
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Gaussian-Induced Convolution for Graphs

Jiatao Jiang, Zhen Cui,∗ Chunyan Xu, Jian Yang
PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education,

and Jiangsu Key Lab of Image and Video Understanding for Social Security,
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

{jiatao, zhen.cui, cyx, csjyang}@njust.edu.cn

Abstract
Learning representation on graph plays a crucial role in nu-
merous tasks of pattern recognition. Different from grid-
shaped images/videos, on which local convolution kernels
can be lattices, however, graphs are fully coordinate-free on
vertices and edges. In this work, we propose a Gaussian-
induced convolution (GIC) framework to conduct local con-
volution filtering on irregular graphs. Specifically, an edge-
induced Gaussian mixture model is designed to encode varia-
tions of subgraph region by integrating edge information into
weighted Gaussian models, each of which implicitly char-
acterizes one component of subgraph variations. In order to
coarsen a graph, we derive a vertex-induced Gaussian mix-
ture model to cluster vertices dynamically according to the
connection of edges, which is approximately equivalent to the
weighted graph cut. We conduct our multi-layer graph convo-
lution network on several public datasets of graph classifica-
tion. The extensive experiments demonstrate that our GIC is
effective and can achieve the state-of-the-art results.

Introduction
As witnessed by the widespread applications, graph is one of
the most successful models to conduct structured and semi-
structured data, ranging from text (Defferrard, Bresson,
and Vandergheynst 2016), bioinformatics (Yanardag and
Vishwanathan 2015; Niepert, Ahmed, and Kutzkov 2016;
Song et al. 2018) and social network (Gomez, Chiem, and
Delvenne 2017; Orsini, Baracchi, and Frasconi 2017) to
images/videos (Marino, Salakhutdinov, and Gupta 2016;
Cui et al. 2018; Cui, Yang, and others 2017). Among these
applications, learning robust representations from structured
graphs becomes the main topic. To this end, various meth-
ods have come forth in recent years. Graph kernels (Ya-
nardag and Vishwanathan 2015) and recurrent neural net-
works (RNNs) (Scarselli et al. 2009) are the most repre-
sentative ones. Graph kernels usually take the classic R-
convolution strategy (Haussler 1999) to recursively decom-
pose graphs into atomic sub-structures and then define lo-
cal similarities between them. RNNs based methods sequen-
tially traverse neighbors with tied parameters in depth. With
the increase of graph size, graph kernels would suffer di-
agonal dominance of kernels (Schölkopf et al. 2002) while
∗Corresponding author
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RNNs would have the explosive number of combinatorial
paths in the recursive stage.

Recently convolutional neural networks (CNNs) (Le-
Cun, Bengio, and Hinton 2015) have achieved breakthrough
progresses on representing grid-shaped image/video data.
In contrast, graphs are with irregular structures and fully
coordinate-free on vertices and edges. The vertices/edges
are not strictly ordered, and can not be explicitly matched
between two graphs. To generalize the idea of CNNs onto
graphs, we need to solve this problem therein that the
same responses should be produced for those homomor-
phic graphs/subgraphs when performing convolutional fil-
tering. To this end, recent graph convolution methods (Def-
ferrard, Bresson, and Vandergheynst 2016; Atwood and
Towsley 2016; Hamilton, Ying, and Leskovec 2017) at-
tempted to aggregate neighbor vertices as shown in Fig. 1e.
This kind of methods actually employ a fuzzy filtering (i.e.,
a tied/shared filter) on neighbor vertices because only first-
order statistics (mean) is used. Two examples are shown in
Fig. 1a and Fig. 1b. Although they have different structures,
the responses on them are fully equal. Oppositely, Niepert
et.al (Niepert, Ahmed, and Kutzkov 2016) ranked neighbor
vertices according to weights of edges, and then used dif-
ferent filters on these sorted vertices, as shown in Fig. 1f.
However, this rigid ranking method will suffer some limita-
tions: i) probably consistent responses to different structures
(e.g., Fig. 1b and Fig. 1c) because weights of edges are out
of consideration after ranking; ii) information loss of node
pruning for a fixed-size receptive field as shown in Fig. 1b;
and iii) ranking ambiguity for equal connections as shown
in Fig. 1d; and iv) ranking sensitivity to (slightly) changes
of edge weights/connections.

