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Abstract

Multi-dimensional classification (MDC) deals with the prob-
lem where one instance is associated with multiple class vari-
ables, each of which specifies its class membership w.r.t. one
specific class space. Existing approaches learn from MDC
examples by focusing on modeling dependencies among
class variables, while the potential usefulness of manipulat-
ing feature space hasn’t been investigated. In this paper, a
first attempt towards feature manipulation for MDC is pro-
posed which enriches the original feature space with kNN-
augmented features. Specifically, simple counting statistics
on the class membership of neighboring MDC examples are
used to generate augmented feature vector. In this way, dis-
criminative information from class space is encoded into the
feature space to help train the multi-dimensional classifica-
tion model. To validate the effectiveness of the proposed
feature augmentation techniques, extensive experiments over
eleven benchmark data sets as well as four state-of-the-art
MDC approaches are conducted. Experimental results clearly
show that, compared to the original feature space, classifica-
tion performance of existing MDC approaches can be signif-
icantly improved by incorporating kNN-augmented features.

Introduction
Multi-dimensional classification aims at modeling real-
world objects with rich semantics, which assumes a number
of class spaces to characterize the object’s semantics from
different dimensions. Here, an MDC example is associated
with multiple class variables with each of them specifying
its class membership w.r.t. one specific class space. Specif-
ically, the need of learning from MDC examples naturally
arises in many scenarios (Theeramunkong and Lertnattee
2002; Rodrı́guez et al. 2012; Borchani et al. 2013; Sagarna
et al. 2014; Hernández-González, Inza, and Lozano 2015;
Serafino et al. 2015). For example, the semantics of a natu-
ral scene image can be characterized from the season di-
mension (with possible classes spring, summer, autumn, and
winter), and from the landscape dimension (with possi-
ble classes mountain, grassland, lake, etc.). For another ex-
ample, the semantics of a piece of music can be character-
ized from the genre dimension (with possible classes rock,
popular, classical, etc.), from the instrument dimension
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(with possible classes piano, violin, guitar, etc.), and from
the language dimension (with possible classes English,
Chinese, Spanish, etc.).

Formally, let X = Rd denote the d-dimensional input
(feature) space andY = C1×C2×· · ·×Cq denote the output
space which corresponds to the Cartesian product of q class
spaces. Here, each class space Cj (1 ≤ j ≤ q) consists of
Kj possible classes, i.e. Cj = {cj1, c

j
2, . . . , c

j
Kj
}. Given a set

of MDC training examples D = {(xi,yi) | 1 ≤ i ≤ m},
where xi = [xi1, xi2, . . . , xid]

> ∈ X is a d-dimensional
feature vector and yi = [yi1, yi2, . . . , yiq]

> ∈ Y is the
associated class vector with each component class variable
yij assuming one possible value in Cj , the task of multi-
dimensional classification is to learn a predictive function
f : X 7→ Y from D which can assign a proper class vector
f(x) ∈ Y for unseen instance x.

To learn from MDC examples, an intuitive solution is
to decompose the multi-dimensional classification problem
into a number of independent multi-class classification prob-
lems, one per class space. Nonetheless, dependencies among
class spaces are ignored in this case which would impact
the generalization performance of induced predictive model.
Therefore, existing MDC approaches work by modeling
dependencies among class variables from different dimen-
sions in various ways, such as capturing pairwise inter-
actions between class variables (Arias et al. 2016), spec-
ifying chaining order over class variables (Zaragoza et al.
2011; Read, Martino, and Luengo 2014), assuming directed
acyclic graph (DAG) structure over class variables (Bielza,
Li, and Larrañaga 2011; Batal, Hong, and Hauskrecht 2013;
Zhu, Liu, and Jiang 2016; Bolt and van der Gaag 2017;
Benjumeda, Bielza, and Larrañaga 2018), and partitioning
class variables into groups (Read, Bielza, and Larrañaga
2014), etc.

