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Abstract

We derive high-probability finite-sample uniform rates of
consistency for k-NN regression that are optimal up to log-
arithmic factors under mild assumptions. We moreover show
that k-NN regression adapts to an unknown lower intrinsic
dimension automatically in the sup-norm. We then apply the
k-NN regression rates to establish new results about estimat-
ing the level sets and global maxima of a function from noisy
observations.

Introduction
The k-nearest neighbor (k-NN) regression algorithm is a
classical approach to nonparametric regression. The value of
the functional is taken to be the unweighted average obser-
vation of the k closest samples. Although this procedure has
been known for a long time and has a deep practical signifi-
cance, there is still surprisingly much about its convergence
properties yet to be understood.

We derive finite-sample high probability uniform bounds
for k-NN regression under a standard additive model y =
f(x)+ξ where f is an unknown function, ξ is sub-Gaussian
white noise and y is the noisy observation. The samples
{(xi, yi)}ni=1 are drawn i.i.d. as follows: xi is drawn ac-
cording to an unknown density pX , which shares the same
support as f , and then observation yi is generated by the
additive model based on xi.

We then give simple procedures to estimate the level sets
and global maximas of a function given noisy observations
and apply the k-NN regression bounds to establish new
Hausdorff recovery guarantees for these structures. Each of
these results are interesting on their own.

The bulk of the work on k-NN regression convergence
theory is on its properties under various risk measures or
asymptotic convergence. Notions of consistency involving
risk measures such as mean squared error are considerably
weaker than the sup-norm as the latter imposes a uniform
guarantee on the error |fk(x)− f(x)| where fk is the k-NN
regression estimate of function f . Existing work on studying
fk under the sup-norm thus far are asymptotic. We give the
first sup-norm finite-sample result. This result matches the
minimax optimal rate up to logarithmic factors.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We then discuss the setting where the data lies on a lower
dimensional manifold. It is already known that k-NN regres-
sion is able to automatically adapt to the intrinsic dimension
under various risk measures: the rates depend only on the
intrinsic dimension and independent of ambient dimension.
We show that this is also the case in the sup-norm: we attain
finite-sample bounds as if we were operating in the lower
intrinsic dimension space without any modifications to the
procedure.

We then show the utility of our k-NN regression results in
recovering certain structures of an arbitrary function, namely
the level-sets and global maximas. The motivation can be
traced back to the rich theory of density-based clustering.
There, one is given a finite sample from a probability density
p. The clusters can then be modeled based on certain struc-
tures in the underlying density p. Such structures include the
level-sets {x : p(x) ≥ λ} for some density level λ or the lo-
cal maximas of p. Then to estimate these, one typically uses
a plug-in approach using a density estimator p̂ (e.g. for level-
sets, {x : p̂(x) ≥ λ} and for modes, argmaxx p̂(x)). It turns
out that given uniform bounds on p̂, we can estimate these
structures with strong guarantees.

In this paper, instead of estimating these structures in a
density, we estimate these structures for a general function
f . This is possible because of our established finite-sample
sup-norm bounds for nonparametric regression. There are
however some key differences in our setting. In the density
setting, one has access to i.i.d. samples drawn from the den-
sity. Here, we have an i.i.d. sample x drawn from some den-
sity pX not necessarily related to f , and then we obtain a
noisy observation of the value f(x). This can be viewed as
a noisy observation of the feature of x. In other words, we
estimate the stuctures based on the features of data, while in
the density setting, there are no features and the structures
are instead based on the dense regions of the dataset.

Related Works and Contributions
k-NN Regression Rates
The consistency properties of k-NN regression have been
studied for a long time and we highlight some of the work
here. Biau, Cérou, and Guyader (2010) give guarantees un-
der L2 risk. Devroye et al. (1994) give consistency guaran-
tees under the L1 risk. Stone (1977) provides results under
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Lp for p ≥ 1. All these notions of consistency so far are un-
der some integrated risk, and thus are weaker than the sup-
norm (i.e. L∞), which imposes a uniform guarantee.

A number of works such as Mack and Silverman (1982),
Cheng (1984), Devroye (1978), Lian (2011), Kudraszow
and Vieu (2013) give strong uniform convergence rates.
However, these results are asymptotic. Our bounds explore
the finite-sample consistency properties of k-NN regression,
which we will demonstrate later can show strong results
about k-NN based learning algorithms which were not pos-
sible with existing results. To the best of our knowledge, this
is the first such finite-sample uniform consistency result for
this procedure, which matches the minimax rate up to loga-
rithmic factors.

