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Abstract

We propose DoPAMINE, a new neural network based mul-
tiplicative noise despeckling algorithm. Our algorithm is in-
spired by Neural AIDE (N-AIDE), which is a recently pro-
posed neural adaptive image denoiser. While the original N-
AIDE was designed for the additive noise case, we show that
the same framework, i.e., adaptively learning a network for
pixel-wise affine denoisers by minimizing an unbiased esti-
mate of MSE, can be applied to the multiplicative noise case
as well. Moreover, we derive a double-sided masked CNN
architecture which can control the variance of the activation
values in each layer and converge fast to high denoising per-
formance during supervised training. In the experimental re-
sults, we show our DoPAMINE possesses high adaptivity via
fine-tuning the network parameters based on the given noisy
image and achieves significantly better despeckling results
compared to SAR-DRN, a state-of-the-art CNN-based algo-
rithm.

Introduction
Multiplicative noise, also known as speckle noise, typically
occurs in active imaging system, for example, laser images,
microscope images, and SAR (Synthetic Aperture Radar)
images. While many general image denoising algorithms
have focused on the additive noise setting, despeckling the
multiplicative noise is also becoming important as the ac-
tive sensors, e.g., SAR, are gradually becoming a significant
source of remote sensing data in the field of geographic map-
ping, resource surveying, and military reconnaissance, etc.

During the last few decades, various different approaches
have been proposed for the multiplicative noise despeck-
ling; e.g., Bayesian methods (Lee 1980; 1981), non-local fil-
tering (Buades, Coll, and Morel 2005; Dabov et al. 2007;
Rudin, Osher, and Fatemi 1992), total variation regular-
ization (Huang, Ng, and Wen 2009), compressed sensing
based (Hao, Feng, and Xu 2012), and variational approaches
(Augert and Aujol 2008), etc. For more extensive survey on
the topic, we refer the readers to (Argenti et al. 2013).

In addition to the above mentioned classical approaches,
the deep learning-based multiplicative noise despeckling
methods have been recently considered, as in the additive
noise denoising case, e.g., (Zhang et al. 2017). Namely,
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by casting the despeckling as a supervised learning prob-
lem, the CNN models are trained to learn a mapping from
the noisy patch to the clean patch. For example, (Wang,
Zhang, and Patel 2017) proposed ID-CNN that uses ex-
actly the same architecture as DnCNN on the Gamma-
distributed multiplicative noise and introduced a total varia-
tion (TV) regularization; (Chierchia et al. 2017) transformed
both clean and noisy images to the log domain then carried
out the same process as in the additive noise case; (Zhang et
al. 2018) proposed SAR-DRN, which added dilated convo-
lution and skip connections to the ID-DCN architecture. As
in the additive noise denoising case, the CNN-based models
have achieved superior despeckling performances than the
classical approaches.

Despite the impressive performance, above methods have
one critical limitation, however. That is, once the super-
vised training of the network is done, the network param-
eters get frozen and no adaptation of the despeckling model
to a given noisy image can be done. To overcome such lim-
itation, (Cha and Moon 2018b) have recently proposed an
adaptive method, dubbed as N-AIDE, for the additive noise
case that can carry out both the supervised training (on an of-
fline dataset) and adaptive fine-tuning (on a given noisy data)
of the network parameters. Later, N-AIDE was extended in
(Cha and Moon 2018a) to implement a fully convolutional
architecture and unknown noise variance estimation scheme.
The crux of N-AIDE is to design the neural network to learn
pixelwise affine mappings with a specific conditional inde-
pendence constraint and learn the network parameters by
setting an unbiased estimate of the true mean-squared error
(MSE) of the mappings as an optimizing objective.

