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Abstract

Dimensionality reduction methods that project high-
dimensional data to a low-dimensional space by matrix trace
optimization are widely used for clustering and classification.
The matrix trace optimization problem leads to an eigenvalue
problem for a low-dimensional subspace construction,
preserving certain properties of the original data. However,
most of the existing methods use only a few eigenvectors
to construct the low-dimensional space, which may lead
to a loss of useful information for achieving successful
classification. Herein, to overcome the deficiency of the
information loss, we propose a novel complex moment-based
supervised eigenmap including multiple eigenvectors for
dimensionality reduction. Furthermore, the proposed method
provides a general formulation for matrix trace optimization
methods to incorporate with ridge regression, which models
the linear dependency between covariate variables and
univariate labels. To reduce the computational complexity,
we also propose an efficient and parallel implementation
of the proposed method. Numerical experiments indicate
that the proposed method is competitive compared with
the existing dimensionality reduction methods for the
recognition performance. Additionally, the proposed method
exhibits high parallel efficiency.

Introduction
Dimensionality reduction is an efficient technique for data
analysis which maps high-dimensional data to a low dimen-
sional space. Dimensionality reduction methods that utilize
matrix trace optimization are widely used for clustering and
classification.

The matrix trace optimization problem leads to an eigen-
value problem for low-dimensional space construction, pre-
serving certain properties of the original data. Principal
component analysis (PCA) (Pearson 1901; Jolliffe 1986)
and locality preserving projections (LPP) (He and Niyogi
2004) are two of the typical unsupervised dimensionality re-
duction methods. PCA aims to maximize the variance of
the projected vectors, while LPP devotes to preserve the
local similarity of the original data. Discriminant analy-
sis is the typical supervised method which maximizes the
between-class scatter and reduce the within-class scatter.
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A family of discriminant analysis methods are proposed
for dimensionality reduction, including Fisher discriminant
analysis (FDA) (Fisher 1936; Fukunaga 2013), local FDA
(LFDA) (Sugiyama 2007), semi-supervised LFDA (SELF)
(Sugiyama et al. 2010) and locality adaptive discriminant
analysis (LADA) (Li et al. 2017).

However, most of the existing dimensionality reduction
methods use only ` eigenvectors to construct the low-
dimensional space with ` dimensions, which may lead to
a loss of useful information for achieving successful clas-
sification. Herein, to overcome the deficiency of informa-
tion loss, we propose a novel complex moment-based super-
vised eigenmap for dimensionality reduction. The proposed
method allows us to achieve better recognition performance
by using a complex moment-based subspace that includes
d > ` eigenvectors, where d can be set independently of `.

The proposed method is inspired by complex moment-
based parallel eigensolvers (Sakurai and Sugiura 2003;
Imakura, Du, and Sakurai 2016) that are one of the hottest
parallel eigensolvers for computing multiple eigenpairs of
large and sparse eigenvalue problems. Since a subspace in-
cluding a large number of eigenvectors is expected to have
rich information, the usage of complex moment-based sub-
space can help to achieve a good recognition performance.

Furthermore, we incorporate ridge regression (or called as
the Tikhonov regularization) (Saunders, Gammerman, and
Vovk 1998) to matrix trace optimization in the objective
function of the proposed method. Ridge regression aims to
find a linear function that models the dependencies between
covariate variables and univariate labels. By the corporation,
the proposed method can find the subspace that most com-
pactly expresses the target and rejects other possible but less
compact candidates. As far as our knowledge, no existing
method combines a matrix trace and ridge regression.

The proposed method is flexible and extendable since
there are a lot of matrix trace optimization methods can
be incorporated, such as the methods mentioned above. We
use a specific parameter to control the trade-off between the
matrix trace optimization and ridge regression. In extreme
cases, the proposed method simplifies to the matrix trace
optimization methods and the ridge regression method. To
reduce the computational complexity, we also propose an ef-
ficient and parallel implementation of the proposed method
based on some techniques of the complex moment-based
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parallel eigensolvers (Sakurai and Sugiura 2003; Imakura,
Du, and Sakurai 2016).

The main aspects of the proposed method to achieve high
recognition performance are

• The usage of a complex moment-based subspace includ-
ing multiple eigenvectors to preserve more data properties
than the existing methods.