We then extend our results to the setting where the data
lies on a lower dimensional manifold. This is of practical
interest because the curse of dimensionality forces nonpara-
metric methods such as k-NN to require an exponential-in-
dimension sample complexity; however as a concession, we
can show that many of these methods can have sample com-
plexity depending on the intrinsic dimension (e.g. doubling
dimension, manifold dimension, covering number) and in-
dependent of the ambient dimension. In modern data ap-
plications where the dimension can be arbitrarily high, of-
tentimes the number of degrees of freedom remains much
lower. It thus becomes important to understand these meth-
ods under this setting.

Kulkarni and Posner (1995) give results for k-NN regres-
sion based on the covering numbers of the support of the
distribution. Kpotufe (2011) shows that k-NN regression ac-
tually adapts to the local intrinsic dimension without any
modifications to the procedure or data in the L2 norm. In
this paper, we show that this holds in the sup-norm as well
for a global intrinsic dimension.

Level Set Estimation
Density level-set estimation has been extensively studied
and has significant implications to density-based cluster-
ing. Some works include Tsybakov (1997) and Singh, Scott,
and Nowak (2009). It involves estimating Lp(λ) := {x :
p(x) ≥ λ} given a finite i.i.d. sample X from p, where
λ is some known density level and p is the unknown den-
sity. Lp(λ) can be seen as the high density regions of the
data and thus the connected components can be used as the
core-sets in clustering. It can be shown that given a den-
sity estimator p̂n with guarantees on |p̂n − p|∞, then taking
L̂p(λ) := {x ∈ X : p̂n(x) ≥ λ}, the Hausdorff distance
between Lp(λ) and L̂p(λ) can also be bounded.

In this paper, we extend this idea to functions f which are
not necessarily densities given noisy observations of f . We
obtain similar results to those familiar in the density setting,
which are made possible by our established bounds for es-
timating f . An advantage of this approach is that it can be
applied to clustering where there are features where clus-
ters are defined as regions of similar feature value rather
than similar density. In density-based clustering, it is typi-
cal that one does not assume access to the features and thus
such procedures fail to readily take advantage of the features

when performing clustering. A similar approach was taken
by Willett and Nowak (2007) by using nonparametric re-
gression to estimate the level sets of a function; however our
consistency results are instead under the Hausdorff metric.

Global Maxima Estimation
We next give an interesting result for estimating the global
maxima of a function. Given n i.i.d. samples from some dis-
tribution on the input space and seeing a noisy observations
of f at the samples, we show a guarantee on the distance
between the sample point with the highest k-NN regression
value and the (unique) point which maximizes f . This gives
us insight into how well a grid search or randomized search
can estimate the maximum of a function.

This result can be compared to mode estimation in the
density setting where the object is to find the point which
maximizes the density function (Tsybakov 1990). Dasgupta
and Kpotufe (2014) show that given n draws from a density,
the sample point which maximizes the k-NN density esti-
mator is close to the true maximizer of the density; more-
over they give finite-sample rates. Earlier works such as Ro-
mano (1988) provide asymptotic rates.

k-NN Regression
Throughout the paper, we assume a function f with com-
pact support X ⊆ RD and that we have datapoints
(x1, y1), ..., (xn, yn) drawn follows. The xi’s are drawn
i.i.d. from density pX with supportX . Then yi = f(xi)+ξxi

where ξxi are i.i.d. drawn according to random variable ξ.

Definition 1. f : X → R where X ⊆ RD is compact.

The first regularity assumption ensures that the support
X does not become arbitrarily thin anywhere. Otherwise, it
becomes impossible to estimate the function in such areas
from a random sample.

Assumption 1 (Support Regularity). There exists γ > 0 and
r0 > 0 such that Vol(X ∩ B(x, r)) ≥ γ · Vol(B(x, r)) for
all x ∈ X and 0 < r < r0.

The next assumption ensures that with a sufficiently large
sample, we will obtain a good covering of the input space.

Assumption 2 (pX bounded from below). pX,0 :=
infx∈X pX(x) > 0.

Finally, we have a standard sub-Gaussian white noise as-
sumption in our additive model.

Assumption 3 (Sub-Gaussian White noise). ξ satisfies
E[ξ] = 0 and sub-Gaussian with parameter σ2 (i.e.
E[exp(λξ)] ≤ exp(σ2λ2/2) for all λ ∈ R).

Then define k-NN regression as follows.