Other than modeling dependencies among class vari-
ables in the output space, we show the potential useful-
ness of manipulating feature space for multi-dimensional
classification. In this paper, a simple yet effective approach
named KRAM, i.e. kNN featuRe Augmentation for Multi-
dimensional classification, is proposed. KRAM manipulates
the feature space of MDC examples by making use of the
popular kNN techniques, where specific counting statistics
on the class membership of neighboring MDC examples are
employed to enrich the original feature space. In this way,
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Figure 1: Relationships among multi-dimensional classifica-
tion, multi-label classification, and multi-class classification.

discriminative information from class space is encoded into
the feature space to facilitate subsequent induction of MDC
predictive model. Extensive experiments clearly validate the
effectiveness of KRAM in improving predictive performance
of existing MDC approaches with kNN-augmented features.

The rest of this paper is organized as follows. Firstly, re-
lated works on multi-dimensional classification are briefly
discussed. Secondly, technical details of the proposed ap-
proach are introduced. Thirdly, experimental results of com-
parative studies are reported. Finally, we conclude this paper.

Related Work
In multi-dimensional classification each instance is associ-
ated with multiple class variables, whose most related learn-
ing frameworks include traditional multi-class classification
and multi-label classification (MLC) (Zhang and Zhou 2014;
Gibaja and Ventura 2015).

As shown in Figure 1, MDC corresponds to a set of joint
multi-class classification problems while MLC corresponds
to a set of joint binary classification problems. Nonetheless,
the major differences between MDC and MLC do not just
lie in whether the joint problem to be solved is multi-class or
binary class. Conceptually speaking, MDC usually assumes
heterogenous semantic spaces where each class variable cor-
responds to one possible class space, while MLC assumes
homogeneous semantic space where each label specifies the
relevancy of one concept in the class space. Formally speak-
ing, MLC can be regarded as a degenerated version of MDC
by restricting binary-valued class variable in each dimen-
sion.

MDC can be decomposed into multiple traditional multi-
class classification problems, i.e. training an independent
multi-class classifier w.r.t. each class space. However, this

intuitive strategy doesn’t consider possible dependencies
among class spaces and may lead to suboptimal MDC solu-
tion. Therefore, modeling dependencies among class spaces
is one of the core goals when designing MDC learning ap-
proaches.

Pairwise interactions between class spaces can be en-
coded using a collection of base classifiers, where predic-
tions from base classifiers are combined via Markov ran-
dom field for subsequent multi-dimensional inference (Arias
et al. 2016). Following the idea of classifier chain (CC) for
MLC (Read et al. 2011), the MDC problem can be trans-
formed into a chain of multi-class classification problems
where the chaining order over class variables are specified
in random manner (Read, Martino, and Luengo 2014) or de-
terministic manner (Zaragoza et al. 2011).

Moreover, dependencies among class spaces can be ex-
plicitly modeled with directed acyclic graph (DAG) with dif-
ferent families of DAG structures (Bielza, Li, and Larrañaga
2011; Batal, Hong, and Hauskrecht 2013; Zhu, Liu, and
Jiang 2016; Bolt and van der Gaag 2017; Benjumeda,
Bielza, and Larrañaga 2018). Class powerset (CP) models
dependencies by transforming the MDC problem into a sin-
gle multi-class classification problem, where each possible
combination of class variables y ∈ Y is treated as a new
class in the transformed problem. In light of the huge class
space (with

∏q
j=1Kj classes after CP transformation), it is

helpful to partition MDC class variables into groups so as to
expedite subsequent MDC model induction (Read, Bielza,
and Larrañaga 2014).

The KRAM Approach
Although modeling dependencies among class spaces plays
a crucial role in learning from MDC examples, the impor-
tance of manipulating feature space for model induction
hasn’t been well studied for MDC researches. In this section,
we present technical details of the KRAM approach which
aims to improve the generalization ability of learned MDC
models by enriching the original feature space with kNN
techniques.