In this paper, we show the framework of N-AIDE can
be successfully extended to the multiplicative noise case as
well and attain the state-of-the-art performance. Our con-
tribution is threefold. First, we derive a new unbiased esti-
mate of MSE for the multiplicative noise case while remain-
ing in learning the pixelwise affine mappings with neural
networks, as in N-AIDE. Our estimate of MSE can be in-
terpreted to give an intuitive explanation of the adaptivity
of our algorithm. Second, we devise a novel double-sided
masked CNN architecture, dubbed as DoPAMINE (Double-
sided masked CNN for Pixelwise Adaptive MultIplicative
Noise dEspeckling), which maintains the conditional inde-
pendence property of each pixel in any feature map given
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the surrounding input pixels. Such property is indispensable
for applying the framework of N-AIDE, and obtaining such
property with CNN architecture is not trivial as we elabo-
rate below. Third, we propose a scale add layer within the
DoPAMINE architecture and show such simple layer can ac-
celerate the training of our model that contains many add
operations among the intermediate feature maps. Compared
to the popular He initialization (He et al. 2015) or Batch
Normalization (Ioffe and Szegedy 2015), we show our Scale
Add layer leads to a much stable and fast training of the base
supervised model. Combining the three contributions, we
show that our DoPAMINE significantly outperforms SAR-
DRN (Zhang et al. 2018), the current CNN-based state-of-
the-art despeckling model, on a benchmark dataset. Further-
more, from real SAR image despeckling results, we show
DoPAMINE has a knob to control the emphasis on either
homogeneous regions or sharp edges and present that it can
capture finer details of the images compared to SAR-DRN.

Notations and Preliminaries
Multiplicative noise model
We denote the vectorized original clean data and noise as
x ∈ Rd and N ∈ Rd, respectively. The noisy observation is
then denoted as Z ∈ Rd, and the i-th element of Z is defined
as

Zi = xiNi, i = 1, 2, . . . , d (1)

in which we assume Ni’s are independent with E(Ni) = 1
and Var(Ni) = σ2 for all i. We do not assume Ni to be
identically distributed. We use uppercase letters to denote
random variables or random vectors and do not make any
stochastic assumptions on the original data x. In the multi-
plicative noise despeckling literature, Ni’s are typically as-
sumed to follow the Gamma distribution, but in this paper,
we do not require the noise to be Gamma-distributed.

The reconstructed data after despeckling is denoted as
x̂(Z) = {x̂i(Z)}di=1. Note the notation emphasizes the de-
pendency on the entire Z for obtaining the reconstruction of
the i-th element. The goodness of despeckling is typically
measured with the mean-squared error (MSE) as in the ad-
ditive noise case.

N-AIDE and the unbiased estimator
(Cha and Moon 2018b) considered the additive noise denois-
ing case and suggested to use the pixelwise affine mappings
to obtain the reconstructions:

x̂i(Z) = a(Z−i)Zi + b(Z−i), i = 1, 2, . . . , d (2)

in which Z−i denote the entire noisy data except for the i-th
element. Namely, in (2), the slope and bias constants for the
i-th location become conditionally independent of Zi given
Z−i (due to the independence of noise and no stochastic as-
sumption on x). Now, to simplify the notation, we use ai and
bi to denote a(Z−i) and b(Z−i), respectively. Furthermore,
we denote a ∈ Rd and b ∈ Rd as vectorized slope and bias
constants, hence, we can also express x̂(Z) = a�Z+b, in
which � stands for the element-wise multiplication.

Using the conditional independence property, (Cha and
Moon 2018b) devised an unbiased estimate of MSE for (2)
in the additive noise case, i.e.,

Ladd(Z, (ai, bi);σ
2) = (Zi − x̂i(Z))2 + σ2(2ai − 1), (3)

which is shown to satisfy

EZi

[
(xi − x̂i(Z))2|Z−i

]
= EZi

[
Ladd(Z, (ai, bi);σ

2)|Z−i
]
. (4)

With above property, N-AIDE used fully-connected neural
network to output ai and bi based on C−ik×k, the k × k two
dimensional context patch with a hole at location i. The net-
work parameters of N-AIDE were trained first by supervised
training using the regular MSE and a separate supervised
training set, then by adaptive fine-tuning using (3) and a
given noisy image.

Proposed Method
Unbiased estimator of MSE for multiplicative noise
Following N-AIDE, we obtain the following lemma for the
multiplicative noise case.

Lemma 1 For the affine mapping x̂i(Z) defined in (2) and
the multiplicative noise case in (1),

Lmult(Z, (ai, bi);σ
2) = (Zi − x̂i(Z))2 +

Z2
i σ

2

1 + σ2
(2ai − 1)

(5)

becomes an unbiased estimate of MSE, (xi − x̂i(Z))2.

Proof: The proof follows from the conditional independence
of (ai, bi) and Zi given Z−i.