• Providing a general formulation for matrix trace optimiza-
tion methods to incorporate with ridge regression, which
models the linear dependency between covariate variables
and univariate labels in addition to the existing methods.

• Proposing an efficient and parallel implementation based
on techniques used for the complex moment-based paral-
lel eigensolvers to reduce the computational complexity.

Numerical results are demonstrated to evaluate how much
effect the aspects of the proposed method make it possible
to have competitive advantages over existing dimensionality
reduction methods.

Throughout the manuscript, the following notation is
used. We define the range space of a matrix V =
[v1,v2, . . . ,vL] by R(V ) := span{v1,v2, . . . ,vL}. We
also use MATLAB notations.

Related methods
Dimensionality reduction methods
Let m and n be the dimension of the features and the num-
ber of samples for training, and let X = [x1,x2, . . . ,xn] ∈
Rm×n be the training dataset. We consider linear and non-
linear dimensionality reduction methods that construct low-
dimensional data Y = [y1,y2, . . . ,yn] ∈ R`×n, which re-
tain some of the properties of the original data.

Linear dimensionality reduction methods reduce the orig-
inal data X to the low-dimensional data Y using a linear
map B ∈ Rm×`, i.e.

Y = BTX.

Let a symmetric matrix A1 ∈ Rm×m and a symmetric posi-
tive definite matrix A2 ∈ Rm×m be defined, respectively, in
each dimensionality reduction method. Then, the linear map
B is formulated by the minimization or maximization of a
matrix trace:

min
B∈Rm×`

Tr
(
BTA1B

)
or max

B∈Rm×`
Tr
(
BTA1B

)
s.t. BTA2B = I

and is computed as ` eigenvectors of the corresponding gen-
eralized eigenvalue problem:

A1ti = λiA2ti. (1)

Here, we have B = [t1, t2, . . . , t`].
Nonlinear dimensionality reduction methods, which use

a nonlinear map and the kernel trick (Schölkopf, Smola,
and Müller 1998), are widely used as improvements over
linear dimensionality reduction methods. Nonlinear dimen-
sionality reduction methods transform the original dataX to
φ(X) = [φ(x1), φ(x2), . . . , φ(xn)] with a nonlinear kernel

function, and reduce the dimension of φ(X) using a nonlin-
ear map B̃ such that Y = B̃Tφ(X). With appropriate non-
linear functions, nonlinear dimensionality reduction meth-
ods are expected to improve the recognition performance.

In general, we set B̃ = φ(X)B̂ with B̂ ∈ Rn×` and di-
rectly set the Gram matrixK = φ(X)Tφ(X) ∈ Rn×n with-
out computing φ(X) to reduce the computational costs. The
Gaussian kernel, polynomial kernel and sigmoid kernel are
commonly used as the kernel functions.

Ridge regression
Linear ridge regression is a classical statistical algorithm
which computes a linear function B ∈ Rm×` such that min-
imizes the squared error with the ground truth data Z ∈
R`×n:

min
B∈Rm×`

‖Z −BTX‖2F + λ‖B‖2F,

where λ is a regularization parameter. The kernel version of
the ridge regression is also used for improving recognition
performance.

Complex moment-based parallel eigensolvers
Complex moment-based eigensolvers were first proposed by
(Sakurai and Sugiura 2003) for solving interior generalized
eigenvalue problems of the form:

Axi = λiBxi,

A,B ∈ Cn×n, xi ∈ Cn \ {0}, λi ∈ Ω ⊂ C,

where zB − A is non-singular in a boundary Γ of the tar-
get region Ω. This method is based on Cauchy’s integral for-
mula and constructs certain complex moment matrices using
a contour integral.

Let L,M ∈ N+ be the input parameters and V ∈ Cn×L

be an input matrix. We define S = [S0, S1, . . . , SM−1] ∈
Cn×LM and Sk ∈ Cn×L as

Sk :=
1

2πi

∮
Γ

zk(zB −A)−1BV dz. (2)

Complex moment-based eigensolvers are mathematically
designed on the basis of the properties of the matrices Sk and
S. Then, practical algorithms are derived by approximating
the contour integral (2) using the numerical integration rule:

Ŝk :=

N∑
j=1

ωjz
k
j (zjB −A)−1BV,

where zj is a quadrature point and ωj is its corresponding
weight.

