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Abstract
Many real-world systems involve interacting time series. The
ability to detect causal dependencies between system com-
ponents from observed time series of their outputs is essen-
tial for understanding system behavior. The quantification of
causal influences between time series is based on the defi-
nition of some causality measure. Partial Canonical Correla-
tion Analysis (Partial CCA) and its extensions are examples
of methods used for robustly estimating the causal relation-
ships between two multidimensional time series even when
the time series are short. These methods assume that the in-
put data are complete and have no missing values. However,
real-world data often contain missing values. It is therefore
crucial to estimate the causality measure robustly even when
the input time series is incomplete. Treating this problem
as a semi-supervised learning problem, we propose a novel
semi-supervised extension of probabilistic Partial CCA called
semi-Bayesian Partial CCA. Our method exploits the infor-
mation in samples with missing values to prevent the overfit-
ting of parameter estimation even when there are few com-
plete samples. Experiments based on synthesized and real
data demonstrate the ability of the proposed method to esti-
mate causal relationships more correctly than existing meth-
ods when the data contain missing values, the dimensionality
is large, and the number of samples is small.

Introduction
Understanding the interdependence of multiple time series
is essential in a wide range of fields such as meteorology, fi-
nance, and robotics. The interactions between system com-
ponents are dynamic and complicated. To analyze and pre-
dict system behavior, it is important to detect the depen-
dent components from the output time series. We can de-
tect the interdependence of multiple time series by quantify-
ing their pair-wise interdependence. Causality measure, e.g.,
in terms of Granger Causality (Granger 1969) is a power-
ful approach for revealing such pair-wise interdependences.
It quantifies, within a given pair of time series, the influ-
ence of the past value in one time series on the future value
in the other. Among the many types of causality measures
proposed in the literature, Partial CCA (Rao 1969) is a use-
ful multivariate analysis method for estimating the causal
effects between high-dimensional data robustly. While the
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original paper does not mention the relationship with causal-
ity, (Shibuya, Harada, and Kuniyoshi 2011) showed that by
using the projections of two time series estimated by Partial
CCA, we can calculate Transfer Entropy, which is a causal-
ity measure equivalent to Granger Causality when variables
follow a Gaussian distribution (Shibuya, Harada, and Ku-
niyoshi 2009).

However, these methods require a large number of sam-
ples with no missing values. This scenario is not always re-
alized with real data, where missing values often arise be-
cause of sensor deficiencies or privacy regulations. Also,
the quantification of a causal effect between two time se-
ries requires triplets of variables, i.e., the past value in one
time series and both the current and the past value in the
other time series. So, it is difficult to obtain many samples in
which all the variables are simultaneously observed. More-
over, when causal effects change dynamically, we need to
estimate causal relationships over a short time span where
the causality measure can be assumed to be constant. Ad-
ditionally, real data tend to contain redundant information
and become high-dimensional. Thus, it is necessary to esti-
mate the causality measure robustly from high-dimensional
small-sample time series in which some values are missing.

A naive way to deal with incomplete data is to ignore sam-
ples with missing values. However, complete samples can-
not provide enough information to estimate parameters and
lead to overfitting. Few methods for estimating causality ad-
dress this problem, but several multivariate analysis meth-
ods have been proposed to compensate the lack of infor-
mation. One of these adopts a Bayesian approach; another
is a semi-supervised approach. Bayesian approaches do not
use missing samples but provide a way to cope with small
samples by adding prior information on parameters (Klami,
Virtanen, and Kaski 2013; Bishop 1999). Partial CCA also
has Bayesian extensions (Mukuta and Harada 2014). Semi-
supervised approaches compensate for the lack of informa-
tion by exploiting incomplete samples. (Ilin and Raiko 2010)
combines both approaches for principal component analysis
, but it does not provide enough basis for explaining why the
results do not suffer from any bias caused by missing data.

In this work, we propose a causality estimation method
that combines the semi-supervised and Bayesian ap-
proaches. We addressed the issue of missing data by using
Rubin’s missing model (Rubin 1974; 1975; 1976), which
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was originally proposed for randomized experiments and
observational studies. We applied it to causality estimation
from time series for the first time. In particular, we regard the
missingness of samples as a probabilistic variable and incor-
porate it into the model of Bayesian Partial CCA. We prove
that we can estimate unbiased parameters without explicitly
modeling missing mechanism if samples are “missing com-
pletely at random” (MCAR) or “missing at random” (MAR).
Still, our method can prevent the divergence of parameters
even in the case of “missing not at random” (MNAR).

