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Abstract

In recent years an increasing number of researchers and
practitioners have been suggesting algorithms for large-scale
neural network architecture search: genetic algorithms, rein-
forcement learning, learning curve extrapolation, and accu-
racy predictors. None of them, however, demonstrated high-
performance without training new experiments in the pres-
ence of unseen datasets. We propose a new deep neural
network accuracy predictor, that estimates in fractions of a
second classification performance for unseen input datasets,
without training. In contrast to previously proposed ap-
proaches, our prediction is not only calibrated on the topo-
logical network information, but also on the characterization
of the dataset-difficulty which allows us to re-tune the pre-
diction without any training. Our predictor achieves a perfor-
mance which exceeds 100 networks per second on a single
GPU, thus creating the opportunity to perform large-scale ar-
chitecture search within a few minutes. We present results of
two searches performed in 400 seconds on a single GPU. Our
best discovered networks reach 93.67% accuracy for CIFAR-
10 and 81.01% for CIFAR-100, verified by training. These
networks are performance competitive with other automati-
cally discovered state-of-the-art networks however we only
needed a small fraction of the time to solution and computa-
tional resources.

1 Introduction
Automatic generation and tuning of convolutional neural
network (CNN) architectures is a growing research topic.
The majority of approaches in the literature (for a deep
overview, see Section 2) are rooted into the fundamen-
tal idea of large-scale explorations; more precisely, they
can be based either on evolution and mutations (Real et
al. 2017; Xie and Yuille 2017; Miikkulainen et al. 2017),
or on reinforcement learning (Zhong, Yan, and Liu 2017;
Zoph and Le 2016; Zoph et al. 2017; Cai et al. 2018;
Baker et al. 2016). All these algorithms require a large
amount of training experiments which quickly leads to mas-
sive resource and time to solution requirements.

Recently, the concept of performance prediction for ar-
chitecture search has emerged. The fundamental idea is to
drastically reduce exploration cost, by forecasting accuracy
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of networks without (or with very limited) training. Predic-
tion is obtained either from partial learning curves (Domhan,
Springenberg, and Hutter 2015; Klein et al. 2017; Baker
et al. 2018; Swersky, Snoek, and Adams 2014), or from a
database of trained experiments (Deng, Yan, and Lin 2017).
The former approach requires partial training of each spe-
cific network. The latter one, implies training hundreds of
networks on the given input dataset, to build a reliable
ground-truth. Thus, none of them can be used out-of-the-box
for near real-time architecture search.

In this work, we introduce a train-less accuracy predic-
tor for architecture search (TAPAS), that provides reliable
architecture peak accuracy predictions when used with un-
seen (i.e., not previously seen by the predictor) datasets. Our
accuracy predictor is train-less in the sense that it estimates
the accuracy of a network on a dataset without training the
network. This is achieved by adapting the prediction to the
difficulty of the dataset, that is automatically determined by
the framework. In addition, we reuse experience accumu-
lated from previous experiments. The main features of our
framework are summarized as follows: (i) it is not bounded
to any specific dataset, (ii) it learns from previous experi-
ments, whatever dataset they involve, improving prediction
over usage and (iii) it allows to run large-scale architecture
search on a single GPU device within a few minutes.

In summary, our main contributions are the following: i) a
fast, scalable, and reliable framework for CNN architecture
performance prediction; ii) a flexible prediction algorithm,
that dynamically adapts to the difficulty of the input; iii)
an extensive comparison with preexisting methods/results,
clearly illustrating the advantages of our approach.

In Section 2 we briefly review literature approaches and
analyze pros and cons of each of them. In Section 3 we
present the design of our prediction framework, with a deep
dive into its three main components. Then, in Section 4 we
compare experimental results with current state-of-the-art.
An additional discussion and final conclusions are summa-
rized in Sections 5 and 6, respectively.