In this paper we propose a Gaussian-induced graph con-
volution framework to learn graph representation. For a
coordinate-free subgraph region, we design an edge-induced
Gaussian mixture model (EI-GMM) to implicitly coordinate
the vertices therein. Specifically, the edges are used to regu-
larize Gaussian models such that variations of subgraph can
be well-encoded. In analogy to the standard convolutional
kernel as shown in Fig. 1h, EI-GMM can be viewed as a
coordinate normalization by projecting variations of sub-
graph into several Gaussian components. For example, the
four subgraphs w.r.t. Fig. 1a∼1d will have different repre-
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Figure 1: Different filters operations on graph vertices. Examples of one-hop subgraphs are given in (a)-(d), where v0 is the
reference vertex and each vertex is assigned to a signal. The tied filtering (e) summarizes all neighbor vertices, and generates the
same responses to (a) and (b) under the filter f , i.e., f(

∑
w̃0ixi) = f(1.9), although the two graphs are completely different in

structures. The ranking filtering (f) sorts/prunes neighbor vertices and then performs different filtering on them. It might result
into the same responses f1(1) + f2(3) + f3(1) + f4(4) to different graphs such as (b) and (c), where the digits in red boxes
denote the ranked indices and the vertex of dashed box in (b) is pruned. Moreover, the vertex ranking is uncertain/non-unique
for equal connections in (d).To address these problems, we derive edge-induced GMM to coordinate subgraphs as shown in (g).
Each of Gaussian model can be viewed as one variation component (or direction) of subgraph. Like the standard convolution
(h), the Gaussian encoding is sensitive to different subgraphs, e.g., (a)-(d) will have different responses. Note f, fi are linear
filters, and the non-linear activation functions are put on their responses.

sentations1 through our Gaussian encoding in Fig. 1g. To
make the network inference forward, we transform Gaus-
sian components of each subgraph into the gradient space of
multivariate Gaussian parameters, instead of employing the
sophisticated EM algorithm. Then the filters (or transform
functions) are performed on different Gaussian components
like latticed kernels on different directions in Fig. 1h. Fur-
ther, we derive a vertex-induced Gaussian mixture model
(VI-GMM) to favor dynamic coarsening of graph. We also
theoretically analyze the approximate equivalency of VI-
GMM to weighted graph cut (Dhillon, Guan, and Kulis
2007). Finally, EI-GMM and VI-GMM can be alternately
stacked into an end-to-end optimization network.

In summary, our main contributions are four folds: i) pro-
pose an end-to-end Gaussian-induced convolutional neural
network for graph representation; ii) propose edge-induced
GMM to encode variations of different subgraphs; iii) de-
rive vertex-induced GMM to perform dynamic coarsening
of graphs, which is an approximation to the weighted graph
cut; iv) verify the effectiveness of our method and report
state-of-the-art results on several graph datasets.

1Suppose three Gaussian models are N (0, 1),N (0, 2) and
N (0, 3), then we can compute the responses on (a)-(d) respectively
as f1([0.49,−0.93]) + f2([0.17,−0.65]) + f3([0.07,−0.44]),
f1([0.35,−0.73]) + f2([0.15,−0.58]) + f3([0.10,−0.64],
f1([0.35,−0.71]) + f2([0.15,−0.39]) + f3([0.10,−0.43]),
f1([0.46,−0.99]) + f2([0.18,−0.62]) + f3([0.08,−0.42]).
Please refer to incoming section.

Related Work
Graph CNNs mainly fall into two categories: spectral and
spatial methods. Spectral methods (Bruna et al. 2014;
Scarselli et al. 2009; Henaff, Bruna, and LeCun 2015;
Such et al. 2017; Li et al. 2018a; 2018b) construct a series
of spectral filters by decomposing graph Laplacian, which
often suffers high-computational burden. To address this
problem, the fast local spectral filtering method (Defferrard,
Bresson, and Vandergheynst 2016) parameterizes the fre-
quency responses as a Chebyshev polynomial approxima-
tion. However, as shown in Fig. 1b, after summarizing all
nodes, this method will discard topology structures of a local
receptive field. This kind of methods usually require equal
sizes of graphs like the same sizes of images for CNNs (Kipf
and Welling 2017). Spatial methods attempt to define spa-
tial structures of adjacent vertices and then perform filtering
on structured graphs. Diffusion CNNs (Atwood and Towsley
2016) scans a diffusion process across each node. PATCHY-
SAN (Niepert, Ahmed, and Kutzkov 2016) linearizes neigh-
bors by sorting weights of edges and deriving convolutional
filtering on graphs, as shown in Fig. 1c. As an alternative,
random walks based approach is also used to define the
neighborhoods (Perozzi, Al-Rfou, and Skiena 2014). For the
linearized neighbors, RNNs (Li et al. 2016) could be used to
model the structured sequences. Similarly, NgramCNN (Luo
et al. 2017) serializes each graph by introducing the concept
of n-gram block. GAT (Velickovic et al. 2018) attempts to
weight edges through the attention mechanism. WSC (Jiang

4008



edge-induced 
GMM

vertex-induced
GMM FC + Softmaxedge-induced 

GMM
vertex-induced

GMM

convolution convolutioncoarsening coarsening

... ...