Following the same notations given in previous section,
let D = {(xi,yi) | 1 ≤ i ≤ m} be the MDC train-
ing set where yi = [yi1, yi2, . . . , yiq]

> ∈ Y corresponds
to the class vector associated with xi. For each instance x,
let N (x) = {ir | 1 ≤ r ≤ k} denote the set of indices
for the k nearest neighbors of x identified in D. Then, the
following counting statistics δxj = [δxj1, δ

x
j2, . . . , δ

x
jKj

]> can
be defined for the j-th class space by considering the class
membership of neighboring MDC examples:

δxja =
∑

ir∈N (x)

Jyirj = cjaK (1 ≤ a ≤ Kj) (1)

Here, yir = [yir1, yir2, . . . , yirq]
> corresponds to the class

vector of the neighboring MDC example xir for x. The
predicate JπK returns 1 if π holds and 0 otherwise. There-
fore, δxja records the number of x’s neighboring MDC ex-
amples which has class value of cja in the j-th class space.
According to Eq.(1), it is easy to verify that

∑Kj

a=1 δ
x
ja = k

holds.
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Table 1: The pseudo-code of KRAM.

Inputs:
D: MDC training set {(xi,yi) | 1 ≤ i ≤ m}
k: number of nearest neighbors considered
L: MDC training algorithm
x∗: unseen instance
Outputs:
y∗: predicted class vector for x∗

Process:

1: for i = 1 to m do
2: Identify k nearest neighbors of xi inD and store their

indices in N (xi);
3: for j = 1 to q do
4: for a = 1 to Kj do
5: Calculate δxi

ja according to Eq.(1);
6: end for
7: Set δxi

j = [δxi
j1 , δ

xi
j2 , . . . , δ

xi

jKj
]>;

8: end for
9: Set ∆xi

=
[
δxi
1 , δxi

2 , . . . , δxi
q

]
;

10: end for
11: Form the transformed MDC training set D̃ = {(x̃i,yi) |

1 ≤ i ≤ m} according to Eq.(3);
12: Induce MDC predictive function f based on D̃: f ← [
L(D̃);

13: Identify k nearest neighbors of x∗ in D and store their
indices in N (x∗);

14: Generate augmented instance x̃∗ = [x∗,∆x∗ ] with
∆x∗ being calculated according to Eq.(2) and Eq.(1);

15: Return y∗ = f(x̃∗).

Therefore, a total of q counting statistics δxj (1 ≤ j ≤ q)
each containing Kj elements can be generated by traversing
all class spaces. By concatenating all counting statistics, an
augmented feature vector ∆x for x is defined as follows:

∆x =
[
δx1 , δ

x
2 , . . . , δ

x
q

]
(2)

Then, the original MDC training set D is transformed into:

D̃ = {(x̃i,yi) | 1 ≤ i ≤ m}, where x̃i = [xi,∆xi
] (3)

Here, each instance x̃i belongs to the augmented feature
space X̃ which is the Cartesian product between X and a
(
∑q

j=1Kj)-dimensional feature space. Thereafter, an MDC

predictive function f : X̃ 7→ Y can be induced from D̃ by
applying any MDC training algorithm L, i.e. f ←[ L(D̃).
For unseen instance x∗, its class vector y∗ can be predicted
by feeding the augmented instance x̃∗ into f .

In summary, Table 1 presents the complete procedure of
KRAM. Firstly, the original feature space is enriched by kNN
feature augmentation based on simple counting statistics de-
rived from neighboring MDC examples (steps 1-10). Af-
ter that, an MDC predictive function is induced by learning
from the transformed MDC training set (steps 11-12). Fi-
nally, the class vector for unseen instance is predicted based
on the augmented features as well (steps 13-15).

Table 2: Characteristics of the experimental data sets.

Data Set #Exam. #Dim. #Values/Dim. #Features†

Edm 154 2 3 16n
Flare1 323 3 2-4 10x
Song 785 3 3 98n
WQplants 1060 7 4 16n
WQanimals 1060 7 4 16n
WaterQuality 1060 14 4 16n
Thyroid 9172 7 2-5 7n, 20b, 2x
Music 591 6 2 71n
Image 2000 5 2 294n
Scene 2407 6 2 294n
Yeast 2417 14 2 103n
† n, b and x denote numeric, binary, and nominal features

respectively.

It is worth noting that the proposed KRAM approach
should be regarded as a meta-strategy to learn from MDC
examples, where any off-the-shelf MDC training algorithm
L can be utilized to instantiate KRAM. Moreover, the
kNN-based techniques proposed in this paper only repre-
sent as a first attempt towards MDC feature augmentation,
which is not meant to be the best possible practice among
other feasible choices. Nevertheless, experimental studies
reported in the next section clearly validate the effectiveness
of KRAM in improving the generalization performance of
multi-dimensional classification.