Given (5), the training process of a neural network follows
that of N-AIDE. Namely, assuming the noise distribution is
known, as is the case in other despeckling algorithms, we
first generate a supervised training dataset that contains both
clean and multiplicative noise-corrupted images. Then, we
define a neural network that outputs ai and bi for the input
C−ik×k and train its parameters with the supervised training
set and the MSE loss function. The specific architecture of
our neural network is given in the following section. After
the supervised training, given a noisy image Z ∈ Rd subject
to despeckling, we define the adaptive loss function as

LFT(Z, σ) ,
1

d

d∑
i=1

Lmult(Z, (ai, bi);σ
2) (6)

to fine-tune the network parameters by minimizing it. As
in N-AIDE, such fine-tuning achieves strong adaptivity of
our method, which we highlight in the experimental section.
Furthermore, in order to strengthen the adaptivity, we also
define the data augmented fine-tuning (AFT) loss as in (Cha
and Moon 2018a, Section 3.2),

LAFT(Z, σ) =
1

8

∑
Z(j)∈A(Z)

LFT(Z(j), σ), (7)
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(d) Receptive field of horizontal stack.

Figure 1: Full representation for DoPAMINE model. Best viewed in color.

in whichA(Z) stands for the augmented dataset that consists
of flipped and (0◦, 90◦, 180◦, 270◦)-degrees rotated versions
of Z. Once the fine-tuning process is done, the noisy image
Z is then despeckled by applying the learned affine mapping
(ai, bi) for each location.
Remarks: Although we are using the same pixelwise affine
function form (2) and the framework of N-AIDE, compar-
ing (5) with (3) clearly shows how the affine mappings are
learned differently during fine-tuning for the multiplicative
noise case compared to the additive noise case. Namely, in
both estimators, we can interpret the second terms in (5) and
(3) as some sort of regularizations on the slope parameter
ai. That is, while the first squared error term will be mini-
mized with ai = 1 and bi = 0, due to the existence of the
second term, ai should shrink and the residual, (1 − ai)Zi,
would be corrected with bi. Now, we see that the “effective”
regularization parameter in (3) is fixed to a constant σ2 for
all i, whereas in (5), it depends on Z2

i . Hence, for the pixels
with large Z2

i values, our model should output smaller slope
parameter ai to minimize Lmult(Z, (ai, bi);σ

2) than the pix-
els with small Z2

i values, and vice versa. Note this tendency
makes perfect sense for the multiplicative noise despeckling.
Namely, since the noise gets multiplied to the original xi as
in (1), the noise level may amplify significantly to result in
very large Zi when xi has high intensity and Ni > 1. In
such case, it is reasonable to suppress the noise effect by
shrinking ai and make the corrections with the bias term
bi to accurately estimate xi. In our experimental results be-
low, we show how the learned ai and bi vary depending on
the intensity of Zi’s and how our adaptive fine-tuning makes
corrections to achieve better despecklings.

DoPAMINE architecture
As we mentioned in (2), the main critical constraint that en-
sures the unbiasedness of (5) is that for every pixel i, the ai
and bi should be conditionally independent of Zi given Z−i.

In N-AIDE (Cha and Moon 2018b), a fully connected neural
network was used, but due to the architectural simplicity, it
could not outperform other deep learning baselines (which
do not possess the adaptivity) that use convolutional archi-
tectures. Recently, in (Cha and Moon 2018a), a nontrivial
extension that uses fully convolutional architecture was pro-
posed and the resulting algorithm was shown to outperform
several strong CNN-based state-of-the-arts for the additive
noise case. The main challenge of using the fully convolu-
tional architecture is that when a vanilla architecture, e.g.,
FCN (Long, Shelhamer, and Darrell 2015), is used, the i-th
pixel in a feature map may depend onZi, which would result
in breaking the critical constraint mentioned above.

Here, we independently propose another fully convolu-
tional architecture, DoPAMINE, that is summarized in Fig-
ure 1. Two key ingredients of our architecture are the LU
convolution, which is inspired by the PixelCNN (van den
Oord et al. 2016b), and the scale add layer, which is simple
but very effective in expediting the training of CNN models
with many addition operations among the feature maps, like
ResNet (He et al. 2016).

LU Convolution The PixelCNN in (van den Oord et al.
2016b) was developed as a generative model that can se-
quentially and conditionally generate images. The main gist
in their model was to devise a masked convolution architec-
ture that can generate each pixel conditioned on the pixels
that has “causal” relationship with the pixel. In contrast, in
our despeckling problem, we are not directly generating the
reconstruction for pixel i, but are estimating ai and bi for the
affine mapping, and the estimation is based on the “double-
sided, non-causal” context of the pixel.