Figure 2: The GIC network architecture. The GIC main contains two module: convolution layer (EI-GMM) and coarsening
layer (VI-GMM). The GIC stacks several convolution and coarsening layers alternatively and iteratively. More details can be
found in incoming section.

et al. 2018) attempts to aggregate walk fields defined by ran-
dom walks into Gaussian mixture models. Zhao (Zhao et
al. 2018) attempts to define a standard network with dif-
ferent graph convolutions. Besides, some variants (Hamil-
ton, Ying, and Leskovec 2017; Duran and Niepert 2017;
Zhang et al. 2018) employ the aggregation or propagation
of local neighbor nodes. Different from these tied filtering
or ranking filtering methods, we use Gaussian models to en-
code local variations of graph. Also different from the re-
cent mixture models (Monti et al. 2017), which uses GMM
to only learn the importance of adjacent nodes, our method
uses weighted GMM to encode the distributions of local
graph structures.

The GIC Network
Attribute Graph
Here we consider an undirected attribute graph G =
(V,A,X) of m vertices (or nodes), where V = {vi}mi=1
is the set of vertices, A is a (weighted) adjacency matrix,
and X is a matrix of graph attributes (or signals). The adja-
cency matrix A ∈ Rm×m records the connections between
vertices. If vi, vj are not connected, then A(vi, vj) = 0, oth-
erwise A(vi, vj) 6= 0. We sometimes abbreviate A(vi, vj)
as Aij . The attribute matrix X ∈ Rm×d is associated with
the vertex set V , whose i-th row Xi (or Xvi ) denotes a d-
dimension attribute of the i-th node (i.e., vi).

The graph Laplacian matrix L is defined as L = D−A,
where D ∈ Rm×m is the diagonal degree matrix withDii =∑
j Aij . The normalized version is written as Lnorm =

D−1/2LD−1/2 = I−D−1/2AD−1/2. where I is the iden-
tity matrix. Unless otherwise specified, we use the latter. We
give the definition of subgraph used in the following.

Definition 1. Given an attribute graph G = (V,A,X), the
attribute graph G′ = (V ′,A′,X′) is a subgraph of G, de-
noted G′ ⊆ G, if (i) V ′ ⊆ V , (ii) A′ is the submatrix of A
w.r.t. the subset V ′, and (iii) X′ = XV′ .

Overview
The GIC network architecture is shown in Fig. 2. Given an
attribute graph G(0) = (V(0),A(0),X(0)), where the super-
script denotes the layer number, we construct multi-scale re-

ceptive fields for each vertex based on the adjacency matrix
A(0). Each receptive field records k-hop neighborhood re-
lationships around the reference vertex, and forms a local
centralized subgraph. To encode the centralized subgraph,
we project it into edge-induced Gaussian models, each of
which defines one variation “direction” of the subgraph. We
perform different filtering operations on different Gaussian
components and aggregate all responses as the convolutional
output. After the convolutional filtering, the input graph G(0)
is transformed into a new graph G(1) = (V(1),A(1),X(1)),
where V(1) = V(0) and A(1) = A(0). To further abstract
graphs, we next stack a coarsening layer on the graph G(1).
The proposed vertex-induced GMM is used to downsam-
ple the graph G(1) into the low-resolution graph G(2) =
(V(2),A(2),X(2)). Taking the convolution and coarsening
modules, we may alternately stack them into a multi-layer
GIC network, With the increase of layers, the receptive field
size of filters will become larger, so the higher layer can ex-
tract more global graph information. In the supervised case
of graph classification, we finally concatenate with a fully
connected layer followed by a softmax loss layer.

Multi-Scale Receptive Fields
In the standard CNN, receptive fields may be conveniently
defined as latticed spatial regions. Thus convolution kernels
on grid-shaped structures are accessible. However, the con-
struction of convolutional kernels on graphs are intractable
due to coordinate-free graphs, e.g., unordered vertices, un-
fixed number of adjacent edges/vertices. To address this
problem, we resort to the adjacent matrix A, which ex-
presses connections between vertices. Since Ak exactly
records the k-step reachable vertices, we may construct a
k-neighbor receptive field by using the k-order polynomial
of A, denoted as ψk(A). Taking the simplest case, ψk(A) =
Ak reflects the k-hop neighborhood relationships. In or-
der to remove the scale effect, we may normalize ψk(A)
as ψk(A)diag(ψk(A)1)−1, which describes the reachable
possibility in a k-hop walking. Formally, we define the k-th
scale receptive field as a subgraph.
Definition 2. The k-th scale receptive field around a ref-
erence vertex vi is a subgraph Gkvi = (V ′,A′,X′) of the
k-order graph (V, Ã = ψk(A),X), where V ′ = {vj |Ãij 6=
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0}∪{vi}, A′ is the submatrix of Ã w.r.t. V ′, and X′ = XV′ .

