σ̃
l,r
←

{
N∑
n=1

φl,r(X (n))φl,r(X (n))> + ρIdl

}−1
(36)

al,r ← Σ̃
l,r

Φl,ryl,rN , (37)

where we used the same notations as the probabilistic coun-
terpart (Eqs. (23) and (24)). To establish the relationship
with the traditional notation of ALS, we note that Eq. (20)
can be written as

φl,r = X(l)(a
M,r ⊗ · · · ⊗ al+1,r ⊗ al−1,r ⊗ · · · ⊗ a1,r),

(38)

where X(l) is the mode-l matricization of X (Kolda and
Bader 2009) and⊗ denotes the Kronecker product. With this
identity, we conclude that the MAP solution is the equivalent
to the classical ALS with the `2 regularizer (see, e.g. (Zhou,
Li, and Zhu 2013) for an explicit expression).

In comparison to the frequentist ALS solution, there are
three major advantages of BALS. First, in the Bayesian
ALS, the regularization parameter is automatically learned
as part of the model. In ALS, ρ has to be cross-validated.
Second, BALS can provide a probabilistic output, while the
ALS has to resort to extra model assumptions for that. This
is a significant limitation in many real applications, espe-
cially when applied to change analysis. Third, in BALS, the
alternating scheme is derived as a natural consequence of the
factorized assumption of Eq. (16), in which the vEM frame-
work provides a clear theoretical foundation of the whole
procedure.

Predictive distribution
Using the learned model parameters and the posterior dis-
tribution for al,r, we can build a predictive distribution to
predict y for an unseen X as

p(y | x,D) =

∫ ∏
l,r

dal,rql,r1 (al,r)N (y | (X ,A), λ−1).

Due to the intermingled form of different modes, the exact
integration is not possible despite the seeming linear Gaus-
sian form. However, we can derive an approximated result
in the following way. First, pick an arbitrary (l′, r′), and use
the factored form Eq. (19). By performing integration with
respect to al

′,r′ , we have∫
dal

′,r′ql
′,r′

1 (al
′,r′)N (y | (X ,A), λ−1)

= N (y | µl
′,r′>φl

′,r′ , λ−1 + φl
′,r′>Σl′,r′φl

′,r′). (39)

To proceed to a next (l′′, r′′), we need to factor out the al
′′,r′′

form φl
′,r′ . The problem is that the variance is a complex

function of al
′′,r′′ . Here, as an approximation, we replace

the variance with λ−1 + Tr(Σl′,r′〈φl′,r′φl′,r′
>
〉) and take

account of the dependency of al
′′,r′′ only in the mean.

In this way, we obtain the predictive distribution as

p(y | x,D) = N (y | µ(X ), σ2(X )) (40)
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Figure 2: Comparison of the RMSE and the total computa-
tion time on average from training through testing.

with

µ(X ) = η +

R∑
r=1

(X ,µ1,r ◦ · · · ◦ µM,r), (41)

σ2(X ) = λ−1 +

R∑
r=1

M∑
l=1

Tr
(

Σl,r〈φl,rφl,r>〉
)
, (42)

where η is to offset non-centered testing data. If we denote
the sample average of y and X over raw training samples by
ȳ and X̄ , respectively, η is given by

η ≡ ȳ −
R∑
r=1

(X̄ ,µ1,r ◦ · · · ◦ µM,r). (43)

Here 〈φl′,r′φl′,r′
>
〉 is given by Eq. (26). Unlike the GPR-

based tensor regression methods (Zhao et al. 2014; Hou,
Wang, and Chaib-draa 2015; Suzuki 2015; Kanagawa et al.
2016; Imaizumi and Hayashi 2016), we do not need any
heavy computations of CP or Tucker decomposition upon
testing.

Experiments
As discussed, the problem of tensorial change analysis is
new and existing methods are not directly comparable about
the change analysis part. Thus, we focus on 1) demonstrat-
ing the practical utility of BALS in computing mode-wise
change analysis scores for a real-world application. We also
illustrate major features of BALS by 2) comparing with al-
ternatives on metrics such as computational time.