Hence, as shown in Figure 1(a), we adopt the masked
convolution architecture of PixelCNN twice in each layer
` to cover both the causal part (LU convolution) and the
anti-causal part (RD convolution) for each pixel i. We then
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Table 1: PSNR and SSIM on UCML dataset.

Model L=1.0 L=2.0 L=4.0 L=8.0
PSNR(dB) / SSIM PSNR(dB) / SSIM PSNR(dB) / SSIM PSNR(dB) / SSIM

Noise image 5.763 / 0.073 8.773 / 0.118 11.785 / 0.178 14.795 / 0.253
SAR-DRNS(Zhang et al. 2018) 22.86 / 0.738 24.189 / 0.780 25.664 / 0.823 27.191 / 0.861

SAR-DRNB 22.746 / 0.732 24.151 / 0.778 25.583 / 0.821 27.057 / 0.857
DoPAMINES 22.957 / 0.743 24.329 / 0.786 25.767 / 0.826 27.268 / 0.863

DoPAMINES−AFT 23.308 / 0.756 24.701 / 0.798 26.123 / 0.837 27.623 / 0.871
DoPAMINEB 22.909 / 0.739 24.291 / 0.782 25.694 / 0.822 27.159 / 0.859

DoPAMINEB−AFT 23.293 / 0.755 24.678 / 0.797 26.103 / 0.836 27.593 / 0.870

“scale add” (denoted as
√

+) the two feature maps from LU
and RD convolutions to generate the resulting feature map
S`. By this construction, one can see that any pixel i on S`

does not depend on Zi and is computed only based on the
double-sided context (with corresponding receptive field) of
Zi. Once we obtain S`, we then repeatedly stack the LU and
RD convolution layers up to ` = 21. Now, since the RD con-
volution is just a 180◦ rotated version of LU convolution, we
just elaborate on the LU convolution more in details below.

As shown in Figure 1(b)(c), the structure of LU convolu-
tion for layer 1 and layers ` = 2 ∼ 21 are different. In LU
Conv 1, the masked 1×3 and 1×1 filters are used to generate
the horizontal stack feature map, HLU

1 , of which receptive
field of the i-th pixel is given in Figure 1(d). Note the “scale
add” was also used to combine the feature maps from the
two filters. The LU Conv 2 then uses differently masked fil-
ters such that the “causal” receptive fields can grow as layer
increases as depicted in Figure 1. The RD Conv Layers op-
erates in the same way, hence, the final receptive field of a
pixel in S21 is 43× 43.

Finally, we “scale add” all the feature maps from all the
layers before passing them through the ResNet block de-
picted in Figure 1. While PixelCNN only uses the last hori-
zontal stack, we chose to directly use all the feature maps to
use the low level features in our despeckling problem.

Scale add layer He initialization (He et al. 2015) and
Batch Normalization (BN) (Ioffe and Szegedy 2015) are
widely used practice to accelerate training speed by good
initialization and reducing covariate shift. However, both
methods also have some drawbacks. Namely, He initializa-
tion turns out to be disharmonious with addition layer, since
it may significantly increase the variance of the resulting
feature maps. This could be problematic in modern CNN
architectures that have many addition layers among feature
maps, e.g., ResNet (He et al. 2016) or DenseNet (Huang
et al. 2017), as it may hinder fast training of the network.
Moreover, batch normalization requires additional memory,
and it is known to be not proper for non-i.i.d. or small sized
mini-batches (Ioffe 2017). In addition, in standard models
for pixel-wise reconstruction problems, e.g., FCN, Pixel-
CNN and WaveNet(Van Den Oord et al. 2016a), the batch
normalization does not show as significant improvements as
in the classification problems.