Convolution: Edge-Induced GMM
Given a reference vertex vi, we can construct the centralized
subgraph Gkvi of the k-th scale. To coordinate the subgraph,
we introduce Gaussian mixture models (GMMs), each of
which may be understood as one principal direction of its
variations. To encode the variations accurately, we jointly
formulate attributes of vertices and connections of edges into
Gaussian models. The edge weight A′(vi, vj) indicates the
relevance of vj to the central vertex vi. The higher weight
is, the stronger impact on vi is. So the weights can be in-
corporated into a Gaussian model by observing A′(vi, vj)
times. As the likelihood function, it is equivalent to raise
the power A′(vi, vj) on Gaussian function, which is pro-
portional to N (X′vj , µ,

1
A′(vi,vj)

Σ). Formally, we estimate
the probability density of the subgraph Gkvi from the C1-
component GMM,

pvi(X
′
vj ;Θ1, A

′
ij) =

C1∑
c=1

πcN (X′vj ;µc,
1

A′ij
Σc),

s.t. πc > 0,

C1∑
c=1

πc = 1, (1)

where Θ1 = {π1, · · · , πC1 , µ1, · · · , µC1 ,Σ1, · · · ,ΣC1}
are the mixture parameters, {πc} are the mixture coeffi-
cients, {µc,Σc} are the parameters of the k-th component,
and A′ij > 0 2. Intuitively, edge weight A′ij is, the stronger
impact of the node vj w.r.t. the reference vertex vi is. We will
refer to the model in Eqn. (1) as the edge-induced Gaussian
mixture model (EI-GMM).

In what follows, we assume all attributes of nodes are
independent on each other, which is often used in signal
processing. That means, the covariance matrix Σc is di-
agonal, so we denote it as diag(σ2

c ). To avoid the explicit
constraints for πc in Eqn. (1), we adopt the soft-max nor-
malization with the re-parameterization variable αc, i.e.,
πc = exp(αc)/

∑C1

k=1 exp(αk). Thus, the entire subgraph
log-likelihood can be written as

ζ(Gkvi) =
m∑
j=1

ln pvi(X
′
vj ;Θ1,A

′)

=

m∑
j=1

ln

C1∑
c=1

πcN (X′vj ;µc,
1

A′ij
Σc), (2)

To infer forward, instead of the expectation-maximization
(EM) algorithm, we use the gradients of the subgraph with
regard to the parameters of the EI-GMM model Θ1, moti-
vated by the recent Fisher vector work (Sanchez et al. 2013),
which has been proven to be effective in representation.

For a convenient calculation, we simplify the notations,
Njc = N (X′vj , µc,

1
A′

ij
σ2
c ) andQjc =

πcNjc∑C1
k=1 πkNjk

, then we

2In practice, we normalize A′ into a non-negative matrix.

can derive the gradients of model parameters from Eqn. (2)
as follows

∂ζ(Gkvi)
∂µc

=

m∑
j=1

A′ijQjc(X
′
vj − µc)

σ2
c

,

∂ζ(Gkvi)
∂σc

=

m∑
j=1

Qjc(A
′
ij(X

′
vj − µc)

2 − σ2
c )

σ3
c

, (3)

where the division of vectors means a term-by-term opera-
tion. Note we do not use ∂ζ(Gkvi)/∂αc due to no improve-
ment in our experience. The gradients describe the contribu-
tion of the corresponding parameters to the generative pro-
cess. The subgraph variations are adaptively allocated to C1

Gaussian models. Finally, we ensemble all gradients w.r.t.
Gaussian model (i.e., directions of graph) to analogize the
collection of local square receptive field on image. Formally,
for the k-scale receptive field Gkvi around the vertex vi, the at-
tributes produced from Gaussian models are filtered respec-
tively and then concatenated,

F (Gkvi ,Θ1, f) = ReLU(

C1∑
c=1

fi(Cat[
∂ζ(Gkvi)
∂µc

,
∂ζ(Gkvi)
∂σc

]),

(4)

where Cat[·, ·] is a concatenation operator, fi is a linear fil-
tering function (i.e., a convolution function) and ReLU is
the rectified linear unit. Therefore we can produce the fea-
ture vectors that have same dimensionality depending on the
number of Gaussian models for different subgraphs. If the
soft assignment distribution Qjc is sharply peaked on a sin-
gle value of one certain Gaussian for the vertex vj , the vertex
will be only projected onto one Gaussian direction.

Coarsening: Vertex-Induced GMM
Like the standard pooling in CNNs, we need to downsample
graphs so as to abstract them as well as reduce the com-
putational cost. However, the pooling on images are tai-
lored for latticed structures, and cannot be used for irreg-
ular graphs. One solution is to use some clustering algo-
rithms to partition vertices to several clusters, and then pro-
duce a new vertex from each cluster. However, we expect
that two vertices should not fall into the same cluster with a
larger possibility if there is a high transfer difficulty between
them. To this end, we derive vertex-induced Gaussian mix-
ture models (VI-GMM) to weight each vertex. To utilize the
edge information, we construct a latent observation φ(vi)
w.r.t. each vertex vi from the graph Laplacian (or adjacent
matrix if semi-positive definite), i.e., the kernel calculation
〈φ(vi), φ(vj)〉 = Lij . Moreover, for each vertex vi, we de-
fine an influence factor wi for Gaussian models. Formally,
given C2 Gaussian models, VI-GMM is written as