The most time-consuming part of using complex moment-
based eigensolvers involves solving linear systems at each
quadrature point. However, as these linear systems can be
independently solved, the complex moment-based eigen-
solvers have good scalability. For this reason, complex
moment-based eigensolvers have attracted considerable at-
tention. Currently, there are several methods including di-
rect extensions of Sakurai and Sugiura’s approach (Saku-
rai and Tadano 2007; Ikegami, Sakurai, and Nagashima
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2010; Ikegami and Sakurai 2010; Imakura, Du, and Sakurai
2014; 2016; Imakura and Sakurai 2017; Imakura, Futamura,
and Sakurai 2017), the FEAST eigensolver developed by
(Polizzi 2009) and its improvements (Tang and Polizzi 2014;
Güttel et al. 2015; Kestyn et al. 2016).

For details of these methods and the relationship among
typical methods, refer to the study by (Imakura, Du, and
Sakurai 2016) and the references therein.

A complex moment-based supervised
eigenmap for dimensionality reduction

In this section, to achieve high recognition performance, we
propose a novel complex moment-based supervised eigen-
map for dimensionality reduction. The proposed method
minimizes a novel objective function that combines a ma-
trix trace and a squared error with the ground truth data Z ∈
R`×n. The proposed method also uses a complex moment-
based subspace from complex moment-based eigensolvers
that includes multiple eigenvectors.

Basic concepts of the proposed method
Let A1 and A2 be the matrices used in a given dimension-
ality reduction method such as LPP or LFDA. We also let
SΩ be a complex moment-based subspace with respect to a
given real interval Ω = [a, b] ⊂ R defined by

SΩ = R(S), S = [S0, S1, . . . , SM−1],

Sk :=
1

2πi

∮
Γ

zk(zA2 −A1)−1A2V dz, (3)

where L,M ∈ N+, V ∈ Rm×L and Γ is a positively ori-
ented Jordan curve around Ω. Here, we assume that there
are only the target eigenvalues in the Jordan curve Γ. Then,
to obtain the linear map B ∈ Rm×`, we introduce the fol-
lowing minimization problem:

min
B=[b1,b2,...,b`],bi∈SΩ

E(B) s.t. BTA2B = I,

E(B) = (1− µ)Tr
(
BTf(A1)B

)
+ µ‖Z −BTX‖2F, (4)

whose objective function E(B) combines a matrix trace de-
rived from dimensionality reduction methods and a squared
error straightforwardly using the ground truth dataZ like the
ridge regression.

The column vectors of the linear map B are constrained
by A2-orthonormal bases of the complex moment-based
subspace SΩ. Here, µ ∈ [0, 1] is a weight parameter for both
terms and f(·) is a (meromorphic) weight function of each
eigenvector for minimization.

In a trace minimization, solutions contain rich eigenvec-
tors with a small weight. If f(λ) = 1, then each eigenvec-
tor is not scaled, and if f(λ) = λ, then each eigenvector
is scaled by the corresponding eigenvalue. If A1 and A2

are from a trace minimization-type method like LPP, since
eigenvectors associated with small eigenvalues have rich in-
formation, we set f(λ) such that the eigenvectors associ-
ated with small eigenvalues in Ω have small weights. In
contrast, if A1 and A2 are from a trace maximization-type
method like LFDA, since eigenvectors associated with large

eigenvalues have rich information, we set f(λ) such that
the eigenvectors associated with large eigenvalues in Ω have
small weights. Note that, for a diagonalizable matrix A =
XDX−1 with D = diag(d1, d2, . . . , dn), we have f(A) =
Xf(D)X−1 with f(D) = diag(f(d1), f(d2), . . . , f(dn))
(Higham 2008).

For the meaning of the complex moment-based subspace
SΩ, we have the following theorem; see e.g., (Imakura, Du,
and Sakurai 2016).