We experimentally demonstrate that our method can ex-
ploit samples with missing values to make the estimation
stable even when the number of complete samples is small
and existing methods result in overfitting. An experiment
with simulated data was conducted using several types of
data with various dimensionalities, sample sizes, and ratio of
missing values. We also assessed whether performance de-
pends on whether there is incompleteness in the cause vari-
able, the outcome variable, or both variables. The experi-
mental results confirm the good performance of the method,
especially when the dimensionality of the data is smaller
than the number of complete samples. We display the per-
formance of our method, both in terms of preventing the
divergence of parameters and of detecting spurious causal-
ity. Analysis shows how our method robustly estimates the
parameter that plays an essential role in causality quantifi-
cation. Applications to real data are demonstrated on a me-
teorological dataset and on a video dataset. Both examples
show that our method can estimate causality among multiple
time series by applying it to all pairs of time series.

The study proceeds as follows:

• We address the problem of estimating the causality mea-
sure from two multi-dimensional time series with miss-
ing values. To solve this problem, we propose a semi-
supervised extension of Bayesian Partial CCA called
semi-Bayesian Partial CCA (semi-BPCCA).

• Semi-BPCCA can estimate the causal effect indepen-
dently of the probabilistic model of missing of data when
the missingness is independent of the missing variable.

• Experiments on both artificial data and real data demon-
strate that our method can avoid overfitting by exploiting
non-paired samples.

Related Work
This section explains the existing method of causality quan-
tification between two multi-dimensional time series.

Transfer Entropy and Partial CCA
Transfer entropy (TE) (Schreiber 2000) is the causality
measure derived from the perspective of information the-
ory. TE quantifies a causal effect as an information flow
from one time series to the other. This measure is based
on the assumption that the causal effect from time se-
ries X = [x1, ..., xt, ..., xT ] ∈ Rdx×T to series Y =

[y1, ..., yt, ..., yT ] ∈ Rdy×T is large when past x(k)
t−1 is pre-

dictive of the current yt and can improve a Markov-model-
based prediction of yt using only the past value y(l)

t−1. Here,

x
(k)
t−1 = [xTt−1, ..., x

T
t−k]T and y(l)

t−1 = [yTt−1, ..., y
T
t−l]

T . More
specifically, TEX→Y is defined as the Kullback Leibler di-
vergence between conditional distributions of yt only given
y

(l)
t−1 and given y(l)

t−1 and x(k)
t−1 written as

TEX→Y =

∫∫∫
p(yt, y

(l)
t−1, x

(k)
t−1)

log2

p(yt|y(l)
t−1, x

(k)
t−1)

p(yt|y(l)
t−1)

dytdy
(l)
t−1dx

(k)
t−1. (1)

TE has a wide range of applications in, e.g., economics
(Kwon and Yang 2008), robotics (Berger et al. 2016), and
neuroscience (Wibral et al. 2013).

Partial CCA is a multivariate analysis method that cal-
culates the projections that maximize the partial correlation
between two input variables y1 ∈ Rdy1 and y2 ∈ Rdy2 after
eliminating the effect of a third variable x ∈ Rdx . The pro-
jections a and b are calculated as the following generalized
eigenvalue problem

Σy1y2|xΣ−1
y2y2|xΣy2y1|xa = λΣy1y1|xa, (2)

Σy2y1|xΣ−1
y1y1|xΣy1y2|xb = λΣy2y2|xb. (3)

By solving the problems (2) and (3), we get D (=
max(dy1 , dy2 )) eigenvalues λ1 ≥ ... ≥ λd ≥ ... ≥ λD ≥ 0
and the corresponding eigenvectors a1, ..., ad, ..., aD for y1

and b1, ..., bd, ..., bD for y2. Here, the eigenvalues λd cal-
culated from equations (2) and (3) are equivalent and equal
to the square of the correlation coefficient ρd between y1|x
and y2|x. It can be proved that, assuming that the input data
are taken from a Gaussian distribution, Partial CCA calcu-
lates the projections that maximize the TE (Shibuya, Harada,
and Kuniyoshi 2011). Let us consider applying Partial CCA
to two multivariate time series X and Y by substituting the
past values of the time series xt−1 and the current values
of the time series yt for the input y1 and y2 respectively
and the past value of the time series yt−1 for the third vari-
able x. Then, by using eigenvector ad, Y is projected to the
subspace Sd = aTd Y such that the TE from X to Y is the
summation of the TE from X to Sd:

TEX→Y =

D∑
d=1

TEX→Sd
=

1

2

D∑
d=1

log2

1

1− λd
. (4)

The causal effect TEX→Sd
is stronger when the index d is

smaller and the corresponding eigenvalue λd is larger.
Thus, Partial CCA can analyze the causal effect in detail

and allow an estimate of the causality measure robustly from
multivariate data by projecting the data onto the subspace
where the causal effect is maximized. Partial CCA is used in
various fields, including bioinformatics (Fujita et al. 2010).