p(φ(vi);Θ2, wi) =

C2∑
c=1

πcN (φ(vi);µc,
1

wi
Σc),

s.t. wi = h(Xvi) > 0, (5)

where h is a mapping function to be learnt. To reduce the
computation cost of matrix inverse on Σ, we specify it as an
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identity matrix. Then we have

p(φ(vi);Θ2, wi) =

C2∑
c=1

πc

( 2πwi
)d/2

exp−
wi
2 ‖φ(vi)−µc‖2 , (6)

Given a graph with m vertices, the objective is to maximize
the following log-likelihood:

argmax
Θ2

ζ(Θ2) =

m∑
i=1

ln

C2∑
c=1

πcN (φ(vi);µc,
1

wi
I)). (7)

To solve above model in Eqn. (7), we use the iterative ex-
pectation maximization algorithm, which has closed-form
solution at each step. Meanwhile, the algorithm may au-
tomatically conduct the required constraints. The graphical
clustering process is summarized as follows:

(1) E-Step: the posteriors, i.e., the i-th vertex for the c-
th cluster, are updated with pic = πcp(φ(vi);θc,wi)∑C

k=1 πkp(φ(vi);θk,wi)
,

where θc is the c-th Gaussian parameters, and Θ2 =
{θ1, · · · , θC2

}.
(2) M-Step: we optimize Gaussian parameters π, µ. The

parameter estimatation is given by πc = 1
m

∑m
i=1 ric, µc =∑

vi∈Gc
wiφ(vi)∑

vi∈Gc
wi

. πc indicates the energy summation of all

vertices assigned to the cluster c, and µc may be understood
as a doubly weighted (wi, ric) average on the cluster c.

After several iterations of the two steps, we perform
hard quantification. The i-th vertex is assigned as the class
with the maximum possibility, formally, ric = 1 if c =
argmaxk pik, otherwise 0. Thus we can obtain the cluster
matrix P ∈ {0, 1}m×C2 , where Pic = 1 if the i-th vertex
falls into the cluster c. During coarsening, we take maximal
responses of each cluster as the attributes of new vertex, and
derive a new adjacency matrix by using PᵀAP.

It is worth noting that we need not compute the con-
crete φ during the clustering process. The main calculation
‖φ(vi) − µc‖2 in EM can be reduced to the kernel version:

Kii −
2
∑

vj∈Gc
wjKij∑

vj∈Gc
wj

+

∑
vj,vk∈Gc

wjwkKjk

(
∑

vj∈Gc
wj)2

, where Kij =

〈φ(vi), φ(vj)〉. In practice, we can use the graph Laplacian
L as the kernel. In this case, we can easily reach the fol-
lowing proposition, which is relevant to graph cut (Dhillon,
Guan, and Kulis 2007).
Proposition 1. In EM, if the kernel matrix takes the weight-
regularized graph Laplacian, i.e., K = diag(w)Ldiag(w),
then VI-GMM is equal to an approximate optimiza-
tion of graph cut, i.e., min

∑C
c=1

links(Vc,V\Vc)
w(Vc) , where

links(A,B) =
∑
vi∈A,vj∈B Aij , and w(Vc) =

∑
j∈Vc wj .

Experiments
Graph Classification
For graph classification, each graph is annotated with
one label. We use two types of datasets: Bioinfor-
matics and Network datasets. The former contains
MUTAG (Debnath et al. 1991), PTC (Toivonen et
al. 2003), NCI1 and NCI109 (Wale, Watson, and
Karypis 2008), ENZYMES (Borgwardt et al. 2005)

and PROTEINS (Borgwardt et al. 2005). The lat-
ter has COLLAB (Leskovec, Kleinberg, and Faloutsos
2005), REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-
MULTI-12K, IMDB-BINARY and IMDB-MULTI.

Experiment Settings We verify our GIC on the above
bioinformatics and social network datasets. In default, GIC
mainly consists of three graph convolution layers, each of
which is followed by a graph coarsening layer, and one fully
connected layer with a final softmax layer as shown in Fig 2.
Its configuration can simply be set as C(64)-P(0.25)-C(128)-
P(0.25)-C(256)-P-FC(256), where C, P and FC denote the
convolution, coarsening and fully connected layers respec-
tively. The choices of hyperparameters are mainly inspired
from the classic VGG net. For example, the coarsening fac-
tor is 0.25 (w.r.t. 0.5×0.5 in VGG), the attribute dimen-
sions at three conv. layers are 64-128-256 (w.r.t. the chan-
nel numbers of conv1-3 in VGG). The scale of respective
field and the number of Gaussian components are both set
to 7. We train GIC network with stochastic gradient descent
for roughly 300 epochs with a batch size of 100, where the
learning rate is 0.1 and the momentum is 0.95.