Experiments
Experimental Setup
Data Sets To evaluate the effectiveness of KRAM in im-
proving the generalization performance of MDC predictive
model, a number of MDC data sets have been employed for
experimental studies. Table 2 summarizes characteristics of
the experimental data sets, including number of examples
(#Exam.), number of class spaces (#Dim.), number of class
values per class space (#Values/Dim.), and number of fea-
tures (#Features).

The first seven data sets in Table 2 are collected from dif-
ferent real-world MDC tasks:1

• Edm deals with the task of predicting control operations
during electrical discharge machining process (Karalič
and Bratko 1997), where the 2 class spaces correspond
to two controlling parameters gap and flow.

• Flare1 deals with the task of predicting the number of
times certain types of solar flare occurred within 24 hours
period (Dheeru and Karra Taniskidou 2017), where the 3
class spaces correspond to common, moderate, and severe
solar flares.
1To the best of our knowledge, the number of real-world MDC

data sets employed in this paper is larger than most state-of-the-art
multi-dimensional classification studies (Bielza, Li, and Larrañaga
2011; Read, Bielza, and Larrañaga 2014; Ma and Chen 2018).
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Table 3: Experimental results (mean±std. deviation) of each MDC approach and its KRAM counterpart in terms of hamming
score. In addition, •/◦ indicates whether the KRAM counterpart is significantly superior/inferior to the MDC approach on each
data set (pairwise t-test at 0.05 significance level).

(a) Multi-class classifier: SVM
Data Set BR KRAM-BR ECC KRAM-ECC ECP KRAM-ECP ESC KRAM-ESC
Edm .689±.070 .734±.083• .695±.065 .769±.087• .721±.082 .763±.107• .698±.089 .751±.102•
Flare1 .922±.034 .922±.033 .922±.034 .922±.034 .921±.036 .922±.034 .923±.033 .923±.036
Song .793±.023 .787±.023◦ .790±.024 .788±.026 .786±.029 .781±.028 .790±.029 .788±.029
WQplants .657±.016 .664±.013 .654±.016 .663±.014• .647±.015 .585±.027◦ .651±.017 .664±.016•
WQanimals .630±.014 .635±.012• .630±.014 .637±.014• .629±.013 .556±.014◦ .631±.014 .635±.014
WaterQuality .644±.013 .646±.010 .643±.013 .644±.013 .628±.015 .557±.010◦ .641±.013 .636±.013
Thyroid .965±.002 .969±.003• .965±.002 .969±.003• .965±.002 .968±.002• .965±.002 .969±.002•
Music .808±.023 .818±.022• .814±.025 .810±.022 .799±.032 .802±.025 .813±.028 .809±.029
Image .828±.010 .841±.011• .831±.012 .844±.012• .832±.012 .842±.009• .838±.009 .844±.015
Scene .895±.009 .918±.008• .905±.011 .921±.008• .914±.009 .925±.008• .910±.011 .923±.008•
Yeast .801±.006 .811±.007• .797±.007 .808±.007• .795±.007 .795±.007 .802±.006 .808±.008•

(b) Multi-class classifier: NB
Data Set BR KRAM-BR ECC KRAM-ECC ECP KRAM-ECP ESC KRAM-ESC
Edm .677±.096 .680±.088 .690±.084 .674±.097 .731±.062 .722±.089 .674±.095 .674±.101
Flare1 .886±.061 .872±.051 .883±.059 .875±.053 .908±.045 .903±.046 .896±.059 .892±.053
Song .626±.038 .629±.034 .621±.036 .623±.034 .674±.044 .684±.042 .646±.031 .666±.037•
WQplants .397±.028 .506±.033• .353±.033 .494±.038• .607±.015 .647±.019• .442±.034 .549±.031•
WQanimals .381±.021 .419±.019• .377±.024 .416±.020• .590±.020 .625±.017• .577±.022 .598±.013•
WaterQuality .389±.017 .488±.022• .360±.020 .487±.021• .599±.018 .597±.018 .609±.017 .609±.017
Thyroid .926±.005 .925±.003 .926±.007 .929±.004 .966±.003 .963±.003◦ .958±.004 .952±.006◦
Music .743±.018 .761±.023• .745±.020 .761±.023• .770±.029 .784±.019• .738±.023 .764±.030•
Image .573±.016 .586±.018• .576±.014 .587±.014• .746±.012 .754±.011• .593±.017 .608±.015•
Scene .763±.009 .777±.009• .767±.010 .780±.010• .867±.011 .875±.013• .866±.010 .868±.013
Yeast .699±.010 .695±.014 .696±.009 .698±.013 .773±.011 .787±.008• .716±.006 .743±.006•