Bayesian Partial CCA
Partial CCA overfits the data when the number of sam-
ples exceeds the dimensionality of the data, because the
covariance matrices become ill-conditioned. Group Sparse
Bayesian Partial CCA (GSPCCA) (Mukuta and Harada
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Figure 1: Graphical model of semi-BPCCA when only Y 1

can have missing values.

2014) prevents such overfitting by introducing a prior dis-
tribution to the model parameters.

GSPCCA assumes the generative model whereby two ob-
served variables ym (m = 1, 2) are generated from a third
observed variable x and the latent variable z is written as

zn ∼ N (0, Idz+d1+d2),

ymn | xn, zn ∼ N (Wm
x xn +Wm

z zn, (τ
m)−1Idm).

The prior distributions of the model parameters are

αmk ∼ Gamma(a0, b0),

Wm
:,k ∼ N (0, (αmk )−1Idm),

τm ∼ Gamma(a0, b0),

where Gamma(a, b) denotes the Gamma distribution with
shape parameter a and scale parameter b; xn, ymn , and zn
are n-th variables; and X , Y m, and Z are the correspond-
ing data matrices. Also, we denote Y =(Y 1TY 2T )T and
Wm=(Wm

x Wm
z ).

GSPCCA yields unsatisfactory results when the number
of complete samples is too small. In such a case, another
constraint must be applied to the model parameters by ex-
ploiting the information contained in non-paired samples.

Proposed Method
In this section we propose the method for estimating the
causal relationship between two incomplete time series by
exploiting the information contained in non-paired samples.
To this end, we propose a novel semi-supervised model
called semi-Bayesian Partial CCA (semi-BPCCA), which is
an extension of GSPCCA. Semi-BPCCA accepts non-paired
samples as input and stabilizes the parameter estimation by
incorporating the missingness of samples as a probabilistic
variable into the model. It is similar to the approach of (Ka-
mada, Kanezaki, and Harada 2015), where they extend prob-
abilistic CCA to accept non-paired samples. We demonstrate
that the bias of missing variables can be ignored without
modeling the missing probability when the missing model
is MCAR or MAR.

Semi-Bayesian Partial CCA
We constructed our model by considering Rubin’s missing
model (Rubin 1976). While our model can handle the case

where both y1 and y2 have missing values, for simplicity,
we here assume that only y1 can have missing values. We
introduce the random variable rn as having a value of 1
when y1

n is missing and 0 otherwise. We model the probabil-
ity of rn as being controlled by the parameter φ. We repre-
sent a sample as {xn, ∗, y1

n, y
2
n}where ∗ denotes the missing

value. The graphical model that considers the missing val-
ues is plotted in Fig. 1. Denoting the model parameter Θ =
{Z,W, τ1, τ2, α1, α2}, the proposed method approximates
the posterior probability of the parameter p(Θ|X,Y ) as
q(Θ) in a way that maximizes the data probability p(X,Y )
using the variational Bayesian method. The model evidence
for the sample {xn, ∗, y2

n} is decomposed as

Ln(q(Θ), φ) = log p(xn, ∗, y2n, rn|φ) (5)

= log p(xn, y
2
n) + log

∫
p(y1n|xn, y2n)p(rn|xn, y1n, y2n, φ)dy1n.

In the general case, one needs to model the probability
p(rn|xn, y1

n, y
2
n, φ) that the variable is missing to calcu-

late the approximate posterior distribution q(Θ) that max-
imizes Equation (5). However, q(Θ) can be calculated with-
out defining p(rn|xn, y1

n, y
2
n, φ) for the specific missing dis-

tribution. Consider the three types of missing distributions
Rubin defined. The first is MCAR, where the missing prob-
ability does not depend on y1, y2, or x and the distribution of
rt is independent of the y values. The second is MAR, where
the missing probability depends on y2 and x but does not de-
pend on y1 and the distribution of rn is independent of y1

n.
The third is MNAR, where the missing probability depends
on y1 and the distribution of rn depends on y1

n. Consider-
ing the above three cases, when the missing distribution is
MCAR or MAR, we can rewrite the second term in Equa-
tion (5) as the logarithm of p(rn|xn, y2

n, φ). As this term is
independent of Θ, the evidence, expressed in Equation (5),
can be decomposed into terms that depend only on Θ and
those depend only on φ as

Ln(q(Θ), φ) = log p(xn, y
2
n) + log p(rn|xn, y2

n, φ)

= Ln(q(Θ)) + Ln(φ).