In the present context, whose primary goal is to compute
the information-theoretic change analysis score (10), two
GPR-based models are relevant to BALS. One is based on
the naive Gaussian kernel σ0e−‖X−X

′‖2F/σ
2

, which we call
n-GPR. The other is based on the state-of-the-art mode-wise
kernel decomposition: σ0

∏M
l=1 e−D(X(l),X

′
(l))/σ

2

, which we
call d-GPR. Here D(·, ·) a distance function between mode-
l matricized tensors (Signoretto et al. 2014). We used R’s
tensr package for d-GPR. In BALS, we used an approxima-
tion 〈φl,rφl,r>〉 ≈ 〈φl,r〉〈φl,r〉> in evaluating λ and Σl,r

for numerical stability.
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Figure 3: ROC curves for London School data with AUC
values 0.96, 0.85, 0.88 for BALS, n-GPR, d-GPR, respec-
tively.
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Figure 4: Outlier and change-point scores (with Ñ = 50 in
Eq.(8)) for the semiconductor etching data.

Synthetic data
To show general features of BALS in comparison to the al-
ternatives, we synthetically generated mode-3 (M = 3) ten-
sor data in (d1, d2, d3) = (10, 8, 5) with a given set of the
coefficients and randomly generated covariance matrices.
For the covariance matrices, we first randomly generated
the entries of matrices of the size Rd1×d1 ,Rd2×d2 ,Rd3×d3
using the standard normal distribution and made them posi-
tive definite by replacing the eigenvalues in their eigenvalue
decomposition with random positive numbers sampled from
G(1, 1/2). To be fair to n-GPR, which corresponds to the
vectorized regression, and to simulate heavy fluctuations in
the real-world, we added a t-distributed noise to a vector-
ized representation and generated 500 samples. The param-
eters are optimized using 5-fold cross-validation (CV), so
the root mean squared error (RMSE) was minimized.

As summarized in Fig. 2, in spite of many outliers due to
the t-noise, BALS outperformed the alternatives in RMSE.
It is interesting that the GPR-based methods failed to cap-
ture the underlying generative model even with the mode-
decomposed GPR method. This is mainly because the ker-
nel trick (Bishop 2006) does not guarantee the primal-dual
equivalence for tensors withM ≥ 3. Figure 2 also compares
the total computational time on average (for an optimal hy-
perparameter choice) from training to testing (3.1, 0.6, 58.7
seconds from left to right). n-GPR is the fastest although
BALS is comparable to it. Due to extra operations for matri-
cization, d-GPR is much costlier than the others.
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Figure 5: Change analysis score showing the contribution of
individual modes and dimensions.
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Figure 6: Observed sensor values of X35,3, which corre-
sponds to the most contributing dimension in Fig. 5.

London School data
Next, we tested outlier detection capabilities of BALS using
publicly available London School data (Goldstein 1991) to
pick unusually well-performing schools in the data cleans-
ing task, in which schools whose median of ‘exam.score’
is greater than 25 are defined as outliers. We created 139
R4×5×2 tensors by computing ‘% of FSM,’ the number of
VR1 students, the number of VR2 students, and the school
denomination for each pair of gender and ethnicity. The
original eleven ethnicity groups were converted into five
groups by merging the smallest groups. In BALS, we picked
R = 7 that gave the maximum AUC value. Figure 3 com-
pares ROC curves, which shows BALS outperforms the al-
ternative in terms of AUC.

Semiconductor etching diagnosis
Finally, we tested BALS in the semiconductor etching diag-
nosis task as illustrated in Fig. 1. The training dataset was
taken from a “golden period” including about 1 000 pairs
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of (X , y), where X is a 35 (variables) × 14 (steps) ten-
sor and y is a scalar performance metric. The testing dataset
has 1 372 pairs and includes an excursion event towards the
end of the observation period, in which the last 372 samples
were assumed to be anomalous. Although human engineers
successfully detected the excursion event semi-manually, the
true root cause is unknown.

Figure 4 shows the outlier and change-point scores. We
picked R = 4 that maximized AUC. In the figure, a clear in-
crease of the score is observed towards the end, correspond-
ing to the excursion event, which can be used for early warn-
ing. Figures 5 shows the change analysis score computed by
Eq. (10), which shows a dominant contribution of the vari-
able x12 and the third step. Figure 6 shows raw signal of x12
in the third step. Very interestingly, this variable has a recog-
nizable increase in the amplitude of fluctuation towards the
end, suggesting a potential root cause of the excursion event.

Conclusion
We have proposed a new tensorial change analysis frame-
work based on a newly developed probabilistic tensor re-
gression algorithm, which can be viewed as a probabilistic
generalization of the alternating least square algorithm. It
can compute change scores for individual tensor modes and
dimensions in an information-theoretic fashion, providing
useful diagnostic information. To the best of our knowledge,
this is the first work of variational Bayesian formulation
of probabilistic tensor regression and information-theoretic
formulation of tensorial change analysis in the supervised
setting. Finally, we successfully applied our method to a
change diagnosis task in semiconductor manufacturing.
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