2 Related work
This paper follows a similar design idea as Peephole (Deng,
Yan, and Lin 2017), which predicts a network accuracy by
only analyzing the network structure. Similar to our ap-
proach, a long short-term memory (LSTM) based network
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Figure 1: Schematic TAPAS workflow. First row: the Dataset Characterization (DC) takes a new, unseen dataset and charac-
terizes its difficulty by computing the Dataset Characterization Number (DCN). This number is then used to select a subset
of experiments executed on similarly difficult datasets from the Lifelong Database of Experiments (LDE). Subsequently, the
filtered experiments are used to train the Train-less Accuracy Predictor (TAP), an operation that takes up to a few minutes. Sec-
ond row: the trained TAP takes the network architecture structure and the dataset DCN and predict the peak accuracy reachable
after training. This phase scales very efficiently in a few seconds over a large number of networks.

receives a layer-by-layer encoding. In contrast to our ap-
proach, they encode an epoch number and predict the ac-
curacy at the given epoch. Peephole delivers good perfor-
mance on MNIST and CIFAR-10, however it has not been
designed to transfer knowledge from familiar datasets to
unseen ones. Given a new dataset, hundreds of networks
need to be trained before Peephole makes a prediction. In
contrast, our framework is designed to operate on unseen
datasets, without the need of expensive training.

Accuracy predictors such as learning curves extrapo-
lation (LCE) (Domhan, Springenberg, and Hutter 2015),
BNN (Klein et al. 2017), ν-SVR (Baker et al. 2018) fore-
cast network performance based on partial learning curves.
These algorithms are designed in the context of hyperpa-
rameter optimization or meta-learning. Both cases require
extensive use of training and thus result in high compu-
tational costs. Moreover, they are all dataset and network
specific, i.e., the prediction cannot be transferred to another
network or dataset, without re-training. In particular, LCE
employs a weighted probabilistic model to predict network
performance. BNN uses Bayesian Neural Networks to fit
completely new learning curves and extrapolate partially
observed ones. This approach yields superior performance
compared to LCE, particularly at stages where the initial
observed learning curve is not sufficient for the paramet-
ric algorithm to converge. Nevertheless, both methods rely
on expensive Markov Chain Monte Carlo sampling proce-
dures. ν-SVR (Baker et al. 2018) complements the infor-
mation on the learning curve with network architecture de-
tails and a list of predefined hyperparameters. These are
used to train a sequence of regression models, that outper-
form LCE and BNN. Although these methods exhibit good
performance, they require a considerable part of the initial
learning curve to provide reliable performance.

Large-scale exploration algorithms (Real et al. 2017;
Xie and Yuille 2017; Miikkulainen et al. 2017; Zhong,

Yan, and Liu 2017; Zoph and Le 2016; Zoph et al. 2017;
Cai et al. 2018; Baker et al. 2016; Pham et al. 2018) em-
ploy genetic mutations or reinforcement learning to explore
a large space of architecture configurations. Regardless of
the approach, all these methods train a large number of net-
works, some of them employing hundreds of GPUs for more
than ten days (Real et al. 2017). ENAS (Pham et al. 2018)
uses a controller to discover CNN architectures, by search-
ing for an optimal subgraph within a large computational
graph. With this approach it discovers a 97.11% accurate
network for CIFAR-10, on a single GPU in 10 hours. While
ENAS reduces drastically the time-to-solution compared to
previous results, the model is applied to only one dataset and
not generalized to the case of multiple datasets. Indeed, shar-
ing parameters among child models for different datasets is
not straightforward.