Theorem 1. The complex moment-based subspace is equiv-
alent to an invariant subspace with respect to the multiple
eigenvectors corresponding to the eigenvalues in a given
real interval Ω = [a, b] ⊂ R, that is,

SΩ = TΩ := span{ti|λi ∈ Ω},

if and only if rank(S) = d.

The basic concepts of the proposed method for high
recognition performance are summarized as follows:

• Use the complex moment-based subspace SΩ, which is
equivalent to the invariant subspace TΩ with respect to
the multiple eigenvectors to solve the novel minimization
problem (4).

• Use the novel minimization problem (4) that combines
the matrix trace derived from the dimensionality reduc-
tion methods and the squared error straightforwardly us-
ing the ground truth data.

Derivation of a practical algorithm
Here, we propose a practical algorithm for the pro-
posed method based on some techniques of complex
moment-based eigensolvers. Let U ∈ Rm×d and U⊥ ∈
Rm×(m−d) be A2-orthogonal matrices whose columns are
A2-orthonormal bases of the complex moment-based sub-
space SΩ and of its A2-orthogonal complement, respec-
tively, i.e.,

U = [u1,u2, . . . ,ud], uk ∈ SΩ,

UTA2U = I, UTA2U
⊥ = O, (5)

where d = |{λi|λi ∈ Ω}| is the number of eigenvalues of
(1) in Ω = [a, b]. Then, the linear map B is given by

B = UC, CTC = I, C ∈ Rd×`.

Using (5) and the relation Tr(ATA) = ‖A‖2F, we have

Tr
(
BTf(A1)B

)
= Tr

(
(CTUT)(A2[U,U⊥])f

(
[U,U⊥]TA1[U,U⊥]

)
·([U,U⊥]TA2)(UC)

)
= Tr

(
CTf(UTA1U)C

)
= ‖f(T )1/2C‖2F,

where T = UTA1U . Also, we have

‖Z −BTX‖2F = ‖Z − CTUTX‖2F.
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From the relation ‖A‖2F + ‖B‖2F = ‖[A;B]‖2F, the objective
function E(B) in (4) can be written as

E(B) = (1− µ)‖f(T )1/2C‖2F + µ‖Z − CTUTX‖2F

=

∣∣∣∣∣∣∣∣[ µ1/2ZT

O

]
−
[

µ1/2XTU
(1− µ)1/2f(T )1/2

]
C

∣∣∣∣∣∣∣∣2
F

.

Therefore, the minimization problem (4) becomes

min
C∈Rd×`

∣∣∣∣∣∣∣∣[ µ1/2ZT

O

]
−
[

µ1/2XTU
(1− µ)1/2f(T )1/2

]
C

∣∣∣∣∣∣∣∣2
F

s.t. CTC = I. (6)

A minimization problem with an orthogonal constraint (6) is
called an unbalanced orthogonal Procrustes (UOP) problem,
which is solved using an iterative method (Eldén and Park
1999; Park 1991).

In practice, the contour integral (3) is approximated by a
numerical integration rule such as the N -point trapezoidal
rule, as follows:

Ŝk :=

N∑
j=1

ωjz
k
j (zjA2 −A1)−1A2V,

where (zj , ωj), j = 1, 2, . . . , N are the quadrature points
and the corresponding weights, respectively. Because of the
symmetric property of the matrix pencil (A1, A2), if quadra-
ture points and the corresponding weights are symmetric
about the real axis, (zj , ωj) = (zj+N/2, ωj+N/2), j =
1, 2, . . . , N/2, we can reduce the number of linear systems,

Ŝk = 2

N/2∑
j=1

Re(ωjz
k
j (zjA2 −A1)−1A2V ). (7)

To improve the numerical stability, we also apply a low-
rank approximation of Ŝ with a singular value decomposi-
tion on an A2-inner product:

Ŝ = [Û , Û ′]

