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Abstract

The Kalman filter is a key tool for time-series forecasting
and analysis. We show that the dependence of a prediction of
Kalman filter on the past is decaying exponentially, whenever
the process noise is non-degenerate. Therefore, Kalman filter
may be approximated by regression on a few recent observa-
tions. Surprisingly, we also show that having some process
noise is essential for the exponential decay. With no process
noise, it may happen that the forecast depends on all of the
past uniformly, which makes forecasting more difficult.
Based on this insight, we devise an on-line algorithm for im-
proper learning of a linear dynamical system (LDS), which
considers only a few most recent observations. We use our de-
cay results to provide the first regret bounds w.r.t. to Kalman
filters within learning an LDS. That is, we compare the results
of our algorithm to the best, in hindsight, Kalman filter for a
given signal. Also, the algorithm is practical: its per-update
run-time is linear in the regression depth.

Introduction
Linear Dynamical Systems (LDS) are a key standard tool in
modeling and forecasting time series, with an exceedingly
large number of applications. In forecasting with an LDS,
typically one learns the parameters of the LDS first, using
a maximum likelihood principle, and then uses Kalman fil-
ter to generate predictions. The two features that seem to
contribute the most to the success of LDS in practice are
the ability of LDS to model a wide range of behaviors, and
the recursive nature of Kalman filter, which allows for fast,
real-time forecasts via a constant-time update of the previous
estimate. On the other hand, a major difficulty with LDSs
is that the process of learning system parameters, via ex-
pectation maximization (EM) or direct likelihood optimiza-
tion, may be time consuming and prone to getting stuck
in local maxima. We refer to (Anderson and Moore 1979;
West and Harrison 1997; Hamilton 1994; Chui and Chen
2017) for book-length introductions.

Recently, there has been an interest in alternative, im-
proper learning approaches, where one approximates the
predictions of LDSs by a linear function of a few past obser-
vations. The advantage of such approaches is that it convex-
ifies the problem, i.e., learning the linear function amounts
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to a convex problem, which avoids the issues brought by
the non-convex nature of the likelihood function. The con-
vexification allows for on-line algorithms, which are typi-
cally fast and simple. A crucial advance of these recent ap-
proaches is the guarantee that the predictions of the convex-
ified, improper-learning algorithm are at least as good as the
predictions of the proper one. One therefore avoids the long
learning times and issues related to non-convexity associated
with the classical algorithms, while maintaining the statisti-
cal performance.

Leading examples of this approach (Anava et al. 2013;
Liu et al. 2016; Hazan, Singh, and Zhang 2017) utilise
a framework of regret bounds (Cesa-Bianchi and Lugosi
2006) to provide guarantees on the performance of the con-
vexifications. In this framework, one considers a sequence
of observations Yt, with or without additional assumptions.
After observing Y0, . . . , Yt, an algorithm for improper learn-
ing produces a forecast Ŷt+1 of the next observation. Then,
roughly speaking, one shows that the sum of errors of the
forecast thus produced is close to the sum of errors of the
best model (in hindsight) from within a certain class. It is
said that the algorithm competes against a certain class.

In this paper, we take several steps towards develop-
ing guarantees for an algorithm, which competes against
Kalman filters. Specifically, we ask what conditions make
it possible to model the predictions of Kalman filter as a
regression of a few past observations? We show that for a
natural, large, and well-known class of LDSs, the observ-
able LDSs, the dependence of Kalman filter on the past de-
cays exponentially if the process noise of the LDS is non-
degenerate. Consequently, predictions of such LDS can be
modeled as auto-regressions. In addition, we show that at
least some non-degeneracy of the process noise is necessary
for the exponential decay. We provide an example with no
process noise, where the dependence on the past does not
converge exponentially.

Next, based on the decay results, we give an on-line al-
gorithm for time-series prediction and prove regret bounds
for it. The algorithm makes predictions in the form ŷt+1 =∑s−1
i=0 θi(t)Yt−i, where Yt are observations, and θ(t) ∈ Rs

is the vector of auto-regression (AR) coefficients, which is
updated by the algorithm in an on-line manner.