Since the goal is to estimate q(Θ) when Θ and Ln(φ) are
independent,Ln(q(Θ), φ) can be maximized by maximizing
Ln(q(Θ)), independently of the missing model Ln(φ).

When all of the input data are segregated into complete
samples, those samples where y1 is missing, and those sam-
ples where y2 is missing, the evidence of all the samples is
written as

L(q(Θ), φ) = L1(q(Θ)) + L2(q(Θ)) + L3(q(Θ)) + const.
(6)

where

Lm(q(Θ)) =
∑
n∈Sm

Ln(q(Θ)) =
∑
n∈Sm

log p(xn, y
m
n ),

L3(q(Θ)) =
∑
n∈S3

Ln(q(Θ)) =
∑
n∈S3

log p(xn, y
1
n, y

2
n).

We write the terms that do not depend on Θ as “const” in
Equation (6). Sm (m = 1, 2) denotes the set of samples in
which only ym is observed, and S3 is the set of samples
where both y1 and y2 are observed. The samples where the

3921



third variable x is missing are omitted. Estimating the Θ
that maximize L(q(Θ, φ)) requires only the maximization
of L1(q(Θ)) + L2(q(Θ)) + L3(q(Θ)). These terms are fur-
ther rewritten as log p(X,Y 1S1∪S3 , Y 2S2∪S3), where Y S is
the matrix composed of [y1

n, y
2
n], (n ∈ S).

We calculate the distribution of Θ by variational
Bayesian methods. We approximate the posterior
p(Θ|X,Y 1S1∪S3 , Y 2S2∪S3) using q(Θ) written as

q(Θ) = q(ZS1)q(ZS2)q(ZS3)
∏
m

q(τm)q(αm)q(Wm).

The variational approximate distributions of Θ =
{Z,W, τ1, τ2, α1, α2} satisfy

q(θi) ∝ exp〈log p(Y S1∪S3 , Y S2∪S3 ,Θ|X)〉j 6=i, (7)

where 〈•〉i 6=j denotes the expectation with respect to∏
j 6=i q(θj). We denote the approximate posterior of model

parameters and latent variables as

q(ZSm′ ) =
∏

n∈Sm′

N (µSm′
zn ,ΣSm′

z )(m′ = 1, 2, 3),

q(Wm) =
∏
d

N (µWm
d,:
,ΣWm),

q(αm) =
∏
k

Gamma(aαm
k
, bαm),

q(τm) = Gamma(aτm , bτm),

and the distribution parameters are updated as

ΣSm
z = (I + 〈τm〉〈(Wm

z )T (Wm
z )〉)−1,

ΣS3
z = (I + 〈τ1〉〈(W 1

z )T (W 1
z )〉+ 〈τ2〉〈(W 2

z )T (W 2
z )〉)−1,

〈Z〉Sm = ΣSm
z 〈τm〉(〈Wm

z 〉TYmSm − 〈(Wm
z )TWm

x 〉XSm ),

〈Z〉S3 = ΣS3
z

(
〈τ1〉

(
〈W 1

z 〉TY 1S3 − 〈(W 1
z )TW 1

x 〉XS3
)

+ 〈τ2〉
(
〈W 2

z 〉TY 2S3 − 〈(W 2
z )TW 2

x 〉XS3
))
,

ΣWm =

(
diag〈αm〉+ 〈τm〉

(
XS3 (XS3 )TXS3 (〈Z〉S3 )T

〈Z〉S3 (XS3 )T 〈ZZT 〉S3

)
+ 〈τm〉

(
XSm (XSm )T XSm (〈Z〉Sm )T

〈Z〉Sm (XSm )T 〈ZZT 〉Sm

))−1

,

µWm = Ym((XSm∪S3 )T 〈ZT 〉Sm∪S3 )ΣWm ,

aαm = a0 + dm/2,

bαm
k

= b0 + 〈(Wm)T (Wm)〉k,k/2,

aτm = a0 + (NSm +NS3 )dm/2,

bτm = b0 + 0.5

(
Tr
(
Ym(Ym)T

)
− 2Tr

(
Ym

(
(XSm∪S3 )T 〈ZT 〉Sm∪S3

)
〈Wm〉T

)
+ Tr

(
〈(Wm

z )T (Wm
z )〉

(
XS3 (XS3 )T XS3 (〈Z〉S3 )T

〈Z〉S3 (XS3 )T 〈ZZT 〉S3

)
+ 〈(Wm

z )T (Wm
z )〉

(
XSm (XSm )T XSm (〈Z〉Sm )T

〈Z〉Sm (XSm )T 〈ZZT 〉Sm

)))
.