Definition 2 (k-NN). Let the k-NN radius of x ∈ X be
rk(x) := inf{r : |B(x, r) ∩ X| ≥ k} where B(x, r) :=
{x′ ∈ X : |x − x′| ≤ r} and the k-NN set of x ∈ X be
Nk(x) := B(x, rk(x)) ∩X . Then for all x ∈ X , the k-NN
regression function with respect to the samples is defined as

fk(x) :=
1

|Nk(x)|

n∑
i=1

yi · 1 [xi ∈ Nk(x)] .
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Next, we define the following pointwise modulus of con-
tinuity, which will be used to express the bias for an arbitrary
function in later result.
Definition 3 (Modulus of continuity). uf (x, r) :=
supx′∈B(x,r) |f(x)− f(x′)|.

We now state our main result about k-NN regression. In-
formally, it says that under the mild assumptions described
above, for k & log n, |fk(x)− f(x)| . uf (x, (k/n)1/D) +√

(log n)/k uniformly in x ∈ X with high probability.
The first term correponds to the bias term. Using uniform

VC-type concentration bounds, it can be shown that the k-
NN radius can be uniformly bounded by approximately dis-
tance (k/n)1/D and hence no point in the k-NN set will be
that far. The bias can then be expressed in terms of that dis-
tance and uf .

The second term corresponds to the variance. The 1/
√
k

factor is not surprising since the noise terms are averaged
over k observations and the extra

√
log n factor comes from

the cost of obtaining a uniform bound.
Definition 4. Let vD be the volume of a D-dimensional unit
ball.
Theorem 1 (k-NN Regression Rate). Suppose that Assump-
tions 1, 2, and 3 hold and that

28 ·D log2(4/δ) · log n ≤ k ≤ 1

2
· γ · pX,0 · vD · rD0 · n.

Then probability at least 1−δ, the following holds uniformly
in x ∈ X .

|f(x)− fk(x)| ≤ uf

(
x,

(
2k

γ · pX,0 · vD · n

)1/D
)

+ 2σ

√
D log n+ log(2/δ)

k
.

Note that the above result is fairly general and makes no
smoothness assumptions. In particular, f need not even be
continuous. It is also important to point out that n must be
sufficiently large in order for there to exist a k that satisfies
the conditions. We can then apply this to the class of Hölder
continuous functions to obtain the following result.
Corollary 1 (Rate for α-Hölder continuous functions). Let
0 < α ≤ 1. Suppose that Assumptions 1, 2, and 3 hold and

28 ·D log2(4/δ) · log n ≤ k ≤ 1

2
· γ · vD · pX,0 · rD0 · n.

If f is Hölder continuous (i.e. |f(x)−f(x′)| ≤ Cα|x−x′|α),
then the following holds:

P

(
sup
x∈X
|f(x)− fk(x)| ≤ Cα

(
2k

γ · pX,0 · vD · n

)α/D
+ 2σ

√
D log n+ log(2/δ)

k

)
≥ 1− δ.

Remark 1. Taking k = O(n2α/(2α+D)) gives us a rate of

sup
x∈X
|f(x)− fk(x)|∞ . Õ(n−α/(2α+D)),

which is the minimax optimal rate for estimating a Hölder
function, up to logarithmic factors.

Remark 2. It is understood that all our results will also hold
under the assumption that the xi’s are fixed and determinis-
tic (e.g. on a grid) as long as there is a sufficient covering of
the space.

Regression On Manifolds
In this section, we show that if the data has a lower intrinsic
dimension, then k-NN will automatically attain rates as if it
were in the lower dimensional space and independent of the
ambient dimension.

We make the following regularity assumptions which are
standard among works in manifold learning e.g. (Genovese
et al. 2012) and (Balakrishnan et al. 2013).
Assumption 4. P is supported on M where:
• M is a d-dimensional smooth compact Riemannian man-

ifold without boundary embedded in compact subset X ⊆
RD.

• The volume of M is bounded above by a constant.
• M has condition number 1/τ , which controls the curva-

ture and prevents self-intersection.
Let pX be the density of P with respect to the uniform mea-
sure on M .

We now give the manifold analogues of Theorem 1 and
Corollary 1.
Theorem 2 (k-NN Regression Rate). Suppose that Assump-
tions 2, 3, and 4 hold and that

k ≥ 28 ·D log2(4/δ) · log n

k ≤ 1

4

(
min

{
τ

4d
,

1

τ

})d
pX,0 · vd · n.

Then with probability at least 1− δ, the following holds uni-
formly in x ∈ X .

|f(x)− fk(x)| ≤ uf

(
x,

(
4k

vd · n · pX,0

)1/d
)

+ 2σ

√
D log n+ log(2/δ)

k
.