For any LDS L, denote by fL,t+1 the predicted value of
Yt+1 by Kalman filter corresponding to L, given Yt, . . . , Y0.
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Denote by E(T ) =
∑T−1
t=1 |ŷt+1 − Yt+1|2 the total error

made by the algorithm up to time T , and by E(L, T ) =∑T−1
t=1 |fL,t+1 − Yt+1|2 the total error made by Kalman fil-

ter corresponding to L. Let S be any finite family of observ-
able linear dynamical systems with non-degenerate process
noise. We show that for an appropriate regression depth s,
for any bounded sequence {Yt}T0 we have

1

T
E(T ) ≤ 1

T
min
L∈S

E(L, T ) +
1

T
CS + ε, (1)

whereCS is a constant depending on the family S. In words,
up to an arbitrarily small ε given in advance, the average
prediction error of the algorithm is as good or better than
the average prediction error of the best Kalman filter in S.
We emphasize that while there is a dependence on S in the
bounds, via the constant CS , the algorithm itself depends
on S only through the regression depth s. In particular, the
algorithm does not depend on the cardinality of S, and the
time complexity of each iteration is O(s).

To summarize, our contributions are as follows: We show
that the dependence of predictions of Kalman filters in a
system with non-degenerate process noise is exponentially
decaying and that therefore Kalman filters may be approxi-
mated by regressions on a few recent observations, cf. The-
orem 2. We also show that the process noise is essential for
the exponential decay. We given an on-line prediction al-
gorithm and prove the first regret bounds against Kalman
filters, cf. Theorem 6. Experimentally, we illustrate the per-
formance on a single example in the main body of the text,
and further examples in the supplementary material.

Literature
In this section, we review the relevant literature and place
the current work in context.

We refer to (Hamilton 1994) for an exposition on LDSs,
Kalman filter, and the classical approach to learning the LDS
parameters via tha maximum likelihood optimization. See
also (Roweis and Ghahramani 1999) for a survey of rela-
tions between LDSs and a large variety of other probabilis-
tic models. A general exposition of on-line learning can be
found in (Hazan 2016).

As discussed in the Introduction, we are concerned with
improper learning, where we show that an alternative model
can be shown to generate forecasts that are as good as
Kalman filter, up to any given error. Perhaps the first ex-
ample of an improper learning that is still used today is the
moving average, or the exponential moving average (Gard-
ner ). In this approach, predictions for a process – of a
possibly complex nature – are made using a simple auto-
regressive (AR) or AR-like model. This is very successful in
a multitude of engineering applications. Nevertheless, until
recently, there were very few guarantees for the performance
of such methods.

In (Anava et al. 2013), the first guarantees regarding pre-
diction of a (non-AR) subset of auto-regressive moving-
average (ARMA) processes by AR processes were given,
together with an algorithm for finding the appropriate AR.
In (Liu et al. 2016), these results were extended to a sub-
set of autoregressive integrated moving average (ARIMA)

processes, while at the same time the assumptions on the
underlying ARMA model were relaxed.

In this paper, we show that AR models may also be used
to forecast as well as Kalman filters. One major difference
between our results and the previous work is that we ob-
tain approximation results on arbitrary bounded sequences.
Indeed, regret results of (Anava et al. 2013) and (Liu et al.
2016) only hold under the assumption that the data sequence
was generated by a particular fixed ARMA or ARIMA pro-
cess. Moreover, the constants in the regret bounds of (Anava
et al. 2013) and (Liu et al. 2016) depend on the generating
model, and the guaranteed convergence may be arbitrarily
slow, even when the sequence to forecast is generated by
appropriate model.

In contrast, we show that up to an arbitrarily small error
given in advance, AR(s) will perform as well as Kalman fil-
ter on any bounded sequence. We also obtain approximation
results in the more general case of bounded difference se-
quences.

Another related work is (Hazan, Singh, and Zhang 2017),
which addresses a different aspect of LDS approximation
by ARs. In the case of LDSs with inputs, building on known
eigenvalue-decay estimates of Hankel matrices, it is shown
that the influence of all past inputs may be effectively ap-
proximated by an AR-type model. However, the arguments
and the algorithms in (Hazan, Singh, and Zhang 2017) were
not designed to address model noise. In particular, the algo-
rithm of (Hazan, Singh, and Zhang 2017) makes predictions
based on the whole history of inputs and on only one most
recent observation, Yt, and hence clearly can not compete
with Kalman filters in situations with no inputs. We demon-
strate this in the Experiments section.