[
Σ̂

Σ̂′

] [
ŴT

Ŵ ′T

]
≈ Û Σ̂ŴT,

ÛTA2Û = I, ŴTŴ = I,

where Σ̂ is a diagonal matrix whose diagonal entries are the
larger part of the singular values, i.e., σi/σ1 ≥ δ (σ1 ≥
σ2 ≥ · · · ≥ σLM ), and the columns of Û , Ŵ are the
corresponding singular vectors. Let d̂ be a numerical rank,
σd̂/σ1 ≥ δ > σd̂+1/σ1. Then, the UOP problem (6) is
rewritten as

min
Ĉ∈Rd̂×`

∣∣∣∣∣∣∣∣[ µ1/2ZT

O

]
−
[

µ1/2XTÛ

(1− µ)1/2f(T̂ )1/2

]
Ĉ

∣∣∣∣∣∣∣∣2
F

s.t. ĈTĈ = I, (8)

where T̂ = ÛTA1Û and the map is obtained fromB = Û Ĉ.
The algorithm of the proposed method is summarized in

Algorithm 1. One of the most time-consuming parts of the

Algorithm 1 A complex moment-based supervised eigen-
map for dimensionality reduction
Input: Training dataset: X ∈ Rm×n, Z ∈ R`×n and pa-

rameters: L,M,N ∈ N+, δ ∈ R, V ∈ Rm×L, (zj , ωj)
for j = 1, 2, . . . , N,Ω = [a, b], µ, f(·).

Output: Linear eigenmap B ∈ Rm×`

1: Construct a matrix pencil (A1, A2) from the training
dataset X (and Z if required)

2: Compute Ŝk =
∑N/2

j=1 Re(ωjz
k
j (zjA2 − A1)−1A2V ),

and set Ŝ = [Ŝ0, Ŝ1, . . . , ŜM−1]

3: Compute a low-rank approximation of Ŝ using the
threshold δ:
Ŝ = [Û , Û ′][Σ̂, O;O, Σ̂′][Ŵ , Ŵ ′T] ≈ Û Σ̂ŴT such
that ÛTA2Û = I

4: Solve UOP problem (8) and set B = Û Ĉ

proposed method is computing the solutions of the N/2 lin-
ear systems with L right-hand sides in (7) and Step 2 of Al-
gorithm 1 as follows:

(zjA2 −A1)Pj = A2V, j = 1, 2, . . . , N/2. (9)

For solving these linear systems, the proposed method has
hierarchical parallelism. By making this hierarchical struc-
ture of the algorithms responsive to the hierarchical structure
of the recent architecture, the proposed method is expected
to achieve a scalability as high as the complex moment-
based eigensolvers, which is a significant advantage for par-
allel computation. For complex moment-based eigensolvers,
their parallel efficiency was demonstrated in previous re-
search (Kestyn et al. 2016; Iwase et al. 2017).

Extensions of the proposed method and relations
between existing methods
In the proposed method, the matrices A1 and A2 are derived
from existing dimensionality reduction methods, that is, we
can consider several variants of the proposed method based
on each dimensionality reduction method. The concept of
the nonlinear dimensionality reduction can also be applied
to the proposed method to improve the recognition perfor-
mance.

There are no direct methods for computing an optimal
solution to the UOP problem (8) because of its nonlin-
ear constraint. Therefore, we use an approximate solution
obtained by an iterative method (Eldén and Park 1999;
Park 1991). As another choice, in future, we may relax or
ignore the orthogonal constraint. If we ignore the orthogo-
nal constraint, the UOP problem (8) is reduced to a linear
least-squares problem and can be solved efficiently.

The proposed method can be recognized as a combination
of the existing dimensionality reduction method based on
trace minimization/maximization and ridge regression. If the
contour integral (3) is computed exactly, then the proposed
method with specific parameters simplifies to dimensional-
ity reduction methods and ridge regression. For example, the
matrices A1 and A2 are those used in trace minimization or
maximization methods like LPP or LFDA. In this case, if
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(a) Ground truth (b) Training dataset

Figure 1: Ground truth and training dataset for the artificial problem.

we set Ω to include nonzero ` smallest or largest eigenval-
ues, then the proposed method with µ = 0 and f(λ) = λ
or f(λ) = 1/λ are mathematically equivalent to the corre-
sponding dimensionality reduction methods. Also, if we set
Ω to include all eigenvalues and ignore the orthogonal con-
straint in (6), then the proposed method with f(λ) = 1 is
mathematically equivalent to ridge regression.