3 Methodology
In this section, we provide a detailed overview of the main
building blocks of the TAPAS framework. TAPAS aims to
reliably estimate peak accuracy at low cost for a variety of
CNN architectures. This is achieved by leveraging a com-
pact characterization of the user-provided input dataset, as
well as a dynamically growing database of trained neural
networks and associated performance. The TAPAS frame-
work, depicted in Figure 1, is built on three main compo-
nents:

1. Dataset Characterization (DC): Receives an unseen
dataset and computes a scalar score, namely the Dataset
Characterization Number (DCN) (Scheidegger et al.
2018), which is used to rank datasets;

2. Lifelong Database of Experiments (LDE): Ingests
training experiments of NNs on a variety of image classi-
fication datasets executed inside the TAPAS framework;

3. Train-less Accuracy Predictor (TAP): Given an NN ar-
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Figure 2: List of image classification datasets used for characterization. The datasets are sorted by the DCN value from the
easiest (left) to the hardest (right).

chitecture and a DCN, it predicts the potentially reach-
able peak accuracy without training the network.

3.1 Dataset characterization (DC)
The same CNN can yield different results if trained on
an easy dataset (e.g., MNIST (Deng 2012)) or on a more
challenging one (e.g., CIFAR-100 (Krizhevsky and Hinton
2009)), although the two datasets might share features such
as number of classes, number of images, and resolution.
Therefore, in order to reliably estimate a CNN performance
on a dataset we argue that we must first analyze the dataset
difficulty. We compute the DCN by training a probe net
to obtain a dataset difficulty estimation (Scheidegger et al.
2018). We use the DCN for filtering datasets from the LDE
and directly as input score in the TAP training and prediction
phases as described in Section 3.3.

DCN computation Prob nets are modest-sized neural net-
works designed to characterize the difficulty of an image
classification dataset (Scheidegger et al. 2018). We com-
pute the DCN as peak accuracy, ranged in [0, 1], obtained by
training the Deep normalized ProbeNet on a specific dataset
for ten epochs. The DCN calculation cost is low due the
following reasons: (i) Deep norm ProbeNet is a modest-
size network, (ii) the characterization step is performed only
once at the entry of the dataset in the framework (the LDE
stores the DCN afterwards), (iii) the DCN does not require
an extremely accurate training, thus reducing the cost to a
few epochs, and (iv) large datasets can be subsampled both
in terms of number of images and of pixels.

The DCN is a rough estimation of the dataset difficulty,
and is thus tolerant to approximations. In Section 4 we pro-
vide evidence of the effect of the DCN on the TAP.

3.2 Lifelong database of experiments (LDE)
LDE is a continuously growing DB, which ingests every
new experiment effectuated inside the framework. An exper-
iment includes the CNN architecture description, the train-
ing hyper-parameters, the employed dataset (with its DCN),
as well as the achieved accuracy.

LDE initialization At the very beginning, the LDE is
empty. Thus we perform a massive initialization procedure
to populate it with experiments. For each available dataset in

Figure 2 we sample 800 networks from a slight variation of
the space of MetaQNN (Baker et al. 2016). For convolution
layers we use strides with values in {1, 2}, receptive fields
with values in {3, 4, ..256}, padding in {same, valid} and
whether is batch normalized or not. We also add two more
layer types to the search space: residual blocks and skip con-
nections. The hyperparameters of the residual blocks are the
receptive field, stride and the repeat factor. The receptive
field and the stride have the same bounds as in the convo-
lution layer, while the repeat factor varies between 1 and 6
inclusively. The skip connection has only one hyperparame-
ter, namely the previous layer to be connected to.

To speed up the process, we train the networks one layer
at a time using the incremental method described in (Istrate
et al. 2017). In this way we obtain the accuracies of all inter-
mediary sub-networks at the same cost of the entire one. To
facilitate the TAP, we train all networks with the same hyper-
parameters, i.e., same optimizer, learning rate, batch size,
and weights initiallizer. Although the fixed hyper-parameter
setting seems a strong limitation and might limit peak accu-
racy by a few percent, it is enough to trim poorly performing
networks and, in the case of an architecture search, to fairly
rank competitive networks, the performance of which can
later be optimized further, as discussed in Section 4. As data
augmentation we use standard horizontal flips, when possi-
ble, and left/right shifts with four pixels. For all datasets we
perform feature-wise standardization.