• Song deals with the task of predicting properties of songs
which are collected and annotated by ourselves, where the
3 class spaces correspond to the emotion, genre and sce-
narios of one song.

• Water Quality deals with the task of predicting plant
and animal species in Slovenian rivers (Džeroski, Demšar,
and Grbović 2000), where the 14 class spaces correspond
to relative representation of different species. By focusing
on the 7 class spaces on plant or the 7 class spaces on
animal, we have the WQplants and WQanimals data
sets respectively (Kocev et al. 2007).

• Thyroid deals with the task of estimating types of thy-
roid problems based on patient information (Dheeru and
Karra Taniskidou 2017), where the 7 class spaces corre-
spond to diagnosis of seven different conditions.

The last four data sets in Table 2 are collected from
benchmark multi-label learning tasks including audio clas-
sification: Music (Read, Bielza, and Larrañaga 2014), im-
age classification: Image, Scene (Zhang and Zhou 2007;
Boutell et al. 2004), and gene functional analysis: Yeast
(Elisseeff and Weston 2002). Here, each class space cor-

responds to a binary-valued class variable which specifies
whether one concept is relevant to the example or not.

Evaluation Metrics Let S = {(xi,yi) | 1 ≤ i ≤
p} be the test set with p MDC examples, where yi =
[yi1, yi2, . . . , yiq]

> ∈ Y is the class vector associated with
xi. Furthermore, let f : X 7→ Y be the induced MDC pre-
dictive function where ŷi = f(xi) = [ŷi1, ŷi2, . . . , ŷiq]

> is
the predicted class vector for xi.

For each MDC test example (xi,yi), let r(i) =∑q
j=1Jyij = ŷijK denote the number of class spaces on

which f makes correct classification. Then, the following
three metrics are utilized in this paper to measure the gener-
alization performance of MDC approaches:

• Hamming Score:

HScoreS(f) =
1

p

p∑
i=1

1

q
· r(i)

The hamming score measures the average fraction of class
spaces which have been correctly classified by the MDC
predictor.
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Table 4: Experimental results (mean±std. deviation) of each MDC approach and its KRAM counterpart in terms of exact match.
In addition, •/◦ indicates whether the KRAM counterpart is significantly superior/inferior to the MDC approach on each data
set (pairwise t-test at 0.05 significance level).

(a) Multi-class classifier: SVM
Data Set BR KRAM-BR ECC KRAM-ECC ECP KRAM-ECP ESC KRAM-ESC
Edm .442±.125 .521±.141• .454±.123 .598±.169• .559±.136 .612±.170 .513±.142 .592±.165•
Flare1 .821±.073 .818±.072 .817±.078 .818±.073 .817±.078 .821±.073 .821±.073 .821±.073
Song .479±.059 .476±.050 .481±.057 .476±.051 .484±.054 .467±.059 .481±.062 .480±.057
WQplants .097±.033 .099±.034 .093±.037 .105±.037 .093±.028 .067±.029◦ .093±.037 .099±.032
WQanimals .058±.022 .063±.014 .061±.023 .064±.010 .065±.018 .029±.011◦ .064±.024 .059±.014
WaterQuality .007±.008 .008±.007 .006±.008 .009±.006 .001±.003 .004±.005 .006±.008 .010±.005
Thyroid .773±.015 .800±.018• .772±.014 .800±.016• .773±.014 .802±.015• .771±.014 .801±.015•
Music .272±.075 .331±.082• .346±.079 .343±.078 .343±.076 .341±.073 .350±.078 .345±.084
Image .394±.028 .459±.033• .479±.033 .522±.036• .513±.024 .540±.024• .499±.025 .529±.038•
Scene .530±.035 .651±.038• .649±.035 .708±.026• .700±.029 .731±.029• .665±.041 .725±.027•
Yeast .151±.017 .199±.015• .207±.014 .252±.014• .252±.012 .262±.018 .237±.017 .263±.019•