One advantage of this method is that it can stabilize the es-
timation of the covariance matrix ΣW by using non-paired
samples. In GSPCCA, the inverse of ΣW is updated as

Σ−1
Wm = diag〈αm〉+ 〈τm〉

(
XS3 (XS3 )T XS3 (〈Z〉S3 )T

〈Z〉S3 (XS3 )T 〈ZZT 〉S3

)
.

When the paired-sample size Tpair is small, the calculation
of Σ−1

Wm becomes unstable. Especially when Tpair > d =

dx + dz , the second term of Σ−1
Wm becomes ill-conditioned.

In semi-BPCCA, the reciprocal of ΣW is updated as

Σ−1
Wm = diag〈αm〉+ 〈τm〉

(
XS3 (XS3 )T XS3 (〈Z〉S3 )T

〈Z〉S3 (XS3 )T 〈ZZT 〉S3

)
+ 〈τm〉

(
XSm (XSm )T XSm (〈Z〉Sm )T

〈Z〉Sm (XSm )T 〈ZZT 〉Sm

)
︸ ︷︷ ︸

non-paired

. (8)

By using non-paired samples, the third term of equation (8)
serves as a regularization term to stabilize the estimation of
ΣWm . In particular, when Tpair < d, this term prevents
Σ−1
Wm from becoming ill-conditioned.
Also, the optimal Wz and Z have the degree of freedom.

Thus, we optimize these Wz and Z as in GSPCCA to ac-
celerate convergence. These distributions are optimized by
setting W ∗z = WzR and Z∗ = R−1Z and optimizing with
respect to R. The objective function is defined as

L(R) = −
3∑
i=1

Tr(R−1〈ZZT 〉SmR−T )

2
+ (d1 + d2 −N)log|R|

−
1

2

2∑
m=1

dm

dz∑
k=1

log(rk
T 〈Wm

z Wm
z
T 〉rk).

R is optimized using the L-BFGS (Liu and Nocedal 1989)
method after each update of model parameters, and the pos-
terior distributions of Wz and Z are set as µWm

z
←µWm

z
R,

ΣWm
z
←RTΣWm

z
R, 〈Z〉←R−1〈Z〉, and Σz←R−1ΣzR

−T .

Calculation of the Causality Measure
Semi-BPCCA can be applied to calculate the causality
measure from time series X = [x1, x2, ..., xT ] to Y =
[y1, y2, ..., yT ] by setting Y 1 = Xt−1, Y 2 = Yt, and the
third variable X = Yt−1. In this work, we assume the em-
bedding dimension to k = l = 1. The causal direction be-
tween X and Y is estimated by computing and comparing
the causality measures fromX to Y and from Y toX . When
the ground-truth causal direction is X → Y , it is desirable
that TEX→Y > TEY→X . We calculate the causality mea-
sure as

∑dz
d=1

1
2 log2

1
1−ρ2d

, where ρd is the correlation be-
tween the conditional expectations of the d-th dimension la-
tent variable Z, calculated as

〈Z(d,:)|X
S3
t−1, Y

S3
t−1〉 = Σ

S3
z 〈τ

2〉(〈W 2
z 〉

T
X

S3
t−1 − 〈(W

2
z )

T
W

2
x 〉Y

S3
t−1),

〈Z(d,:)|Y
S3
t , Y

S3
t−1〉 = Σ

S3
z 〈τ

1〉(〈W 1
z 〉

T
Y

S3
t − 〈(W 1

z )
T
W

1
x 〉Y

S3
t−1).

Only complete samples are used to compute the correlation.

Experiment on Synthesized Data
This section appraises the estimation of the causality mea-
sure using synthesized data. We compare the proposed semi-
BPCCA and GSPCCA that ignore the non-paired samples
from the input data.

Experimental Setting
Multi-dimensional data X = [x1, x2, ..., xT ] ∈ Rdx×T and
Y = [y1, y2, ..., yT ] ∈ Rdy×T were generated such that
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(a) T=50, missing X .(b) T=50, missing Y .(c) T=50, missing
both X and Y .

(d) T=100, missing
X .

(e) T=100, missing
Y .