Previously, subspace identification methods (van Over-
schee and de Moor 1996) achieved significant advances in
the learning of LDS. For a sequence of observations gen-
erated from an LDS, this family of methods allows to re-
cover the state sequence of the Kalman filter of the LDS
via a singular value decomposition (SVD) of a certain ma-
trix constructed from the inputs. In a naive implementation,
this requires the SVD to be performed at each time step, on
a matrix constructed from the full history of observations.
(Venkatraman et al. 2016) proposed an on-line method re-
lated to subspace identification using the notion of instru-
mental variables. While the experimental part of the paper
deals with LDS forecasting, the provided theoretical guaran-
tees apply only in cases of independent observations, which
is not the case for LDSs. More broadly, guarantees we are
aware of require that the observations are generated from an
LDS that is stationary, in contrast to finding the optimal fil-
ter for a given arbitrary sequence. This therefore excludes
most tracking applications.

Preliminaries
As usual in the literature (West and Harrison 1997), we de-
fine a linear system L = (G,F, v,W ) as:

φt = Gφt−1 + ωt (2)
Yt = F ′φt + νt, (3)
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where Yt are scalar observations, and φt ∈ Rn×1 is the
hidden state. G ∈ Rn×n is the state transition matrix which
defines the system dynamics, and F ∈ Rn×1 is the observa-
tion direction. The process-noise terms ωt and observation-
noise terms νt are mean zero normal independent variables.
For all t ≥ 1 the covariance of ωt is W and the variance of
νt is v. The initial state φ0 is a normal random variable with
mean m0 and covariance C0.

For t ≥ 1 denote

mt = E (φt|Y0, . . . , Yt) , (4)

and let Ct be the covariance matrix of φt given Y0, . . . , Yt.
Note thatmt is the estimate of the current hidden state, given
the observations. Further, the central quantity of this paper
is

ft+1 = E (Yt+1|Yt, . . . , Y0) = F ′Gmt. (5)
This is the forecast of the next observation, given the cur-
rent data. The quantities mt and ft+1 are known as Kalman
Filter. In particular, in this paper we refer to the sequence
ft as the Kalman filter associated with the LDS L =
(G,F, v,W ).

The Kalman filter satisfies the following recursive update
equations: Set

at = Gmt−1

Rt = GCt−1G
′ +W

Qt = F ′RtF + v

At = RtF/Qt

Note that in this notation we have

ft = F ′at.

Then the update equations of Kalman filter are:

mt = at +At(Yt − ft) = AtYt + (I − F ⊗At)at(6)
Ct = Rt −AtQtA′t (7)

where x ⊗ y is an Rn×1 → Rn×1 operator which acts by
z 7→ 〈z, x〉 y = yx′z. The matrix of x ⊗ y is given by the
outer product yx′, where x, y ∈ Rn×1.

An important property of Kalman Filter is that while mt

depends on Y0, . . . , Yt, the covariance matrix Ct does not.
Indeed, note that Rt, Qt, At, Ct are all deterministic se-
quences which do not depend on the observations.

We explicitly write the recurrence relation for Rt:

Rt+1 = G

(
Rt −

RtF ⊗RtF
〈F,RtF 〉+ v

)
G′ +W (8)

Also write for convenience

at+1 = Gmt = GAtYt +G(I − F ⊗At)at. (9)

A more explicit form of the prediction of Yt+1 given
Yt, . . . , Y0, may be obtained by unrolling (6) and using (9):

E (Yt+1|Yt, . . . , Y0) = ft+1 = F ′at+1 (10)

= F ′GAtYt + F ′G(I − F ⊗At)at (11)
= F ′GAtYt + F ′G(I − F ⊗At)GAt−1Yt−1

+F ′G(I − F ⊗At)G(I − F ⊗At−1)at−1.(12)

In general, setZt = G(I−F⊗At) andZ = G(I−F⊗A).
Chose and fix some s ≥ 1. Then for any t ≥ s + 1, the
expectation (10) has the form displayed in Figure 1.

Next, a linear system L = (G,F, v,W ) is said to be ob-
servable, (West and Harrison 1997), if

span
{
F,G′F, . . . , G′

n−1
F
}
= Rn. (14)

Roughly speaking, the pair (G,F ) is observable if the state
can be recovered from a sufficient number of observations,
in a noiseless situation. Note that if there were parts of
the state that do not influence the observations, these parts
would be irrelevant for forecast purposes. Thus we are only
interested in observable LDSs.