Numerical experiments
The main aspects of the proposed method for achieving high
recognition performance are (i) a complex moment-based
subspace including multiple eigenvectors, (ii) a novel ob-
jective function that combines a matrix trace and a squared
error and (iii) an efficient and parallel implementation based
on techniques used for complex moment-based parallel
eigensolvers. To evaluate the effect of these aspects of the
proposed method on recognition performance, here we com-
pare the performance of the kernel version of the proposed
method (complex moment-based supervised eigenmap, K–
CMSE) with the performance of Kernel LPP (K–LPP), Ker-
nel LFDA (K–LFDA) and Kernel ridge regression (K–RR).

We use the Gaussian kernel as the kernel function. The di-
mension size ` is set as the number of classes for each prob-
lem. The similarity matrix is sparsified with the k-nearest
neighbor approach (k = 7). For each problem, a line search
tunes the regularization parameter of K–RR.

For K–CMSE, we use the same matrices A1 and A2

as those used for K–LPP. We also use (M,N, δ) =
(8, 32, 10−15), which are the default parameters for com-
plex moment-based eigensolvers. The input matrix V is a
random matrix generated by the Mersenne Twister. We set
Ω = [0, b] and the quadrature points as on an ellipse with
center γ = b/2, major axis ρ = b/2 and aspect ratio α = 0.1
as follows:

zj = γ + ρ (cos(θj) + αi sin(θj)) , θj =
2π

N

(
j − 1

2

)
for j = 1, 2, . . . , N/2. The corresponding weights are set as

ωj =
ρ

N
(α cos(θj) + i sin(θj))

for j = 1, 2, . . . , N/2. The nonlinear function f(·) is de-
fined as f(λ) = 1/(b− λ)2. We solve the UOP problem (8)
using an iterative method (Zhao, Wang, and Nie 2016).

In the training phase, we use the ground truth Z as a bi-
nary matrix whose (i, j) entry is 1 if the training data xj is
in class i. This type of ground truth Z is used for several
classification algorithms including the ridge regression and
deep neural networks (Bishop 2006). Then, in the prediction
phase, we firstly apply the trained dimensionality reduction
and apply the k-nearest neighbors (Altman 1992) for classi-
fication to the obtained low dimensional data.

Numerical experiments I and II were performed using
MATLAB2017b, and numerical experiment III was per-
formed using Fortran 90 and MPI.

Experiment I: artificial data
In this experiment, we compare the recognition performance
of the dimensionality reduction methods for the three-class
classification of 10-dimensional artificial data. The first two
dimensions of the ground truth are shown in Figure 1(a). In
Figure 1(b), we show 1000 training data points of the first
two dimensions with the corresponding labels: ◦, • and +.
As shown in Figure 1, the training dataset has noise and de-
viates from the ground truth to evaluate the overfitting of
the methods due to the noise. For the test dataset, we use
201×201 data points whose first two dimensions are square
grid points in [−1, 1]×[−1, 1]. The other eight dimensions of
the training and test dataset are random values in [−0.1, 0.1]
generated by the Mersenne Twister in MATLAB.

Firstly, we evaluate the parameter dependency of the
recognition performance, accuracy (ACC) defined by the
rate of correct predictions to the number of test data
points, for k = 1, 2, . . . , 50 of the k-nearest neighbors,
µ = 0.01, 0.02, . . . , 1.00 of a linear combination, b =
0.02, 0.04, . . . , 2.00 of Ω and L = 1, 2, . . . , 50 of the num-
ber of input vectors.

Figure 2 (a) shows the k dependency of the performance
of all methods, and Figures 2 (b), (c) and (d) show the µ, Ω
and L dependencies, respectively, of the performance of the
proposed method, K–CMSE. From Figure 2 (a), we can see
that K–CMSE outperforms the existing methods for k > 10,
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(a) k dependency of all methods
(µ = 0.25, b = 0.7, L = 25)

(c) Ω dependency of K-CMSE
(k = 25, µ = 0.25, L = 25)

(b) µ dependency of K-CMSE
(k = 25, b = 0.7, L = 25)

(d) L dependency of K-CMSE
(k = 25, µ = 0.25, b = 0.7)

Figure 2: Parameter dependency of accuracy (ACC) for the artificial problem. For each figure, one parameter is changed and
the other parameters are fixed at k = 25, µ = 0.25, b = 0.7 and L = 25. Vertical dashed lines denote the fixed parameters.