In the bioinformatics datasets, we exploit labels and de-
grees of the vertices to generate initial attributes of each
vertex. In the social network datasets, we use degrees
of vertices. We closely follow the experimental setup in
PSCN (Niepert, Ahmed, and Kutzkov 2016). We perform
10-fold cross-validation, 9-fold for training and 1-fold for
testing. The experiments are repeated 10 times and the aver-
age accuracies are reported.

Comparisons with the State-of-the-arts We compare our
GIC with several state-of-the-arts, which contain graph con-
volution networks (PSCN (Niepert, Ahmed, and Kutzkov
2016), DCNN (Atwood and Towsley 2016), Ngram-
CNN (Luo et al. 2017)), neural networks (SAEN (Orsini,
Baracchi, and Frasconi 2017)), feature based algorithms
(DyF (Gomez, Chiem, and Delvenne 2017), FB (Bruna et al.
2014)), random walks based methods (RW (Gärtner, Flach,
and Wrobel 2003)), graph kernel approaches (GK (Sher-
vashidze et al. 2009), DGK (Yanardag and Vishwanathan
2015), WL (Morris, Kersting, and Mutzel 2017)). We
present the comparisons with the state-of-the-arts, as shown
in Table 1. All results come from the related literatures. We
have the following observations.

Deep learning based methods on graphs (including
DCNN, PSCN, NgramCNN, SAEN and ours) are superior to
those conventional methods in most cases. The conventional
kernel methods usually require the calculation on graph ker-
nels with high-computational complexity. In contrast, these
graph neural networks attempt to learn more abstract high-
level features by performing inference-forward, which need
relatively low computation cost.

Compared with recent graph convolution methods, ours
can achieve better performance on most datasets, such as
PTC, NCI1, NCI109, ENZYMES and PROTEINS. The
main reason should be that local variations of subgraphs are
accurately described with Gaussian component analysis.

The proposed GIC achieves state-of-the-art results on
most datasets. The best performance is gained in some bioin-
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Table 1: Comparisons with state-of-the-art methods.

DATASET PSCN DCNN NGRAMCNN FB DYF WL GK DGK RW SAEN GIC

MUTAG 92.63 66.98 94.99 84.66 88.00 78.3 81.66 82.66 83.72 84.99 94.44
±4.21 – ±5.63 ±2.01 ±2.37 ±1.9 ±2.11 ±1.45 ±1.50 ±1.82 ±4.30

PTC 60.00 56.60 68.57 55.58 57.15 – 57.26 57.32 57.85 57.04 77.64
±4.82 – ±1.72 2.30 ±1.47 – ±1.41 ±1.13 ±1.30 ± 1.30 ± 6.98

NCI1 78.59 62.61 – 62.90 68.27 83.1 62.28 62.48 48.15 77.80 84.08
±1.89 – – ±0.96 ±0.34 ±0.2 ±0.29 ±0.25 ±0.50 ± 0.42 ±1.77

NCI109 – 62.86 – 62.43 66.72 85.2 62.60 62.69 49.75 – 82.86
– – – ±1.13 ± 0.20 ± 0.2 ± 0.19 ± 0.23 ± 0.60 – ± 2.37

ENZYMES – 18.10 – 29.00 33.21 53.4 26.61 27.08 24.16 – 62.50
– – – ±1.16 ± 1.20 ± 1.4 ± 0.99 ± 0.79 ± 1.64 – ± 5.12

PROTEINS 75.89 – 75.96 69.97 75.04 73.7 71.67 71.68 74.22 75.31 77.65
± 2.76 – ±2.98 ±1.34 ± 0.65 ± 0.5 ± 0.55 ± 0.50 ± 0.42 ± 0.70 ± 3.21

COLLAB 72.60 – – 76.35 80.61 – 72.84 73.09 69.01 75.63 81.24
± 2.15 – – 1.64 ± 1.60 – ± 0.28 ± 0.25 ± 0.09 ± 0.31 ± 1.44

REDDIT-B 86.30 – – 88.98 89.51 75.3 77.34 78.04 67.63 86.08 88.45
± 1.58 – – ±2.26 ± 1.96 ± 0.3 ± 0.18 ± 0.39 ± 1.01 ± 0.53 ± 1.60

REDDIT-5K 49.10 – – 50.83 50.31 – 41.01 41.27 – 52.24 51.58
± 0.70 – – 1.83 ± 1.92 – ± 0.17 ± 0.18 – ± 0.38 ± 1.68

REDDIT-12K 41.32 – – 42.37 40.30 – 31.82 32.22 – 46.72 42.98
± 0.42 – – 1.27 ± 1.41 – ± 0.08 ± 0.10 – ± 0.23 ± 0.87

IMDB-B 71.00 – 71.66 72.02 72.87 72.4 65.87 66.96 64.54 71.26 76.70
± 2.29 – ±2.71 ±4.71 ± 4.05 ± 0.5 ± 0.98 ± 0.56 ± 1.22 ± 0.74 ± 3.25

IMDB-M 45.23 – 50.66 47.34 48.12 – 43.89 44.55 34.54 49.11 51.66
± 2.84 – ±4.10 3.56 ± 3.56 – ± 0.38 ± 0.52 ± 0.76 ± 0.64 ± 3.40

Table 2: Node label prediction on Reddit and PPI data
(micro-averaged F1 score).