(b) Multi-class classifier: NB
Data Set BR KRAM-BR ECC KRAM-ECC ECP KRAM-ECP ESC KRAM-ESC
Edm .432±.166 .445±.153 .451±.145 .438±.162 .554±.112 .548±.120 .432±.166 .438±.162
Flare1 .774±.099 .756±.095 .774±.087 .771±.088 .790±.081 .777±.084 .780±.093 .768±.086
Song .238±.054 .224±.050 .228±.036 .219±.043 .311±.053 .317±.051 .274±.047 .304±.054•
WQplants .001±.003 .036±.026• .001±.003 .035±.018• .034±.021 .067±.038• .001±.003 .040±.025•
WQanimals .004±.009 .008±.010 .007±.008 .006±.007 .020±.014 .042±.016• .024±.018 .026±.023
WaterQuality .000±.000 .000±.000 .000±.000 .000±.000 .008±.009 .004±.007◦ .002±.004 .002±.004
Thyroid .580±.027 .575±.015 .593±.026 .592±.022 .793±.017 .768±.015◦ .738±.022 .703±.036◦
Music .206±.043 .218±.058 .230±.058 .221±.065 .249±.078 .281±.073• .210±.070 .242±.089•
Image .069±.016 .074±.021• .069±.019 .074±.020• .285±.022 .302±.022• .069±.021 .074±.021
Scene .177±.023 .198±.022• .181±.024 .200±.021• .550±.030 .575±.040• .541±.024 .528±.046
Yeast .095±.018 .115±.018• .102±.016 .125±.024• .203±.018 .240±.024• .110±.014 .154±.015•

• Exact Match:

EMatchS(f) =
1

p

p∑
i=1

Jr(i) = qK

The exact match measures the proportion of test examples
on which the MDC predictor makes correct classification
over all class spaces. Conceptually, exact match serves as
a strict metric whose value might be rather low for MDC
tasks with large number of class spaces.

• Sub-Exact Match:

SEMatchS(f) =
1

p

p∑
i=1

Jr(i) ≥ q − 1K

The sub-exact match corresponds to a relaxed version of
exact match, which measures the proportion of test ex-
amples on which the MDC predictor makes at most one
incorrect classification over all class spaces.

Comparing Approaches KRAM is a meta-strategy to
learn from MDC examples, which can be coupled with any
off-the-shelf MDC learning algorithm (i.e. L in Table 1)

to improve its generalization performance. In this paper,
four well-established MDC approaches (Read, Bielza, and
Larrañaga 2014) are used to instantiate KRAM:

• Binary Relevance (BR): This approach decomposes the
multi-dimensional classification problem into a number of
independent multi-class classification problems, one per
class space.

• Ensembles of Classifier Chains (ECC): This approach
transforms the multi-dimensional classification problem
into a chain of multi-class classification problems, where
subsequent classifiers in the chain are built by treating
predictions of preceding ones as extra features. Specifi-
cally, an ensemble of classifier chains are built with dif-
ferent random chaining orders.

• Ensembles of Class Powerset (ECP): This approach trans-
forms the multi-dimensional classification problem into
one multi-class classification problem, where each dis-
tinct combination of MDC class variables is treated as
a new class. Specifically, an ensemble of class powerset
models are built by randomly sampling the MDC training
set.
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Table 5: Experimental results (mean±std. deviation) of each MDC approach and its KRAM counterpart in terms of sub-exact
match. In addition, •/◦ indicates whether the KRAM counterpart is significantly superior/inferior to the MDC approach on each
data set (pairwise t-test at 0.05 significance level).