(f) T=100, missing
both X and Y .

(g) T=200, missing
X .

(h) T=200, missing
Y .

(i) T=200, missing
both X and Y .

Figure 2: Comparison of the estimated causality measures.
The x- and y-axes correspond to the missing ratio and the
causality measure, respectively. (MCAR)

there is a causal direction from X to Y . Thus, it is desir-
able that the estimated TEX→Y be greater than TEY→X .
The data were sampled using the following model:

xt = 0.5xt−1 + εt,x,

y2t
= 0.5y2t−1

+Wxt−1 + εt,y2 ,

yt = (yT2t−1
, yT2t−1

)T + εt,y, (9)

where εt,x, εt,y2∼N (0, I) and εt,y∼N (0, 0.1I). W is a ma-
trix where the entire first two columns were sampled from
N (0, 0.5I) and the remaining values are 0. We can evalu-
ate the estimation of Transfer Entropy by analytic solution
induced from the model (9) and the definition of Transfer
Entropy. Here, the value of the analytic solution of TEX→Y
is approximately 2.3, which is calculated as follows. Since
xt and yt follow Gaussian distributions in this experiment,
the analytic solution of TEX→Y is

TEX→Y = −
1

2
log2

∣∣∣∣Σ{yt,y(l)t−1,x
(k)
t−1}{yt,y

(l)
t−1,x

(k)
t−1}

∣∣∣∣ ∣∣∣∣Σy(l)t−1,y
(l)
t−1

∣∣∣∣
+

1

2
log2

∣∣∣∣Σ{yt,y(l)t−1}{yt,y
(l)
t−1}

∣∣∣∣ ∣∣∣∣Σ{y(l)t−1,x
(k)
t−1}{y

(l)
t−1,x

(k)
t−1}

∣∣∣∣ .
(10)

Each covariance in Equation (10) can be computed
from the covariance of the joint probability distribution
p(yt−1, yt, xt−1, y2t−1

, y2t
), which depends on the ran-

domly sampled W. Meanwhile, the estimation of TEY→X
is expected to become 0. We then removed the variable from
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(i) T=200, missing
both X and Y .

Figure 3: Comparison of the estimated causality measures.
The x- and y-axes correspond to the missing ratio and the
causality measure, respectively. (MNAR)

xt and yt with the missing ratio r = 0.1, 0.2, . . . , 0.7, and
for the missing patterns of MCAR and MNAR. For MCAR,
the variables are randomly removed uniformly. For MNAR,
following (Kimura et al. 2010), we generated data missing
Xt by removing xt with the largest r×100% value of aTxt,
where a ∼ N(0, Idx). In the same way, data missing Yt was
generated by removing yt with the largest r × 100% value
of aT yt, where a ∼ N(0, Idy ). We conducted the experi-
ment for the case where only Xt was missing, only Yt was
missing, or both Xt and Yt were missing. A missing vari-
able in the outcome variable Yt resulted in a missing value
in the third variable Yt−1. Thus, the ratio of complete pairs
of {xt−1, yt−1, yt} is smaller than 1− r. We set the dimen-
sion of the latent variable z to 5. For each setting, we ran-
domly generated the input data and calculated the causality
measure 50 times and evaluated the mean and standard error
of the estimated TEX→Y and TEY→X . If the estimated TE
diverged in the 50 times trial, we set the TE of the trial to 0.

Effect of Missing Ratio
Fig. 2 and Fig. 3 show the results corresponding to the di-
mensionality of xt being set to 20, that of yt to 40, and the
length of the time series T=50, 100, and 200 in the case
of MCAR and MNAR respectively. The results of MNAR
were similar to those of MCAR. This indicates our method
can stabilize the calculation of causality measure regardless
of the pattern of data missing. When T = 50, the proposed

3923



(a) TEX→Y for Y
with dimension 40.

(b) TEX→Y for Y
with dimension 60.

(c) TEX→Y for Y
with dimension 80.

Figure 4: Comparison of the estimated causality measures
with varying dimension. The x-axis is the size of paired sam-
ples after removing some of the samples from 100 samples.

method outperforms GSPCCA as it prevents the decrease of
the causality measure caused by the shortage of paired sam-
ples even if the missing ratio becomes large. This result indi-
cates the effectiveness of compensating the shortage by the
information of non-paired samples. Also, our method is es-
pecially effective for estimating TEX→Y whenX has miss-
ing values and for estimating TEY→X when Y has miss-
ing values. Thus, our method exploits only those samples in
which the outcome variable is observed. Our method is com-
parable to the GSPCCA in the case of T=200. Our method
is also effective when there are few missing samples. For
instance, Fig. 2 (e) illustrates that the causality measure es-
timated by GSPCCA approaches the analytic solution de-
spite the missing ratio increasing from 0 to 0.4. This indi-
cates that GSPCCA overfits the data with a small sample
size and detects spurious causality. In contrast, our method
prevents overfitting, as analyzed in detail in the following
experiment. These results show that the proposed method
is especially effective when the number of samples is small
and the outcome variable is observed.