although the performance of K–LPP and K–CMSE are de-
pendent on k. Figure 2 (b) demonstrates that the perfor-
mance of K–CMSE with µ ≈ 1 is relatively low. Note that
µ is the weight for a linear combination of two objective
functions and K–CMSE with µ = 0 is strongly related to K-
LPP. Therefore, the result in Figure 2 (b) indicates that the
combination of objective functions gives a better recognition
performance than using each objective function alone. Fig-
ure 2 (c) and (d) also show that the complex moment-based
subspace with wide region Ω and large L, which include a
larger number of eigenvectors, improves recognition perfor-
mance, although an overlarge Ω leads to limited recognition
performance.

The classification results of the existing methods and K–
CMSE are shown in Figure 3. At first glance, the existing
methods give good classification results; however, the pre-
dicted boundary of each class is not sharp, which indicates
that is overfitting due to the noise in the training dataset. In
contrast, in comparison with the existing methods, the pro-
posed method (K–CMSE) gives a better and sharper classi-
fication result and less overfitting.

Experiment II: real-world data
Here, we evaluate the performance of the dimensionality re-
duction methods on normalized mutual information (NMI)
(Strehl and Ghosh 2002), accuracy (ACC) and Rand index

(RI) (Rand 1971). As test problems, we treat the binary
and multiclass classification problems obtained from (Le-
Cun 1998; Samaria and Harter 1994) and feature selection
datasets which is available at http://featureselection.asu.edu/
datasets.php.

In these numerical experiments, k of the k-nearest neigh-
bor, the regularization parameter of K–RR and (µ, b, L) of
K–CMSE are tuned by applying a line search to each param-
eter sequentially and by a 10-fold cross-validation until con-
vergence. Then, the performance of each method with the
tuned parameters is evaluated by a 10-fold cross-validation
using a different validation set from that used for parameter
tuning.

The numerical results (average± standard error) are sum-
marised in Table 1. We can observe from Table 1 that the
proposed method (K–CMSE) has a recognition performance
higher than those of existing methods for binary and multi-
class classifications.

Experiment III: scalability
In this experiment, we evaluate the strong scalability of the
main parts of K–CMSE which construct the matrices A1

and A2, compute the complex moment matrix Ŝ (7), low-
rank approximation and solve the UOP problem. For the
test problem, we use the 10-class classification MNIST with
60,000 training data points (LeCun 1998).
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(a) K–LPP

(c) K–RR

(b) K–LFDA

(d) K–CMSE

Figure 3: Classification results of the existing methods (k = 10) and K–CMSE (k = 25, µ = 0.25, b = 0.7, L = 25) for the
artificial problem.
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Figure 4: Elapsed time and strong scalability of the main part of K–CMSE for MNIST with 60,000 training data points.

The numerical experiments were conducted on COMA
at the Center for Computational Sciences, University of
Tsukuba, Japan. COMA has two Intel Xeon E5-2670v2 (2.5
GHz) processors and two Intel Xeon Phi 7110P (61 cores)
processors per node. In this numerical experiment, we use
only the CPU. The algorithms are implemented in Fortran 90
and MPI and executed with 1 to 32 nodes (one MPI process
per node). The sparse linear systems (9) are solved using
“cluster sparse solver” in Intel MKL.

Figure 4 shows the elapsed time and the strong scalability
of the main parts of the proposed method. We observe from
Figure 4 that the most time-consuming part of the proposed

method is computing the complex moment matrix Ŝ, which
is scaled well by parallelization. As a result, the proposed
method exhibits good strong scalability.