(a) Multi-class classifier: SVM
Data Set BR KRAM-BR ECC KRAM-ECC ECP KRAM-ECP ESC KRAM-ESC
Edm .935±.061 .947±.076 .935±.069 .940±.058 .883±.074 .915±.075 .883±.074 .909±.070
Flare1 .947±.039 .951±.036 .951±.036 .951±.036 .947±.039 .947±.039 .951±.036 .951±.042
Song .903±.033 .888±.046 .891±.036 .891±.047 .878±.040 .877±.040 .892±.038 .885±.048
WQplants .287±.055 .300±.042 .283±.049 .295±.044 .281±.049 .187±.040◦ .282±.049 .294±.045
WQanimals .229±.034 .232±.030 .229±.032 .241±.040 .230±.032 .151±.030◦ .232±.032 .241±.032
WaterQuality .051±.024 .053±.017 .050±.023 .048±.018 .035±.018 .019±.016 .046±.022 .049±.024
Thyroid .982±.004 .983±.004 .981±.004 .982±.004 .981±.005 .979±.003◦ .982±.004 .981±.004
Music .674±.067 .682±.054 .676±.064 .677±.051 .640±.064 .659±.066 .662±.075 .672±.063
Image .782±.031 .783±.027 .730±.033 .745±.031 .710±.036 .727±.029• .738±.032 .740±.036
Scene .855±.018 .867±.020 .796±.030 .825±.020• .796±.028 .825±.018• .799±.032 .823±.024•
Yeast .269±.029 .307±.020• .288±.023 .316±.022• .304±.020 .317±.018 .310±.030 .324±.027•

(b) Multi-class classifier: NB
Data Set BR KRAM-BR ECC KRAM-ECC ECP KRAM-ECP ESC KRAM-ESC
Edm .922±.074 .916±.060 .929±.064 .909±.062 .909±.047 .896±.081 .915±.063 .909±.062
Flare1 .910±.066 .895±.055 .904±.073 .889±.060 .941±.057 .938±.057 .929±.064 .926±.060
Song .678±.071 .695±.068 .671±.068 .683±.066 .733±.079 .749±.080 .692±.066 .719±.067•
WQplants .018±.012 .113±.040• .013±.010 .123±.037• .175±.043 .258±.056• .042±.019 .133±.031•
WQanimals .041±.016 .049±.019 .039±.016 .049±.015• .143±.054 .221±.049• .139±.050 .167±.045
WaterQuality .000±.000 .003±.005 .000±.000 .001±.003 .032±.024 .033±.020 .023±.013 .025±.017
Thyroid .916±.011 .912±.009 .906±.020 .922±.008• .974±.005 .973±.005 .970±.007 .966±.006
Music .552±.057 .591±.050• .557±.051 .603±.048• .591±.071 .617±.053 .524±.039 .581±.082•
Image .255±.028 .279±.034• .261±.028 .283±.033• .597±.034 .612±.033• .289±.032 .315±.029•
Scene .561±.021 .591±.026• .569±.027 .595±.031• .693±.031 .713±.036• .703±.031 .733±.038•
Yeast .149±.020 .182±.027• .163±.020 .193±.027• .258±.022 .293±.022• .167±.019 .217±.022•

• Ensembles of Super Class classifiers (ESC): This ap-
proach works by partitioning the MDC class variables into
groups of super-classes, where conditional dependencies
among class variables are used to fulfill the partition pro-
cess. Specifically, an ensemble of super-class models are
built by randomly sampling the MDC training set.

Following (Read, Bielza, and Larrañaga 2014), a random
cut of 67% examples from the original MDC training set
is used to generate the base MDC model and the number
of base classifiers is set to be 10 for ensemble approaches
ECC, ECP and ESC. Furthermore, predictions of base MDC
models are combined via majority voting.

For each MDC approachA (A ∈{BR, ECC, ECP, ESC}),
we use KRAM-A to denote the instantiation of KRAM with
A. In this paper, support vector machine (SVM) (Chang and
Lin 2011) and Naı̈ve Bayes (NB) are used as the multi-class
classifier to implement each MDC approach. Specifically,
Libsvm with linear kernel and NB with Gaussian pdf for
continuous feature are used. As shown in Table 1, the only
parameter k (number of nearest neighbors considered) is set
to be 8 for KRAM.

To show the effectiveness of KRAM, we aim to compare

the performance of KRAM-A against A. On each data set,
ten-fold cross-validation is performed where the mean met-
ric value as well as standard deviation are recorded for the
comparing approaches.