Effect of the Dimension of the Data
We here evaluate the effect of the dimensionality of the input
data. We set the sample size T = 100, the dimensionality of
xt to 20, and vary the dimensionality of yt to 40, 60, or 80.

Fig. 4 shows that our method is effective when the number
of the samples is smaller than the dimensionality of yt.

Analysis of the Eigenvalues
We then decomposed TEX→Y to the TE corresponding to
each subspace of the 5 greatest eigenvalues for detailed anal-
ysis. Here, the projection of a variable onto the subspace
associated with a greater eigenvalue has a stronger causal
relationship with the paired variable.

Fig. 5 shows that, while the third and fourth eigenvalues
estimated by GSPCCA become large as the missing ratio
increases, the corresponding values estimated by our meth-
ods are relatively small and the fourth eigenvalue is 0. The
synthesized data we used did not have a causal effect for
the direction corresponding to the third and fourth eigenvec-
tors, but the GSPCCA overfits the data and detects the wrong
causal relationship. As for the first eigenvalue, while the
causality measure increases as the missing value increases

for GSPCCA, our method yields a stable value. Thus, our
method prevents from detecting the wrong causality by ex-
ploiting the non-paired samples. Compared to the GSPCCA,
the proposed method works well when TEX→Y is calcu-
lated using the data where only Y is observed.

Experiments on Real Data
This section evaluates our method on meteorological data
and video analysis datasets. Both experiments assume that
the missing distribution is MCAR and that both the cause
and outcome variables have missing values.

Experiment on Meteorological Data
In meteorological studies, atmosphere dynamics are ana-
lyzed by simulations. However, it is difficult to estimate a
large number of parameters in a complex model. In contrast,
we assume that our method can approximately predict the
weather transition as information flow. We tested its perfor-
mance using the meteorological data with missing values.

We evaluated the performance of the estimation of cli-
matic information flow using the Global Summary of the
Day, the meteorological dataset that contains information
about climatic element observed by the National Climatic
Data Center. Fig. 6 (a) shows the jet stream over the North
American continent. There is interest in quantifying the
global flow of the atmosphere using data of local climate el-
ements collected in cities. We chose data obtained from 224
stations located all over the USA. We selected seven types
of climate elements that have few missing values: the mean
temperature, maximum temperature, minimum temperature,
mean wind speed, maximum sustained wind speed, mean
dew point, and mean visibility. We used data taken during
the winter season spanning 67 days from Dec. 24, 2008 to
Feb. 28, 2009. To control the missing ratio, we first did a
zero-order hold for the missing values in the dataset. Af-
ter that, we randomly remove 20% or 40% of the sample
size from the data taken at each station. After calculating the
causality measures between all pairs of stations and elimi-
nating diverging results, we visualized the 50 largest infor-
mation flows. We set the dimensionality of the latent vari-
able to 10. When the missing ratio is 0%, the models of our
method and GSPCCA are equivalent.

Figures 6 (b-f) display the results. When the missing ra-
tio is 20%, our method outperformed GSPCCA in quanti-
fying the flow from north to south in the central region.
When the missing ratio is 40%, some of the flows quanti-
fied by GSPCCA are opposite to the direction of the actual
air mass movement seen in Fig. 6 (a). On the other hand,
our method successfully quantifies the flow from west to
east in the eastern region and the flow from northwest to
southeast. These results estimated by our results are con-
sistent with the actual jet stream, shown in Fig. 6 (a).
Next, we calculated the average arrow length (km/day) us-
ing the Hubeny formula (http://www.kashmir3d.com/kash/
manual-e/std siki.htm). Table 1 shows that the proposed
method is more stable than GSPCCA when the missing ra-
tio is large. It is also similar to the result calculated when the
missing ratio is zero. These results show that our method is
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(a) first eigenvalue (b) second eigenvalue (c) third eigenvalue (d) fourth eigenvalue (e) fifth eigenvalue

(f) first eigenvalue (g) second eigenvalue (h) third eigenvalue (i) fourth eigenvalue (j) fifth eigenvalue

Figure 5: Comparison of estimated TEX→Sk
corresponding to the 5 greatest eigenvalues. Cases (a-e) were estimated with an

incomplete X and cases (f-j) with incomplete Y . The x-axis represents the size of paired samples after removing some of the
samples from 100 samples.

effective in providing an approximate prediction for the tran-
sition of the atmosphere without using physics-based mod-
els and quantifying the strength of the information flow even
when the data have missing values.