Remarks on numerical results
The results of experiments I and II indicate that our com-
bined objective function and the complex moment-based
subspace achieve better recognition performance over exist-
ing methods for artificial and real-world problems. Experi-
ment III demonstrates that the proposed method exhibits a
high parallel efficiency based on techniques used for com-
plex moment-based eigensolvers.
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Table 1: Recognition performance (average ± standard error) for real-world problems. The parameters m,n, ` denote the
number of the features, samples and classes. The bold fonts denote the best method(s) for each evaluation index.

att644 (m,n, `) = (644, 400, 40) GLI-85 (m,n, `) = (22283, 85, 2)
Method NMI ACC RI Method NMI ACC RI

K-LPP 0.92±0.01 69.75±3.31 97.56±0.32 K-LPP 0.18±0.10 66.92±5.87 57.53±5.23
K-LFDA 0.95±0.01 83.75±1.63 98.42±0.21 K-LFDA 0.41±0.12 85.19±2.90 73.30±4.86
K-RR 0.95±0.01 86.25±1.24 98.59±0.21 K-RR 0.48±0.11 85.48±3.03 73.82±5.10
K-CMSE 0.96±0.01 86.50±1.28 98.64±0.22 K-CMSE 0.47±0.11 86.73±2.83 75.60±4.79

GLIOMA (m,n, `) = (4434, 50, 4) Isolet1 (m,n, `) = (617, 1560, 26)
Method NMI ACC RI Method NMI ACC RI

K-LPP 0.83±0.04 66.00±8.02 83.00±4.48 K-LPP 0.85±0.00 73.78±1.06 97.16±0.15
K-LFDA 0.86±0.04 74.00±8.02 88.00±3.41 K-LFDA 0.97±0.00 96.86±0.38 99.56±0.06
K-RR 0.84±0.04 74.00±8.02 85.00±4.30 K-RR 0.98±0.00 97.12±0.34 99.59±0.05
K-CMSE 0.87±0.04 76.00±7.38 88.00±3.69 K-CMSE 0.98±0.00 97.31±0.38 99.62±0.06

MNIST (m,n, `) = (784, 2000, 10) pixraw10P (m,n, `) = (10000, 100, 10)
Method NMI ACC RI Method NMI ACC RI

K-LPP 0.80±0.01 83.85±0.82 94.78±0.21 K-LPP 0.95±0.02 90.00±4.00 96.67±1.55
K-LFDA 0.93±0.01 95.50±0.49 98.27±0.18 K-LFDA 0.98±0.01 97.00±2.02 98.67±0.90
K-RR 0.93±0.01 95.55±0.47 98.30±0.16 K-RR 0.98±0.01 97.00±2.02 98.67±0.90
K-CMSE 0.93±0.01 95.70±0.33 98.35±0.11 K-CMSE 0.98±0.01 97.00±1.45 98.89±0.57

SMK-CAN-187 (m,n, `) = (19993, 187, 2) TOX-171 (m,n, `) = (5748, 171, 4)
Method NMI ACC RI Method NMI ACC RI

K-LPP 0.12±0.03 65.84±3.09 54.48±1.28 K-LPP 0.42±0.03 50.92±2.69 69.14±1.37
K-LFDA 0.17±0.04 68.71±2.57 55.94±1.95 K-LFDA 0.91±0.03 94.77±1.92 94.34±2.13
K-RR 0.18±0.05 68.71±2.69 56.07±2.25 K-RR 0.93±0.02 95.92±1.45 95.81±1.70
K-CMSE 0.18±0.04 71.89±2.48 58.56±2.31 K-CMSE 0.94±0.02 96.50±1.48 96.32±1.74

Therefore, we conclude that these numerical experiments
confirm the efficiency of the main aspects of the proposed
method.

Conclusions
Here, we proposed a novel complex moment-based super-
vised dimensionality reduction method, which achieves high
recognition performance by extending the existing dimen-
sionality reduction methods using a complex moment-based
subspace. The main aspects of the proposed method are (i) a
complex moment-based subspace including multiple eigen-
vectors, (ii) a novel objective function that combines a ma-
trix trace and a squared error and (iii) an efficient and par-
allel implementation based on techniques used for the com-
plex moment-based parallel eigensolvers. The numerical re-
sults confirm that these aspects help to achieve high recog-
nition performance and high parallel efficiency.

Note that we also tested the proposed method with a ma-
trix pencil (A1, A2) derived from K–LFDA and obtained al-
most the same good results as demonstrated in this paper.

In the future, we will evaluate the performance of the
proposed method based on other dimensionality reduction
methods and compared it with those of existing methods
when solving large real-world problems in parallel environ-
ments. We will also investigate tuning strategies for the hy-
perparameters of the proposed method.
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