This paper LDE initialization takes 18 months on a sin-
gle P100 GPU. This number can be scaled down embar-
rassingly with the number of GPUs. It must also be con-
sidered that, even though the time spent to generate the LDE
is comparable to the time of manual engineering search of
hyperparameters, the LDE can then be employed in archi-
tecture searches for multiple datasets at no additional cost.
Moreover, in an industrial environments, pre-existing runs
on technical propriertary-datasets can be used to heat-up the
LDE quickly.

LDE selection Let us consider an LDE populated with
experiments from Nd different datasets Dj , with j =

1, . . . , Nd. Given a new input dataset D̂ and its correspond-
ing characterization DCN(D̂), the LDE block returns all ex-
periments performed with datasets that satisfy the following
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relation
‖DCN(D̂)− DCN(Dj)‖ ≤ τ j ∈ [1, Nd], (1)

where τ is a predefined threshold that, in our experiments, is
set to 0.05.

3.3 Train-less accuracy predictor (TAP)
TAP is designed to perform fast and reliable CNN accu-
racy predictions. Compared to Peephole (Deng, Yan, and
Lin 2017), TAP leverages knowledge accumulated through
experiments of datasets of similar difficulty filtered from the
LDE based on the DCN. Additionally, TAP does not first
analyze the entire NN structure and then makes a predic-
tion, but instead performs an iterative prediction as depicted
in Figure 3. In other words, it aims to predict the accuracy
of a sub-network l1:i+1, assuming the accuracy of the sub-
network l1:i is known. The main building elements of the
predictor are: (i) a compact encoding vector that represents
the main network characteristics, (ii) a quickly-trainable net-
work of LSTMs, and (iii) a layer-by-layer prediction mech-
anism.

Neural network architecture encoding Similar to Peep-
hole, TAP employs a layer-by-layer encoding vector as de-
scribed in Figure 3. Unlike Peephole, we encode more com-
plex information of the network architecture for a better pre-
diction.

Let us consider a network with Nl layers, li being the i-
th layer counting from the input, with i = 1, . . . , Nl. We
define a CNN sub-network as la:b with 1 ≤ a < b ≤
Nl. Our encoding vector contains two types of information
as depicted in Figure 3 a): (i) i-th layer information and
(ii) l1:i sub-network information. For the current i-th layer
we make the following selection of parameters: Layer type
is a one-hot encoding that identifies either convolution, pool-
ing, batch normalization, dropout, residual block, skip con-
nection, or fully connected. In future we will include lat-
est motifs present in literature such as DenseNets (Huang et
al. 2017) or AmoebaNets (Real et al. 2018). Note that for
the shortcut connection of the residual block we use both
the identity and the projection shortcuts (He et al. 2016).
The projection is employed only when the residual block
decreases the number of filters as compared to the previous
layer. Moreover, as compared to (Deng, Yan, and Lin 2017),
our networks do not follow a fixed skeleton in the convolu-
tional pipeline, allowing for more generality. We only force a
fixed block at the end, by using a global pooling and a fully
connected layer to prevent networks from overfitting (Lin,
Chen, and Yan 2013).

The ratio between the output height and input height
of each layer accounts for different strides or paddings,
whereas the ratio between the output depth and input depth
accounts for modifications of the number of kernels. The
number of weights specifies the total of learnable parameters
in li. This value helps the TAP differentiate between layers
that increase the learning power of the network (e.g., con-
volution, fully connected layers) and layers that reduce the
dimensionality or avoid overfitting (e.g., pooling, dropout).
In the second part of the encoding vector, we include: To-
tal number of layers, counting from input to li, Inference

FLOPs and Inference memory that are an accurate estimate
of the computational cost and memory requirements of the
sub-network, and finally Accuracy, which is set either to
1/Nc, for the first layer, where Nc is the number of classes
to predict, zero for prediction purposes, or a specific value
Ai ∈ [0, 1] that is obtained from the previous layer predic-
tion. Before training, we perform a feature-wise standardiza-
tion of the data, meaning that for each feature of the encod-
ing vector, we subtract the mean and divide by the standard
deviation.