Experiment on Causal Flow
Next, we apply semi-BPCCA (our method) and GSPCCA
to video datasets with missing pixel values to detect the
global pattern of motion within a scene. Optical flow is a
well-known method for motion detection in a video stream.
Object motion is expressed using a vector that represents
the relative displacement of pixels between frames. Causal
flow (Yamashita, Harada, and Kuniyoshi 2012) is another
approach that regards the object motion in a video as in-
formation flow between neighboring pixels, i.e., reflecting
the effect of one pixel value on the value of a neighboring
pixel. We can employ the causality measure to quantify such
causal effect. The causal flow approach assumes that none
of the pixels are missing. However, occasional outlier pixels
count as effectively missing values. This experiment follows
the causal flow approach and demonstrates that our method
performs well even in the case of a substantial number of
missing pixels in the video frames. To calculate the causal
flow, we constructed time series from pixel values and cal-
culated the intensity of causal effect from one pixel to its
eight neighboring pixels. Then, we integrated the intensi-
ties in the eight directions to quantify the orientation and
the intensity of the information flow from the pixel. In this
experiment, we used the feature extracted from each frame
using a pre-trained convolutional neural network instead of
pixel values to extract high-dimensional semantic informa-
tion. We first resized the input frame to 224× 224 and then
extracted the output of the second pooling layer of VGG-16
(Simonyan and Zisserman 2014). Thus, the dimensionality
of the time series is 128 and the length of the time series is
the number of video frames. We calculate causality measure
between pixels using our method and GSPCCA. For each
pixel of the video clip of T frames, we randomly removed
T ×r pixel values uniformly. We used the Crowd Segmenta-

(a) The actual jet
stream

(b) Missing 20%
(Ours)

(c) Missing 20%
(GSPCCA)

(d) Missing 0% (e) Missing 40%
(Ours)

(f) Missing 40%
(GSPCCA)

Figure 6: (a): The jet stream observed in February 2009. (b-
f) Climatic information flow map estimated from the data
for the USA in the winter of 2009.

Table 1: Comparison of the average arrow lengths.

Missing Ratio 0% 20% 40%
GSPCCA 9.89× 102 1.01× 103 1.28× 103

Ours 9.89× 102 1.04× 103 1.09× 103

tion Dataset (Ali and Shah 2007), which contains video clips
of crowded scenes and is available on the Internet.

The results are shown in Fig. 7. The left, central, and right
columns are the results of the videos with 325, 327 and 202
frames, respectively. Overall, when the missing ratio is 30%,
our method successfully captures the motion flow similarly
to the result when the missing ratio is 0%, whereas GSPCCA
cannot capture any motion flow. For video C in Fig. 7, it is
especially difficult to capture motion because the number of
frames is so small that a missing ratio of 30% amounts to
140 frames with no missing pixels, which nearly equals 128,
the dimensionality of the feature. Under such an extreme
condition, our method detects the motion in the middle re-
gion of the frames. On the other hand, GSPCCA captures
spurious flow in the upper regions of the frames.
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Figure 7: Estimated causal flow from the original video and
from the video with missing values.

Conclusion

The present study has been the first to address the prob-
lem of estimating the causality measure between incomplete
time series. We proposed a semi-supervised extension of
Bayesian Partial CCA, called semi-Bayesian Partial CCA,
that can exploit the information of samples with missing val-
ues. In our model, those samples effectively regularize the
covariance matrix necessary to estimate the model parame-
ters that are significant in quantifying causal relationships.
We also demonstrated that our method can estimate the
causal effect independently of the probabilistic model used
for missing data, provided that the missingness is indepen-
dent of the missing values. Experimental results based on ar-
tificial data confirmed the usefulness of the proposed method
when there are few samples and the outcome variable is ob-
served. Experiments on real-world data also demonstrated
that the proposed method performs well when the number of
complete samples is so small that existing methods overfits
and finds spurious causal relationships. Future extensions of
our method can consider, e.g., the modeling of nonlinear dy-
namics or of a delay between cause and effect, or model
variables that do not follow the Gaussian distribution such
as count data using an exponential family distribution.
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