Similar to the full dimensional case, we can then apply
this to the class of Hölder continuous functions.
Corollary 2 (Rate for α-Hölder continuous functions). Let
0 < α ≤ 1. Suppose that Assumptions 2, 3, and 4 hold and

k ≥ 28 ·D log2(4/δ) · log n

k ≤ 1

4

(
min

{
τ

4d
,

1

τ

})d
pX,0 · vd · n.

If f is Hölder continuous (i.e. |f(x)−f(x′)| ≤ Cα|x−x′|α),
then the following holds

P

(
sup
x∈X
|f(x)− fk(x)| ≤ Cα

(
4k

vd · n · pX,0

)α/d
+ 2σ

√
D log n+ log(2/δ)

k

)
≥ 1− δ.
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Remark 3. Taking k = O(n2α/(2α+d)) gives us a rate of
Õ(n−α/(2α+d)), which is more attractive than the full di-
mensional version Õ(n−α/(2α+D)) when intrinsic dimen-
sion d is lower than ambient dimension D. We note that the
bound contains a constant factor depending on D but the
rate at which it decreases as n grows does not.

Level Set Estimation
The level set is the region of the input space that have value
greater than a fixed threshold.

Definition 5 (Level-Set).

Lf (λ) := {x ∈ X : f(x) ≥ λ}.

In order to estimate the level-sets, we require the fol-
lowing regularity assumption. It states that for each max-
imal connected component of the level-set, the change in
the function around the boundary has a Lipschitz form with
smoothness and curvature β > 0 around some neighborhood
of the boundary. This notion of regularity at the boundaries
of the level-sets is a standard one in density level-set estima-
tion e.g. Tsybakov; Singh, Scott, and Nowak (2009).

Definition 6 (Level-Set Regularity). Let d(x,C) :=
infx′∈C |x − x′|, ∂C be the boundary of C, and C ⊕ r :=
{x′ : d(x′, C) ≤ r}. A function f satisfies β-regularity at
level λ if the following holds. There exists rM , Č, Ĉ > 0
such that for each maximal connected subset C ⊆ Lf (λ),
we have

Č · d(x, ∂C)β ≤ |λ− f(x)| ≤ Ĉ · d(x, ∂C)β ,

for all x ∈ ∂C ⊕ rM .

Remark 4. The upper bound on |λ − f(x)| ensures that
f is sufficiently smooth so that k-NN regression will give
us sufficiently accurate estimates near the boundaries. The
lower bound on |λ−f(x)| ensures that the level-set is salient
enough to be detected.

To recover Lf (λ) based on the samples, we use the fol-
lowing estimator, where X := {x1, ..., xn}.

L̂(λ) := {x ∈ X : fk(x) ≥ λ− ε},

where ε := 4σ̂
√

D logn+log(2/δ)
k and σ̂ :=

√
2
n

∑m
i=1 y

2
i . It

will become clear later in the proofs that σ̂ is meant to be an
upper bound on σ and thus ε is an upper bound on twice the
variance of term of the k-NN bound.

There are three simple but key differences of our estima-
tor when compared to Lf (λ). The first is that since we don’t
have access to the true function f , we use the k-NN regres-
sion estimate fk. Next, instead of taking x ∈ X , we instead
restrict to the samples X . This makes our estimator feasible
to compute since it will be a subset of the sample points.
Finally, we have the ε to bound the uniform deviation of
|fk − f | near the boundary of the level-set (as will be ap-
parent in the proof). The main difficulty is choosing ε large
enough to bound this uniform deviation, but not too large
to overestimate the level-set and finally ensuring that ε can

be computed without knowledge of f or any unknown con-
stants (we only need confidence parameter δ and the dimen-
sion, as well as k). Thus, our estimator is practical.

We provide consistency result under the Hausdorff metric.
We note that this is a strong notion of consistency since it a
uniform guarantee on the constituents of our estimator.
Definition 7 (Hausdorff Distance).

dH(X,Y ) = inf{ε ≥ 0 : X ⊆ Y ⊕ ε, Y ⊆ X ⊕ ε}.
The next result gives us finite-sample consistency rates for

our estimator.
Theorem 3 (Level Set Recovery). Suppose that Assump-
tions 1, 2, and 3 hold. Let f be continuous and satisfy β-
regularity at level λ. Define M :=

√
E[y2

1 ] where the expec-
tation is taken over pX and ξ, and suppose that n is suffi-
ciently large depending on ξ, f and δ. If k satisfies

k ≥ 8 max

{
1,

40M2

(2 min{rM , r0})2βČ2

}
log(4/δ)D · log n,

k ≤ (4σ2/Ĉ)2D/(2β+D) · (D log n+ log(4/δ))β/(2β+D)

· (2γ · pX,0 · vD)2β/(2β+D) · n2β/(2β+D),

then with probability at least 1− 2δ,

dH(Lf (λ), L̂f (λ))

≤ 2 ·
(

24M

Č

)1/β

· (D log n · log(2/δ))1/2β · k−1/2β .