TAP architecture TAP is a neural network consisting of
two stacked LSTMs of 50 and 100 hidden units, respectively,
followed by a single-output fully connected layer with sig-
moid activation. The TAP network has two inputs. The first
input is a concatenation of two encoding vectors correspond-
ing to layer li and li+1, respectively. This input is fed into
the first LSTM. The second input is the DCN and is con-
catenated with the output of the second LSTM and then fed
into the fully connected layer.

TAP training TAP requires a significant amount of train-
ing data to make reliable predictions. The LDE provides this
data as described in Section 3.2. As mentioned above, all our
generated networks are trained in an incremental fashion, as
presented in (Istrate et al. 2017), meaning that for each net-
work of length Nl we train all intermediary sub-networks
l1:k with 1 < k ≤ Nl and save their performance Ak. We
encode each set of two consecutive layers li and li+1 follow-
ing the schema detailed in 3.3, setting the accuracy field in
the encoding vector of li to Ai, which was obtained through
training, and aiming to predict Ai+1.

TAP is trained with RMSprop (Tieleman and Hinton
2012), using a learning rate of 10−3, a HeNormal weight ini-
tialization (He et al. 2015), and a batch size of 512. As the
architecture of the TAP is very small, the training process
is of the order of a few minutes on a single GPU device.
Moreover, the trained TAP can be stored and reapplied to
other datasets with similar DCN numbers without the need
for retraining.

TAP prediction TAP employs a layer-by-layer prediction
mechanism. The accuracy Ai of the sub-network l1:i pre-
dicted by the previous TAP evaluation is subsequently fed
as input into the next TAP evaluation, which returns the pre-
dicted accuracy Ai+1 of the sub-network l1:i+1. This mech-
anism is described more in detail in Figure 3 b).

4 Experiments
In this section, we demonstrate TAPAS performance over a
wide range of experiments. Results are compared with ref-
erence works from the literature. All runs involve single-
precision arithmetic and are performed on IBM1 POWER8
compute nodes, equipped with four NVIDIA P100 GPUs.

1IBM, the IBM logo, ibm.com, OpenPOWER, NeuNetS are trademarks
or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both. Other product and service names
might be trademarks of IBM or other companies.
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is the accuracy of the complete network.
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Figure 4: Superior predictive performance of TAP compared with state-of-the-art methods, both when trained on only one
dataset (Scenario A) or on multiple datasets (Scenario B).

4.1 Dataset selection for LDE initialization

All the experiments are based on a LDE populated with nine-
teen datasets, ranked by difficulty in Figure 2. Eleven of
them are publicly available. The other eight are generated

by sub-sampling the ImageNet dataset (Deng et al. 2009)
varying the number of classes and the number of images per
class. The result is a finer distribution of datasets per DCN
value, that improves the predictions by biasing TAP closer
to the relevant data, particularly for the leave-one-out cross-
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Figure 6: Simulation of large-scale evolution, with 20k mutations. The table compares top three networks (predicted and trained
accuracy) with reference work (Real et al. 2017). The simulations require only 2× 1011 FLOPs per dataset, while training the
top-three networks for 100 epochs is an additional 3× 1015 FLOPs, causing a 6 hour runtime on a single GPU. The reference
work employs 9× 1019 (CIFAR-10) and 2× 1020 FLOPs (CIFAR-100) causing a runtime of 256 hours on 250 GPUs.

validation experiment presented later. Additional details are
provided in the Appendix. We resize all dataset images to
32 × 32 pixels. On the one hand, this reduces the cost of
LDE initialization, on the other hand, it allows us to poten-
tially test networks and datasets in an All2All fashion. We
remark that this choice does not lead to a loss of general-
ity, as images of different sizes can be employed in the same
pipeline. For every dataset, we generate 800 networks based
on the procedure described in Section 3.2. All networks are
trained under the same settings: RMSprop optimizer with a
learning rate of 10−3, weight decay 10−4, batch size 64, and
HeNormal weight initialization.