Experimental Results
Tables 3 to 5 report the detailed experimental results of each
MDC approach and its KRAM counterpart in terms of ham-
ming score, exact match, and sub-exact match respectively.
For each data set and multi-class classifier (SVM or NB),
pairwise t-test based on ten-fold cross-validation (at 0.05
significance level) is conducted to show whether the perfor-
mance of KRAM counterpart is significantly different to the
MDC approach. Accordingly, Table 6 summarizes the re-
sulting win/tie/loss counts over 11 data sets and 3 evaluation
metrics.

Based on the reported experimental results, it is interest-
ing to observe that:

• Across all the 264 configurations (11 data sets × 3 met-
rics× 4 MDC approaches× 2 multi-class classifiers), the
KRAM counterpart achieves superior or at least compara-
ble performance against original MDC approach in 250
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Table 6: Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between each MDC approach and its KRAM counter-
part in terms of hamming score (HScore), exact match (EMatch), and sub-exact match (SEMatch).

multi-class classifier: SVM multi-class classifier: NB
HScore EMatch SEMatch HScore EMatch SEMatch In Total

KRAM-BR against BR 7/3/1 6/5/0 1/10/0 6/5/0 4/7/0 5/6/0 29/36/1
KRAM-ECC against ECC 7/4/0 5/6/0 2/9/0 6/5/0 4/7/0 7/4/0 31/35/0
KRAM-ECP against ECP 4/4/3 3/6/2 2/6/3 6/4/1 6/3/2 5/6/0 26/29/11
KRAM-ESC against ESC 5/6/0 5/6/0 2/9/0 6/4/1 4/6/1 6/5/0 28/36/2

(a) hamming score (b) exact match (c) sub-exact match

Figure 2: Performance of KRAM-BR changes as k ranges from 5 to 10 in terms of each evaluation metric.

configurations.
• BR learns from MDC examples by independent decompo-

sition, where dependencies among class spaces have not
been considered in this approach. The prominent advan-
tage of KRAM-BR over BR (with only one loss on HScore
with SVM) indicates that the kNN-augmented features
generated by KRAM do bring helpful discriminative infor-
mation in feature space. Specifically, those discriminative
information brought into feature space can be regarded as
a potential source for dependency modeling when learn-
ing the mapping from feature space to output space.

• Both ECC and ESC learn from MDC examples by con-
sidering dependencies among class spaces, which are
fulfilled by assuming random chaining order over class
spaces or partitioning the class spaces into groups. It
is impressive to notice that for MDC approaches with
inherent dependency modeling mechanism, KRAM can
also help improve their generalization ability significantly
with kNN-augmented features.

• ECP learns from MDC examples by modeling full-order
dependencies, where all possible combinations of class
spaces (i.e. class powerset) have been considered in the
learning process. ECP generally benefits from the kNN
augmented features, while there are 11 cases where the
performance of KRAM-ECP is inferior to ECP. Most of
the under-performing cases (8 out of 11) for KRAM-ECP
occur for WaterQuality (including its two divisions WQ-
plants and WQanimals), where the possible number of CP
combinations is high (i.e. 414).
As shown in Table 1, the only parameter to be set for

KRAM is k, which is the number of nearest neighbors con-

sidered for generating kNN-augmented features. Figure 2
illustrates how the performance of KRAM (with MDC ap-
proach BR) changes as k increases from 5 to 10. In terms
of each evaluation metric, KRAM achieves relatively stable
performance with varying values of k. Parameter insensitiv-
ity is a desirable property for practical use of KRAM, and the
value of k is fixed to be 8 in this paper.

Conclusion
The major contributions of our work are two-fold: 1) A
new strategy aiming at manipulating feature space for multi-
dimensional classification is proposed, which suggests an al-
ternative solution to learn from MDC examples; 2) A simple
yet effective approach based on kNN-augmented features is
designed to justify the proposed strategy, whose effective-
ness is thoroughly validated based on extensive comparative
studies. In the future, it is interesting to explore other ways
for MDC feature space manipulation. Furthermore, design-
ing feature augmentation techniques customized for specific
MDC approach is also worth further investigation.
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