To address above drawbacks, we propose a simple scale
add layer, which can replace addition layers while preserv-

ing the variances of feature maps without introducing any
additional parameters, memory, and batch statistics, as in
batch normalization. We denote N number of feature maps
as {Yi}Ni=1. Then, the scale add layer, SA, is defined as:

SA(Y1,Y2, ...,YN ) =
1√
N

N∑
i=1

Yi. (8)

With this simple scaling, reminiscent of the motivations of
He and Xavier initialization, SA equalizes the input and out-
put feature map variances, while a simple addition layer will
increase variance N times. Note if there are L addition lay-
ers, then the order of variance for the final layer’s feature
map becomes NL (He et al. 2015). In contrast, by assuming
V ar[Yi] ≈ C for all i and all the feature maps are uncorre-
lated, the output variance of SA can be calculated as:

Var[SA(Y1,Y2, ...,YN )]

= Var[
1√
N

(

N∑
i=1

Yi)] ≈
1

N

N∑
i=1

Var[Yi] = C.

Thus, when combined with He initialization, which is known
to control the variances of feature maps from ReLU acti-
vated convolution layers, one can see that the simple SA
can maintain the variance of the feature maps resulting from
any number of additions. In the experimental section, we
convincingly show this point.

Experiment
Benchmark dataset
Training detail We use UC Merced Land use dataset
(UCML) (Yang and Newsam 2010) to train and test our
model. The dataset contains 21 classes, and each class has
100 images with the resolution of 256 × 256. We chose the
Airplane, River, and Building classes as our test set. For the
supervised training set, we randomly sampled 400 images
from the remaining 18 classes. Then, we cropped the im-
ages to 40×40 patch size with stride 10, so that the total
number of image patches in the supervised training set is
193,600. The batch size of supervised learning (S) and data
augmented fine tuning (AFT ) were 64 and 1, respectively.
In contrast to S, we put full 256×256 resolution of image
duringAFT . The number of filters in each convolution layer
of DoPAMINE was 64, except for last convolution layer that
has two 1 × 1 filters. Learning rate for S was initially set
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Figure 2: Noise and despeckled Flevoland images. We trained supervised model with L = 4, which is same as the number of
look of image.

Table 2: ENL of noise image and despeckled images.

Model ENL1 ENL2 ENL3 ENL4 ENL5 ENL6 ENL7 ENL8 Avg
Noise image 5.3 11.0 11.9 7.4 3.6 2.2 13.4 1.7 7.1

DoPAMINES 34.8 573.7 1351.6 260.0 14.6 5.1 885.2 3.7 391.1
DoPAMINEB 23.6 120.7 131.3 44.0 23.2 12.0 226.5 11.5 74.1
SAR-DRNS 62.4 518.5 1284.3 476.2 15.6 4.5 689.1 3.2 381.7
SAR-DRNB 19.0 83.4 73.6 37.1 13.3 5.8 130.7 5.9 46.1

DoPAMINEB−AFT 142.5 531.0 1258.4 412.5 141.8 36.0 793.2 32.0 418.4

to 10−3 and got halved for every 10 epochs. Learning rate
for AFT was 1.2× 10−5. The number of epochs for S and
AFT were 30 and 10, respectively.

For generating the multiplicative noise, we used the
Gamma distribution parameterized by L, which has the fol-
lowing density function

pNi
(ni) =

LLnL−1i e−niL

Γ(L)
.

Note E[Ni] and V ar[Ni] are 1 and 1/L, respectively. We
tested on the benchmark dataset with four noise levels,
L = 1, 2, 4, and 8. To avoid overfitting, we did the noise-
augmented training during supervised learning, namely, ran-
domly generated Ni for every epoch and constructed new
realization of noisy patches. Adam optimizer(Kingma and
Ba 2014) is used for both S and AFT . Our model is imple-
mented by Keras with Tensorflow backend, and trained on
NVIDIA GTX 1080Ti with CUDA 9.2.

Blind model In addition to the ordinary supervised model
for each noise level, we also train a Blind model, of
which weights are trained with various noise variances.
Such blindly trained supervised model was first proposed
in (Zhang et al. 2017). For training the blind model, we
split cropped training images such that each group has 121
cropped images. Then, we generated different Gamma dis-
tributions for each group with L sampled from U [0.5, 12] to
generate training data with multiple noise levels. We then
shuffled all the images before training and carried out the
ordinary mini-batch training with Adam.

Such blindly trained model is well-known to be robust to
multiple noise levels. In our experimental results below, we
show that when combined with the adaptive fine-tuning step,
the blind model can be made as strong as the supervised
model matched to a specific noise level.