Remark 5. Although the statement may appear obfuscated,
it essentially says that as long as f is a continuous function
satisfying β-regularity at level λ, then if k lies within the
following range:

log n . k . n2β/(2β+D),

then with high probability,

dH(Lf (λ), L̂f (λ)) . k−1/(2β).

Remark 6. Choosing k at the optimal setting k ≈
n2β/(2β+D), we have ε = Õ(n−β/(2β+D)). Then it fol-
lows that we recover the level sets at a Hausdorff rate of
Õ(n−1/(2β+D)). This can be compared to the lower bound
O(n−1/(2β+D)) established by Tsybakov (1997) for estimat-
ing the level sets of an unknown density.

We can give a similar result when the data lies on a lower
dimensional manifold. Interestingly, we can use the exact
same estimator as before as if we were operating in the full
dimensional space.
Theorem 4 (Level Set Recovery on Manifolds). Suppose
that Assumptions 1, 2, 3, and 4 hold. Let f be continuous
and satisfy β-regularity at level λ. Define M :=

√
E[y2

1 ]
where the expectation is taken over pX and ξ, and suppose
that n is sufficiently large depending on ξ, f , τ , and δ. If k
satisfies

k ≥ 8 max

{
1,

40M2

(2 min{rM , r0})2βČ2

}
log(4/δ)D · log n,

k ≤ (4σ2/Ĉ)2d/(2β+d) · (D log n+ log(4/δ))β/(2β+d)

· (pX,0 · vD)2β/(2β+d) · n2β/(2β+d),
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then with probability at least 1− 2δ,

dH(Lf (λ), L̂f (λ))

≤ 2 ·
(

24M

Č

)1/β

· (D log n · log(2/δ))1/2β · k−1/2β .

Remark 7. The main difference from the full-dimensional
version is that we need k to satisfy

log n . k . n2β/(2β+d).

Choosing k at the optimal setting k ≈ n2β/(2β+d), we re-
cover the level sets at a rate of Õ(n−1/(2β+d)).

Remarkably, we obtain the rate as if we were operating
on the lower dimensional space. This has not been shown
for level-set estimation on manifolds for density functions
(which is a different problem).

The rate for density functions under similar regularity as-
sumptions is Õ(n−1/(2β+d·max{1,β})) (Jiang 2017), which
is slower. In other words, we escape the curse of dimension-
ality with regression level-set estimation but do not escape it
for density level-set estimation.

Global Maxima Estimation
In this section, we give guarantees on estimating the global
maxima of f .
Definition 8. x0 is a maxima of f if f(x) < f(x0) for all
x ∈ B(x0, r)\{x0} for some r > 0.

We then make the following assumptions, which states
that f has a unique maxima, where it has a negative-definite
Hessian.
Assumption 5. f has a unique maxima x0 :=
argmaxx∈X f(x) and f has a negative-definite Hessian at
x0.

These assumptions lead to the following, which states that
f has quadratic smoothness and decay around x0.
Lemma 1 (Dasgupta and Kpotufe (2014)). Let f satisfy As-
sumption 5. Then there exists Ĉ, Č, rM , λ > 0 such that the
following holds.

Č · |x0 − x|2 ≤ f(x0)− f(x) ≤ Ĉ · |x0 − x|2

for all x ∈ A0 where A0 is a connected component of {x :
f(x) ≥ λ} and A0 contains B(x0, rM ).

We utilize the following estimator, which is the maxi-
mizer of fk amongst sample points X = {x1, ..., xn}.

x̂ := argmax
x∈X

fk(x).

We next give the result of the accuracy of x̂ in estimating x0.
Theorem 5. Suppose that f is continuous and that Assump-
tions 1, 2, 3, and 5 hold. Let k satisfy

k ≥ 210 ·D log2(4/δ) · log n

min{1, Č2 · r4
M/σ

2}

k ≤ 1

2
· γ · pX,0 · vD ·min

{
rD0 ,

(
Č · r2

M

32 · Ĉ

)D/2}
· n.

Then the following holds with probability at least 1− δ.

|x̂− x0|2 ≤ max

{
32σ

Č

√
D log n+ log(2/δ)

k
,

32Ĉ

Č

(
2k

γ · pX,0 · vD · n

)2/D}
.

Remark 8. Taking k ≈ n4/(4+D) optimizes the above
expression so that |x̂ − x0| . Õ(n−1/(4+D)). This can
be compared to the minimax rate for mode estimation
O(n−1/(4+D)) established by Tsybakov (1990). We stress
however that estimating the mode of density function is a
different problem.