DATASET REDDIT PPI

RANDOM 0.042 0.396
RAW FEATURES 0.585 0.422
DEEP WALK 0.324 –
DEEP WALK + FEATURES 0.691 –
NODE2VEC + REGRESSION 0.934 –
GRAPHSAGE-GCN 0.930 0.500
GRAPHSAGE-MEAN 0.950 0.598
GRAPHSAGE-LSTM 0.954 0.612
GIC 0.952 0.661

formatics datasets and some social network datasets in-
cluding PTC, NCI1, ENZYMES, PROTEINS, COLLAB,
IMDB-BINARY and IMDB-MULTI. Although Ngram-
CNN, DyF, WL and SEAN approaches have obtained the
best performance on MUTAG, REDDIT-BINARY, NCI109,
REDDIT-MULTI-5K and REDDIT-MULTI-12K respec-
tively, our method is fully comparable to them.

Node Classification
For node classification, one node is assigned one/multiple
labels. It is challenging if the label set is large. During train-
ing, we only use a fraction of nodes and their labels. The
task is to predict the labels for the remaining nodes. Fol-
lowing the setting in (Hamilton, Ying, and Leskovec 2017),

we conduct the experiments on Reddit data and PPI data.
For a fair comparison to graphSAGE (Hamilton, Ying, and
Leskovec 2017), we use the same initial graph data, mini-
batch iterators, supervised loss function and neighborhood
sample. The other network parameters are similar to graph
classification except removing the coarsening layer.

Tabel 2 summarizes the comparison results. Our GIC
can obtain the best performance 0.661 on PPI data and
a comparable result 0.952 on Reddit data. The raw fea-
tures provide an important initial information for node
multi-label classification. Based on the raw features, deep
walk (Perozzi, Al-Rfou, and Skiena 2014) improves about
0.36 (micro-F1 scores) on Reddit data. Meanwhile, we con-
duct an experiment of node2vec and use regression model
to classification. Our method gains better performance than
node2vec (Grover and Leskovec 2016). Comparing differ-
ent aggregation methods like GCN (Kipf and Welling 2017),
mean and LSTM, our GIC has a significant improvement
about 0.16 on PPI data and gains a competitive performance
on Reddit data. The results demonstrate our approach is ro-
bust to infer unknown labels of partial graphs.

Model Analysis
EI-GMM and VI-GMM: To directly analyze convolution
filtering with EI-GMM, we compare our method with Cheb-
Net (Defferrard, Bresson, and Vandergheynst 2016) and
GCN (Kipf and Welling 2017) approaches by using the same
coarsening mechanism VI-GMM. As shown in Table 3, un-
der the same coarsening operation, our GIC is superior to
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Table 3: The verification of our convolution and coarsening.

DATASET
CHEBNET GCN GIC GIC

W/ VI-GMM W/ VI-GMM W/O VI-GMM

MUTAG 89.44 ± 6.30 92.22 ± 5.66 93.33 ± 4.84 94.44 ± 4.30
PTC 68.23 ± 6.28 71.47 ± 4.75 68.23 ± 4.11 77.64 ± 6.98
NCI1 73.96 ± 1.87 76.39 ± 1.08 79.17 ± 1.63 84.08 ± 1.77
NCI109 72.88 ± 1.85 74.92 ± 1.70 77.81 ± 1.88 82.86 ± 2.37
ENZYMES 52.83 ± 7.34 51.50 ± 5.50 52.00 ± 4.76 62.50 ± 5.12
PROTEINS 78.10 ± 3.37 80.09 ± 3.20 78.19 ± 2.04 77.65 ± 3.21

Table 4: Comparisons on K and C1.

DATASET K,C1 = 1 K,C1 = 3 K,C1 = 5 K,C1 = 7

MUTAG 67.77 ± 11.05 83.88 ± 5.80 90.55 ± 6.11 94.44 ± 4.30
PTC 72.05 ± 8.02 77.05 ± 4.11 76.47 ± 5.58 77.64 ± 6.98
NCI1 71.21 ± 1.94 83.26 ± 1.17 84.47 ± 1.64 84.08 ±1.77
NCI109 70.02 ± 1.57 81.74 ± 1.56 83.39 ± 1.65 82.86 ± 2.37
ENZYMES 33.83 ± 4.21 64.00 ± 4.42 63.66 ± 3.85 62.50 ± 5.12
PROTEINS 75.49 ± 4.00 77.47 ± 3.37 78.10 ± 2.96 77.65 ± 3.21

Table 5: Comparisons on the layer number.