Metrics We use PSNR and SSIM, commonly used met-
rics, to evaluate the despeckling performances. The PSNR
between x ∈ [0, 1]d and x̂ is defined by:

PSNR(x, x̂) = 10 log10

1∑d
i=1(xi − x̂i)2/d

Since the denominator is MSE between x and x̂, the higher
PSNR, the better.

Structural similarity, SSIM, is another metric defined as

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)

and is designed to cover the weakness of PSNR, which is
known to be sensitive to shift or brightness of the images

Results Table 1 is the PSNR and SSIM results on the
UCML test dataset. SAR-DRN (Zhang et al. 2018) is a state-
of-the-art baseline model in despeckling that predicts resid-
ual Z − x before doing despeckling. It is constructed by 7
dilated convolution layers and skip connections. We repro-
duced this model and compared with DoPAMINE. The sub-
script S , B , and −AFT represent supervised, blind, and the
data augmented fine tuning (AFT ), respectively.

From the table, we first note that the supervised mod-
els of DoPAMINE, DoPAMINES and DoPAMINEB , al-
ways outperforms SAR-DRNS and SAR-DRNB , respec-
tively, for all L, which shows the superiority of our network
architecture for the supervised training. Second, we note
DoPAMINES−AFT achieved another gain of 0.3∼0.4dB
over DoPAMINES , which shows the effectiveness and
adaptivity of the fine-tuning step. Third, while the perfor-
mance of DoPAMINEB is worse than that of DoPAMINES ,
we note the AFT of those blind models makes the fi-
nal model DoPAMINEB−AFT perform almost as well as
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Figure 3: Results of Ablation study. The experiment setting is the same as benchmark experiment with L = 1.0.

DoPAMINES−AFT . The implication of this result is the
following: in order to attain high denoising performance
for various noise levels, we just need to maintain a single
Blind supervised model as long as fine-tuning with the cor-
rect noise variance is possible. Note this approach is much
more efficient and powerful than keeping separate super-
vised model for each noise level or just maintaining a blind
model that cannot adapt to specific noise models, like SAR-
DRNB .

Real SAR image
In addition to the experiments on the benchmark dataset,
we also despeckled real-world SAR-obtained images with
4 number of looks: Death Valley, Flevoland, and San Fran-
cisco Bay. These are also widely used benchmark images for
SAR despeckling (Zhang et al. 2018). We only report the re-
sult for Flevoland image with 512 × 512 resolution due to
space limit.

In the real SAR images, the underlying clean x is not
available, hence PSNR or SSIM cannot be computed. In-
stead, Equivalent Number of Look (ENL) is one of the
widely used metrics for the real SAR image despeckling
(Argenti et al. 2013). ENL is defined as

ENL =
E[X̂]2

Var[X̂]
(9)

and is typically evaluated in homogeneous areas. Note in
(9), the variance term is in the denominator, hence, the
higher the ENL, the more homogeneous the area is. How-
ever, (9) is not an absolute metric since despeckling models

typically have trade-offs between homogeneity and sharp-
ness, namely, models with high ENL often tend to generate
blurred images. Therefore, it is also important to visually
verify the despeckled images.

Results Figure 2 and Table 2 are the results of despeckled
Flevoland. In Table 2, ENL 1 to 8 correspond to the ENL
values on the regions marked with red boxes in Figure 2(a).
For supervised models, we used the models with L = 4
for both SAR-DRNS and DoPAMINES , since the number
of looks for the image was 4. For DoPAMINEB−AFT , we
set L = 0.5, learning rate to 8 × 10−6, and the number of
epochs to 6 for carrying out the fine-tuning.

In Table 2, we observe that DoPAMINEB−AFT achieves
the highest average ENL values compared to others. Note
the ENL values for DoPAMINEB is very low, but the AFT
step improves the metric significantly and surpasses that of
SAR-DRNS . Figure 2 visualizes the despeckling results of
comparing methods in Table 2. We first observe that SAR-
DRNS is more blurred than other images, especially left
above region, which shows that high ENL values do not al-
ways translate to good despeckling quality in all image re-
gions. In contrast, we can see that DoPAMINEB generates
much sharper images than SAR-DRNS or DoPAMINES .
However, it contains black spots in both dark and bright re-
gions, while other models tend to contain black spots only in
the dark regions. When checking the despeckling results on
the benchmark dataset, we noticed that black spots typically
occurs when σ of the training set is smaller than that of the
test image. Motivated by this, for DoPAMINEB−AFT , we
used smaller L (i.e., larger σ) in the AFT loss (7), and the
resulting image is given in Figure 2(e). We can see from
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Figure 4: Visualization of a and b of DoPAMINE for Flevoland image. From left to right, DoPAMINES trained by L = 1.0,
DoPAMINES trained by L = 8.0, DoPAMINEB , and DoPAMINEB−AFT with L = 0.5 for fine-tuning.