Remark 9. An analogue for global minima also holds.
Moreover, in the manifold setting, we can obtain a rate of
Õ(n−1/(4+d)), which has not been shown for mode estima-
tion in densities.

Proofs
Proof of Theorem 1
The follow bounds rk(x) uniformly in x ∈ X .

Lemma 2. The following holds with probability at least 1−
δ/2. If

28 ·D log2(4/δ) · log n ≤ k ≤ 1

2
· γ · pX,0 · vD · rD0 · n,

then supx∈X rk(x) ≤
(

2k
γ·vD·n·pX,0

)1/D

.

Proof. Let r =
(

2k
γ·vD·n·pX,0

)1/D

. We have P(B(x, r)) ≥
γ infx′∈B(x,r)∩X pX(x′) · vDrD ≥ γpX,0vDr

D = 2k
n . By

Lemma 7 of (Chaudhuri and Dasgupta 2010) and the condi-
tion on k, it follows that with probability 1− δ/2, uniformly
in x ∈ X , Pn(B(x, r)) ≥ k

n . Hence, rk(x) < r and the
result follows immediately.

The next result bounds the number of distinct k-NN sets
over X .

Lemma 3. Let M be the number of distinct k-NN sets over
X , that is, M := |{Nk(x) : x ∈ X}|. Then M ≤ D · nD.

Proof. First, let A be the partitioning of X induced by the(
n
2

)
hyperplanes defined as the perpendicular bisectors of

each pair of points xi, xj for i 6= j. Let us denote this
set of hyperplanes as H. We have that if x, x′ are in the
same partition of A, then Nk(x) = Nk(x′). If not, then any
path from x to x′ must cross some perpendicular bisector
in Nk(x′) − Nk(x), which would be a contradiction. Thus,
M ≤ |A|.

Now we will bound |A|. SinceH is finite, choose vectors
e1, ..., eD such that they form an orthogonal basis of RD
and none of these vectors are perpendicular to any H ∈ H.
Let e1, ..., eD induce hyperplanes H1, ...,HD, respectively
(i.e. Hi being the orthogonal complement of ei). Without
loss of generality, orient the space such that e1 is the vertical
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direction (i.e. so that we can use descriptions such as ’above’
and ’below’). For each region in A that is bounded below,
associate such a region to its lowest point. Then it follows
that there are at most

(
n
D

)
of these regions since they are the

intersection of D hyperplanes.
We next count the regions unbounded below. Place H1

below the lowest point corresponding the regions in A that
were bounded below. Then we have that the regions un-
bounded below are {A ∈ A : A ∩H1 6= ∅}. It thus remains
now to count A1 := {A ∩H1 : A ∈ A, A ∩H1 6= ∅}.

We now orient the space so that e2 corresponds to the ver-
tical direction. Then we can repeat the same procedure and
for each region in A1that is bounded below with the lowest
point. There are at most

(
n

D−1

)
since they are an intersection

of D − 1 hyperplanes in H along with H1, and then plac-
ing e2 sufficiently low, the remaining regions correspond to
A2 := {A ∩H1 ∩H2 : A ∈ A, A ∩H1 ∩H2 6= ∅}.

Continuing this process, it follows that when we orient ei
to be the vertical direction, in order to count Ai := {A ∩
H1∩· · ·∩Hi : A ∈ A, A∩H1∩· · ·∩Hi 6= ∅}, the number
of regions in Ai bounded below is at most

(
n

D−i
)

and the
remaining ones are correspond to Ai+1.

It thus follows that |A| ≤
∑D
j=0

(
n
j

)
≤ D ·nD, as desired.

Proof of Theorem 1. We have

|fk(x)− f(x)| ≤

∣∣∣∣∣ 1

|Nk(x)|

n∑
i=1

(f(xi)− f(x)) · 1 [xi ∈ Nk(x)]

∣∣∣∣∣
+

∣∣∣∣∣ 1

|Nk(x)|

n∑
i=1

ξxi · 1 [xi ∈ Nk(x)]

∣∣∣∣∣
≤ uf (x, rk(x)) +

∣∣∣∣∣ 1

Nk(x)

n∑
i=1

ξxi · 1 [xi ∈ Nk(x)]

∣∣∣∣∣ .
The first term can be viewed as the bias term and the second
can be viewed as variance term.