DATASET N = 2 N = 4 N = 6 N = 8

MUTAG 86.66 ± 8.31 91.11 ± 5.09 93.88 ± 5.80 94.44 ± 4.30
PTC 64.11 ± 6.55 74.41 ± 6.45 75.29 ± 6.05 77.64 ± 6.98
NCI1 71.82 ± 1.85 81.36 ± 1.07 83.01 ± 1.54 84.08 ± 1.77
NCI109 71.09 ± 2.41 80.02 ± 1.67 81.60 ± 1.83 82.86 ± 2.37
ENZYMES 42.33 ± 4.22 61.83 ± 5.55 64.83 ± 6.43 62.50 ± 5.12
PROTEINS 77.38 ± 2.97 79.81 ± 3.84 78.37 ± 4.00 77.65 ± 3.21

ChebNet+VI-GMM and GCN+VI-GMM. It indicates EI-
GMM can indeed encode the variations of subgraphs more
effectively. On the other hand, we remove the coarsening
layer from our GIC. For different size graphs, we pad new
zero vertices into a fixed size and then concatenate attributes
of all vertices for classification. As shown in this table,
the performance of GIC still outperforms GIC without VI-
GMM coarsening, which verifies the effectiveness of the
coarsening layer VI-GMM.
K and C1: The kernel size K and the number of Gaus-

sian components C1 are the most crucial parameters. Gen-
erally, the C1 is proportional to the K. The reason is that
the larger receptive field usually contains more vertices (i.e.,
a relative large subgraph). Thus we simply take the equal
values for them, K = C1 = {1, 3, 5, 7}. The experimen-
tal results are shown in Table 4. With the increase of K,C1,
the performance improves at most cases. The reasons are
two folds: i) with increasing receptive field size, the con-
volution will cover the farther hopping neighbors; ii) with
the increase of C1, the variations of subgraphs are encoded
more accurately. But for the larger values of K and C1 will
increase the computational burden. Moreover, the overfit-
ting phenomenon might occur with the increase of model
complexity. Take the example of NCI109, in the first con-
volution layer, the encoded attributes (in Eqn. (4)) will be
2× 39× 7 = 546 for each scale of receptive field, where 39
is the dimension of attributes (w.r.t the number of node la-
bels) and 7 is the number of Gaussian components. Thus, for
7 scales of receptive field, the final encoded attributes will be
546 × 7 = 3822 dimensions, which will be mapping to 64
dimensions by the function f = [f1, · · · , fC1

] in Eqn. (4).
Thus the model parameter is 3822×64 = 244608 in the first

layer. Similarly, if the number of node label is 2, the model
parameter will sharply decrease into 18816. Besides, the pa-
rameter complexity is related to the number of classes and
nodes. The comparison results in Table 4 demonstrate the
trend of the parameters K and C1 in our GIC framework.

Number of stacked layers: Here we test on the number of
stacked network layers with N = 2, 4, 6, 8. When N = 2,
only one fully connected layer and one softmax layer are
preserved. When N = 4, we add two layers: the convo-
lution layer and the coarsening layer. When continuing to
stack both, the depth of network will be 6 and 8. The results
are shown in Table 5. Deeper networks can gain better per-
formance in most cases, because the larger receptive field is
observed and more abstract structures will be extracted in
the topper layer. Of course, there is an extra risk of overfit-
ting due to the increase of model complexity.

An analysis of computation complexity: In the convo-
lution layer, the computational costs of receptive fields and
Gaussian encoding are about O(Km2) and O(C1md

2) re-
spectively, where m, d are number of nodes and the feature
dimensionality. Generally, K = C1 � d < m. In the coars-
ening layer, the time complexity is about O(pm2 + md),
where p is iteration number of the EM algorithm. In all, sup-
pose the whole GIC alternatively stacks n convolution and
coarsening layers, the entire time complexity is O(n(K +
p)m2 + nC1md

2 + nmd).

Conclusion
In this paper, we proposed a novel Gaussian-induced convo-
lution network to handle with general irregular graph data.
Considering the previous spectral and spatial methods do not
well characterize local variations of graph, we derived edge-
induced GMM to adaptively encode subgraph structures by
projecting them into several Gaussian components and then
performing different filtering operations on each Gaussian
direction like the standard CNN filters on images. Mean-
while, we formulated graph coarsening into vertex-induced
GMM to dynamically partition a graph, which was also
proven to be equal to graph cut. Extensive experiments in
two graphic tasks (i.e. graph and node classification) demon-
strated the effectiveness and superiority of our GIC com-
pared with those baselines and state-of-the-art methods. In
the future, we would like to extend our method into more
applications to irregular data.
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