the figure that most of the black spots are now removed,
while preserving the details and sharpness of the image.
The magnified red box shows the difference of the despeck-
ling more closely. We can clearly observe the quality of our
DoPAMINEB−AFT is superior to other methods, showing
the power of our method that can adaptively calibrate the
image qualities by choosing appropriate L. Note that this
is a unique property of DoPAMINE, as other deep learning
based method cannot adapt to the noisy image.

Ablation study
Scale add layer To validate the effectiveness of the scale
add layer (SA), we carried out two experiments. In Figure
3(a), we tested with widely used ResNet20 architecture to
show the generality of our SA. The figure represents initial
variance of the feature maps after each convolution layer
of ResNet20 models, when the input to the network was
standard zero mean Gaussian and the weights were initial-
ized with the He initialization (He et al. 2016). Note ordi-
nary ResNet20 architecture has many addition layers due to
the skip connections. ResNet20-SA is the model with the
same architecture, but with addition layer replaced with SA.
Vanilla CNN is the model that does not have skip connec-
tions, hence it has no addition layers. From the figure, we
clearly observe that He initialization alone is not enough
to control the variances of the feature maps when there are
many addition layers (or skip connections) in the architec-
ture, since the variance of ResNet20 keeps exponentially in-
creasing as the layer increases. Note for Vanilla CNN, the
variance is kept to be constant, as expected with the He
initialization. In contrast, we note ResNet20-SA still main-
tains the constant variance even though there are many skip-
connections, since the SA re-scales the feature map so that
the variance is controlled. This property suggests that the
training of the network with SA may be accelerated com-
pared to the one without it. Figure 3(b) confirms such result
and shows that our DoPAMINES with SA is more stable and
achieves high PSNR faster than the one with ordinary addi-
tion layer with batch normalization. In this case, when only
the addition layer was used, the PSNR was too low to show
in the same figure.

ResNet blocks and training choices Figure 3(c) shows
the PSNR results of DoPAMINES model with and without
the final ResNet block shown in Figure 1. We note the model
with the ResNet block outperforms the one without it, which
justifies our choice of the architecture.

Figure 3(d) compares the models with and without the ai

term in output of the network. Namely, the model without
ai simply reconstructs xi only with the bias term bi, hence,
it does not use the noisy pixel Zi. The curves in Figure 3(d)
that only have subscript ‘B’ stand for those models. The fig-
ure shows both the supervised-only and fine-tuning results
and confirms the necessity of using the slope parameter ai
for learning the pixel-wise despeckling mappings.

Figure 3(e) compared the PSNR of FT and AFT on
DoPAMINE. We see the maximum PSNR of AFT is 0.3dB
higher than FT , and this is in line with the findings in (Cha
and Moon 2018a). This result also show that the perfor-
mance of FT and AFT is robust to epochs around 5 to 15.

Visualization of a and b Figure 4 visualizes the coeffi-
cients of the affine mappings, a and b, for several variations
of DoPAMINE. Note that Figure 4(d),(h) are the a and b
of the model for Figure 2(e). We can see that if a tends to
have low values, b become more homogeneous, but it loses
sharpness. In contrast, if a tends to have high values, b gets
sharper, but it loses homogeneity. Hence, we can say that the
values that a take determines the sharpness or homogeneity
of an image. Next, we describe how a and b are changed
during AFT . According to equation (5), Zi and σ acts as
effective regularization constant for ai. We cannot control
Zi, however, by changing σ, we can control the values that
ai takes. As a result, by adjusting σ, we can determine the
amount of sharpness or homogeneity of the despeckled im-
age.

Concluding remarks
In this paper, we showed that our DoPAMINE framework
has an ability to fine-tune and outperforms the state-of-the-
art model on both benchmark and real images. There are
several extendable future approaches. First, more complex
mapping functions and their unbiased estimators can be de-
rived. Second, we are going to check whether our framework
can be applied to other domains, such as medical image de-
speckling.
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