By Lemma 2, we can bound the first term as follows
with probability at least 1 − δ/2 uniformly in x ∈ X :

uf (x, rk(x)) ≤ uf

(
x,
(

2k
γ·pX,0·vD·n

)1/D
)

. For the vari-

ance term, we have by Hoeffding’s inequality that if Ax :=∣∣ 1
k

∑n
i=1 ξxi · 1 [xi ∈ Nk(x)]

∣∣ then P
(
Ax >

√
2σ·t√
k

)
≤

exp
(
−t2

)
.

Taking t =
√
D log n+ log(2D/δ), then we have

P
(
Ax >

√
2σ·t√
k

)
≤ δ/(2D · nD).

By Lemma 3 and union bound, it follows that
P
(

supx∈X Ax >
√

2σ·t√
k

)
≤ δ/2. Hence, we have with

probability at least 1− δ,

|f(x)− fk(x)| ≤ uf

(
x,

(
2k

γ · pX,0 · vd · n

)1/D
)

+ 2σ

√
D log n+ log(2/δ)

k
.

uniformly in x ∈ X .

It is easy to see that a simple modification to the proof of
Theorem 1 will yield the following.
Corollary 3 (k-NN Regression Upper and Lower Bounds).
Let

ûf (x, r) := sup
x′∈B(x,r)

f(x′)− f(x)

ǔf (x, r) := sup
x′∈B(x,r)

f(x)− f(x′)

εvar := 2σ

√
D log n+ log(2/δ)

k

εk :=

(
2k

γpX,0vD · n

)1/D

.

Suppose that Assumptions 1, 2, and 3 hold and that

k ≥ 28 ·D log2(4/δ) · log n.

Then probability at least 1−δ, the following holds uniformly
in x ∈ X .

fk(x) ≤ f(x) + ûf (x, εk) + εvar

fk(x) ≥ f(x)− ǔf (x, εk)− εvar.

Proof of Theorem 2
We need the following guarantee on the volume of the in-
tersection of a Euclidean ball and M ; this is required to get
a handle on the true mass of the ball under P in later argu-
ments. The proof can be found in (Jiang 2017).
Lemma 4 (Ball Volume). If 0 < r < min{τ/(4d), 1/τ},
and x ∈M then

1− τ2r2 ≤ vold(B(x, r) ∩M)

vdrd
≤ 1 + 4d · r/τ,

where vold is the volume w.r.t. the uniform measure on M .
The next is the manifold analogue of Lemma 2.

Lemma 5. Suppose that Assumptions 2, 3, and 4 hold. The
following holds with probability at least 1− δ/2. If

28 ·D log2(4/δ) · logn ≤ k ≤
1

4

(
min

{
τ

4d
,

1

τ

})d
pX,0 · vd · n.

then for all x ∈M , rk(x) ≤
(

4k
vd·n·pX,0

)1/d

.

Proof. Let r =
(

4k
vd·n·pX,0

)1/d

. We have

P(B(x, r)) ≥ inf
x′∈B(x,r)∩M

pX(x′) · Vold(B(x, r) ∩M)

≥ pX,0 · (1− τ2r2) · vdrd ≥
1

2
pX,0vdr

d ≥
2k

n
.

By Lemma 7 of (Chaudhuri and Dasgupta 2010) and the
condition on k, it follows that with probability 1− δ/2, uni-
formly in x ∈ X , Pn(B(x, r)) ≥ k

n . Hence, rk(x) < r and
the result follows immediately.

Theorem 2 now follows by replacing the usage of
Lemma 2 with Lemma 5. We also note that an analogous
result to Corollary 3 can also be established.

It is easy to see that a simple modification to the proof of
Theorem 2 will yield the following.
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Corollary 4 (k-NN Regression Upper and Lower Bounds).
Let

ûf (x, r) := sup
x′∈B(x,r)

f(x′)− f(x)

ǔf (x, r) := sup
x′∈B(x,r)

f(x)− f(x′)

εvar := 2σ

√
D log n+ log(2/δ)

k

εk :=

(
2k

γpX,0vD · n

)1/d

.

Suppose that Assumptions 1, 2, and 3 hold and that

k ≥ 28 ·D log2(4/δ) · log n.

Then probability at least 1−δ, the following holds uniformly
in x ∈ X .

fk(x) ≤ f(x) + ûf (x, εk) + εvar

fk(x) ≥ f(x)− ǔf (x, εk)− εvar.

Proofs of Theorem 3 and 4

Proof of Theorem 3. We have that E[σ̂2] = 2M2 ≥
2Var(ξ2) = 2σ2. Thus, when n is sufficiently large de-
pending on ξ, f , and δ, we have by Bernstein-type con-
centration inequalities that with probability at least 1 − δ,
2σ ≤ σ̂ ≤

√
5M .