4.2 TAPAS performance evaluation
In this section, we define three different scenarios to com-
pare TAPAS with LCE (Domhan, Springenberg, and Hutter
2015), BNN (Klein et al. 2017), ν-SVR (Baker et al. 2018)
and Peephole (Deng, Yan, and Lin 2017). We employ three
evaluation metrics: (i) the mean squared error (MSE), which

measures the difference between the estimator and what is
estimated, (ii) Kendall’s Tau (Tau), which measures the sim-
ilarities of the ordering between the predictions and the real
values, and (iii) the coefficient of determination (R2), which
measures the proportion of the variance in the dependent
variable that is predictable from the independent variable.
In the first metric, lower is better (zero is best); in the others,
higher is better (one is best).

Scenario A: Prediction based on experiments on a single
dataset We train the TAP on a filtered list of experiments
from the LDE based on the CIFAR-10 dataset. We recognize
that this scenario is very favorable for prediction, however it
is used in reference publications, and therefore allows for a
fair comparison.

We perform ten-fold cross validation and present the re-
sults for Peephole, LCE, and TAPAS in the first row of Fig-
ure 4. For BNN and ν-SVR we rely on published numbers.
When presented with 20% of the initial learning curve, BNN
states an MSE of 0.007, while ν-SVR states an R2 of 0.9.
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TAP outperforms all methods, in terms of all the considered
metrics. Moreover, if we modify TAP to not use the DCN,
we still get better predictions than with all the other methods.
The TAP prediction performance is not strongly affected be-
cause the training and prediction involve only one dataset.

We argue that the lower results of the Peephole method,
as compared to the original paper, are due to the more com-
plicated structure of the network we used in our benchmark.
Specifically, the Peephole-encoding tuple (layer type, ker-
nel height, kernel width, channels ratio) is not sufficient to
predict complicated structures like ResNets.

Scenario B: Prediction based on experiments on all
datasets This scenario is similar to Scenario A, but we do
not filter experiments by dataset. The second row of Figure 4
shows results when TAP is trained on all datasets, regard-
less of their DCN. Also in this scenario, TAP outperforms
all methods in all of the considered metrics. We recognize
that Peephole is designed to be dataset-specific. However,
compared to TAP without DCN the comparison is fair, as
neither of these algorithms contain information about the
dataset difficulty.

Scenario C: Prediction based on experiments on unseen
datasets This scenario aims (i) to demonstrate TAPAS
performance when targeting completely unseen datasets and
(ii) to highlight importance of dataset-difficulty character-
ization and LDE pre-filtering. To do that, we consider the
list of datasets in Figure 2 and perform eleven leave-one-
out cross-validation benchmarks, considering only the real
datasets. The result of this experiment is presented in Fig-
ure 5. From left to right, we observe the cumulative impact
of the DCN awareness in the TAP training, as well as of the
pre-filtering of the experiments in the LDE according to (1).
Moreover, by comparing the rightmost plot and metrics with
previous results in Figure 4, we observe that TAPAS perfor-
mance does not diminish significantly when applied to an
unknown dataset.

4.3 Simulated large-scale evolution of image
classifiers

The TAP can be plugged into any large-scale evolution algo-
rithm to perform train-less architecture search. In this work,
we use the genetic algorithm introduced in (Real et al. 2017).
As described in the original paper, the evolution algorithm
begins with a small population, consisting of one thousand
single-layered networks. After training, two candidates are
randomly chosen from the population: the less accurate one
is removed, whereas the other one undergoes a mutation.
The mutated network is evaluated in roughly 30 epochs and
then put back in the population. The operation repeats until
convergence is achieved.