Let r̃ := 2(2ε/Č)1/β and let us use the notation intro-
duced in Corollary 3. It suffices to show that (1) L̂f (λ) ⊆
Lf (λ)⊕ r̃ and (2) Lf (λ) ⊆ L̂f (λ)⊕ r̃. We begin with (1).
We have

sup
x∈X\(Lf (λ)⊕r̃)

fk(x) ≤ sup
x∈X\(Lf (λ)⊕r̃)

(f(x) + ûf (x, εk)) + εvar

≤ sup
x∈X\(Lf (λ)⊕r̃)

sup
x′∈B(x,εk)

f(x′) + εvar

= sup
x∈X\(Lf (λ)⊕(r̃−εk))

f(x) + εvar

≤ λ− Č(r̃ − εk)β + εvar ≤ λ− ε,

where the first inequality holds by Corollary 3, the second-
to-last inequality holds by β-regularity and that r̃ < rM ,
and the last inequality holds by the conditions on k (which
in particular imply ε ≥ 2εvar and εk < (2ε/Č)1/β). Thus, if
x 6∈ Lf (λ) ⊕ r̃, then fk(x) < λ − ε. Therefore, L̂f (λ) ⊆
Lf (λ)⊕ r̃, which establishes (1).

We now show (2). Let r̄ = εk. Since r̄ < r̃, it suffices to
show that Lf (λ) ⊆ L̂f (λ)⊕ r̄. For any x ∈ Lf (λ), we have

P(B(x, r̄)) ≥ 2k

n
≥ 16 log(4/δ)D log n

n
,

where the last inequality holds by the conditions on k.
Hence, by Lemma 7 of (Chaudhuri and Dasgupta 2010), we
have Pn(B(x, r̄)) > 0. Thus, for any x ∈ Lf (λ), there ex-

ists a sample point in B(x, r̄). Furthermore, we have

inf
x′∈B(x,r̄)

fk(x′) ≥ inf
x′∈B(x,r̄)

f(x)− ǔf (x, εk)− εvar

≥ inf
x′∈B(x,r̄)

inf
x′′∈B(x′,εk)

f(x′′)− εvar

= inf
x′∈B(x,r̄+εk)

f(x′)− εvar

≥ λ− Ĉ(r̄ + εk)β − εvar ≥ λ− ε.

where the first inequality holds by Corollary 3, the second
last inequality holds by β-regularity, and the final inequality
holds by the conditions on k.

Thus, for any x ∈ Lf (λ), not only does there exists a sam-
ple point in B(x, r̄), but any such sample point will have
fk value at least λ − ε and thus is in L̂f (λ). Therefore,
Lf (λ) ⊆ L̂f (λ)⊕ r̄, as desired.

Proof of Theorem 4. The proof is the same as that of Theo-
rem 3 but with the full-dimensional k-NN regression bounds
replaced by the manifold versions, and is omitted here.

Proof of Theorem 5
Proof of Theorem 5. Define the following.

εvar := 2σ

√
D logn+ log(2/δ)

k
, εk :=

(
2k

γ · pX,0vD · n

)1/D

r̃2 := max{16εvar/Ĉ, (2εk/c)
2},

where c2 = Č/8Ĉ. The goal is now to show |x − x0| ≤ r̃.
The proof now mirrors that of Theorem 1 of Dasgupta and
Kpotufe (2014). It suffices to show that

sup
x∈X\B(x0,r̃)

fk(x) < inf
x∈B(x0,rn)

fk(x),

where rn = d(x0, X). We have by Corollary 3:

sup
x∈X\B(x0,r̃)

fk(x) ≤ sup
x∈X\B(x0,r̃)

f(x) + ûf (x, εk) + εvar

≤ sup
x∈X\B(x0,r̃)

f(x) + ûf (x, r̃/2) + εvar

≤ sup
x∈X\B(x0,r̃/2)

f(x) + εvar

≤ f(x0)− Č(r̃/2)2 + εvar.

On the other hand,

inf
x∈B(x0,rn)

fk(x) ≥ inf
x∈B(x0,rn)

f(x)− ǔf (x, εk)− εvar

≥ inf
x∈B(x0,cr̃/2)

f(x)− ǔf (x, cr̃/2)− εvar

≥ inf
x∈B(x0,cr̃)

f(x)− εvar

≥ f(x0)− Ĉ(cr̃)2 − εvar.

The result now follows from our choice of r̃.

Conclusion: We provided finite-sample sup-norm
bounds for k-NN regression under standard nonparametric
assumptions for both the full-dimensional and manifold set-
ting. We then applied our results to level-set and global max-
ima estimation.
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