The above algorithm is very expensive: 250 parallel work-
ers are used for training the population and the entire process
takes 256 hours (Real et al. 2017, Figure 1). The TAP can
simulate the large-scale evolution search in only 400 sec-
onds on a single GPU device performing 20k mutations. We
employ the same mutations as in (Real et al. 2017), apart
from those that do not make sense in a simulation, such as

altering the learning rate and resetting the weights. No net-
work is trained during the entire process.

Figure 6 presents results of the simulated evolution for
both CIFAR-10 and CIFAR-100 datasets. To verify that the
TAP discovers good networks, we select the top three net-
works (according to accuracy prediction) and train them a-
posteriori. For CIFAR-10 our best network reaches 93.67%,
whereas for CIFAR-100 we achieve 81.01%, an improve-
ment of 4% w.r.t. the reference work (Real et al. 2017). We
remark that the current search space does not include latest
motifs present in literature such as DenseNets (Huang et al.
2017) or AmoebaNets (Real et al. 2018). By adding those
we expect to see an improvement in the final accuracy. This
will be tested in future works.

Moreover, we observe that all the top three networks per-
form well, and prediction values are reasonably close to
those after training. In addition to these experiments, we
also evaluated TAPAS on the “Labeled Faces in the Wild”
dataset, that is not part of our LDE initialization. We reach
98.1% accuracy on gender classification, that is on par with
state-of-the-art results.

5 Discussion
Task classification services based on deep learning either
train the same network for every new dataset or, less com-
monly, run an extensive architecture search for the dataset at
hand. In the first case, the static network is usually very deep
and contains tens of millions of hyperparameters that makes
it competitive in terms of accuracy, especially when trans-
fer learning is applied. Nevertheless, for many use cases this
network is too expensive to retrain and almost impossible to
deploy on resource-constrained devices. In the second case,
an extensive architecture search can take up to weeks, and
requires the training of hundreds of networks for each new
dataset. Although expensive, it is advantageous to tune the
network structure for the target dataset, especially when the
final model must meet other possible user-defined constrains
such as a limit on the memory size, or specific real-time re-
quirements.

Our goal is to afford running architecture searches for a
given classification problem by substituting every training
process with a good educated prediction of the best reach-
able accuracy of a network. Our solution encourages collab-
oration and re-usability of experiments, allows knowledge
transfer between datasets and real-time prediction for com-
pletely unseen datasets.

The framework can be generalized to other tasks, besides
image classification. To do so, we must i) adapt the function
that computes the difficulty of a dataset, ii) define the net-
works search space, and iii) compile a database of training
experiments effectuated on different datasets in the same ap-
plication domain (e.g. text or sound classification). The min-
imum number of required experiments for each dataset can
be empirically determined by monitoring the meta-learner’s
prediction accuracy on a held out batch of networks.

The framework is designed for continuous learning, i.e.
it improves its predicting capabilities with the usage, by in-
cluding every new experiment.
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TAPAS is one of the AI engines in IBM’s new break-
through capability called NeuNetS, that will be available to
users as part of the AI OpenScale (Smith 2018).

6 Conclusion
In this paper we propose TAPAS, a novel prediction frame-
work that given a CNN architecture, accurately forecasts its
performance at convergence (i.e., peak validation accuracy)
for any given input dataset. TAPAS’s know-how originates
from a lifelong database of experiments, based on a wide va-
riety of datasets. Reliance on dataset-difficulty characteriza-
tion, is our key differentiation to outperform state-of-the-art
methods by a large margin. We demonstrated that TAPAS
outperforms preexisting methods, both in the favourable
case when the methods are tuned for a specific dataset, as
well as when they are applied on a wide range of datasets,
without any bias. TAPAS does not require new training ex-
periments, even in the case scenario when it is applied to
a completely new dataset. This facilitates large-scale net-
work architecture searches, that do not require executions
of training jobs. Indeed, TAPAS enabled us to identify very
accurate CNN architectures, in a few minutes, using only a
single GPU. This is a performance that is several orders of
magnitude faster than any training-based approach.
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