When L is observable, it is known (Harrison 1997) that
the sequences Ct, Rt, Qt, At converge. See also (Anderson
and Moore 1979; West and Harrison 1997). We denote the
limits by C,R,Q and A respectively. Moreover, the limits
satisfy the recursions as equalities. In particular we have

R = G

(
R− RF ⊗RF

〈F,RF 〉+ v

)
G′ +W. (15)

Finally, an operator P : Rn → Rn is non-negative, de-
noted L ≥ 0, if 〈Px, x〉 ≥ 0 for all x 6= 0, and is positive,
denoted P > 0, if 〈Px, x〉 > 0 for all x 6= 0. Note that
W,Ct, Rt, C,R are either covariance matrices or limits of
such matrices, and thus are symmetric and non-negative.

Exponential Decay and AR Approximation
In what follows, we denote by

[x, y] = 〈Rx, y〉 , 〈〈x, y〉〉 = 〈Wx, y〉 (16)

the inner products induced by R and W on Rn, where R
is the limit of Rt as described above. In particular, we set
U = G′ and rewrite (15) as

[x, y] = [Ux,Uy]− [Ux, F ] [Uy, F ]

[F, F ] + v
+ 〈〈x, y〉〉 . (17)

Observe that since R = GCG′ +W , we have R ≥ W ,
and in particular if W > 0 then R > 0. In other words, if
W > 0, then [·, ·] and 〈〈·, ·〉〉 induce proper norms on Rn:

[x, x] ≥ 〈〈x, x〉〉 > 0 for all x 6= 0. (18)

Next, consider the remainder term in the prediction equa-
tion (13), where we have replaced Zt−i with their limit val-
ues Z:

F ′ (G(I − F ⊗A))s+1
at−s

=
〈
F, (G(I − F ⊗A))s+1

at−s

〉
=
〈
((I −A⊗ F )U)

s+1
F, at−s

〉
.

Let us now state and prove the key result of this paper: if
W > 0, then ((I −A⊗ F )U)

s
F converges to zero expo-

nentially fast with s. The key to the proof will be to consider
contractivity properties with respect to the norm induced by
[·, ·], rather than with respect to the the default inner product.
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ft+1 = F ′GAtYt + F ′
s−1∑
j=0

[(
j∏
i=0

Zt−i

)
GAt−j−1Yt−j−1

]
︸ ︷︷ ︸

AR(s+1)

+F ′

(
s∏
i=0

Zt−i

)
at−s.︸ ︷︷ ︸

Remainder term

(13)

Figure 1: The unrolling of the forecast ft+1. The remainder term goes to zero exponentially fast with s, by Lemma 3.

Theorem 1. If W > 0, then there is
γ = γ(W, v, F,G) < 1 such that for every x ∈ Rn,

[(I −A⊗ F )Ux, (I −A⊗ F )Ux] ≤ γ [x, x] . (19)

Proof. Set
y = ((I −A⊗ F )U)x. (20)

Then

y = (I −A⊗ F )Ux = Ux− 〈A,Ux〉F (21)

= Ux− [Ux, F ]

[F, F ] + v
F. (22)

Therefore we have

[y, y] = [Ux,Ux]− 2
[Ux, F ]

2

[F, F ] + v
+

[Ux, F ]
2
[F, F ]

([F, F ] + v)
2 . (23)

In addition, by (17),

[Ux,Ux] = [x, x] +
[Ux, F ]

2

[F, F ] + v
− 〈〈x, x〉〉 . (24)

Combining (23) and (24), we obtain

[y, y] = [x, x]− 〈〈x, x〉〉 − [Ux, F ]
2

[F, F ] + v

(
1− [F, F ]

[F, F ] + v

)
= [x, x]− 〈〈x, x〉〉 − [Ux, F ]

2

[F, F ] + v

v

[F, F ] + v
. (25)

Equation (25) immediately implies that [x, x] is non-
increasing. Recall that by (18), W is dominated by R. How-
ever, since bothR andW define proper norms, by the equiv-
alence of finite dimensional norms, the inverse inequality is
also true: There exists 0 < κ ≤ 1 such that

〈〈x, x〉〉 ≥ κ [x, x] for all x 6= 0. (26)

Therefore the decrease in (25) must be exponential:

[y, y] ≤ [x, x]− 〈〈x, x〉〉 ≤ (1− κ) [x, x] . (27)

It is of interest to stress the fact that Theorem 1 does not
assume any contractivity properties of G. In particular, the
very common assumption of the spectral radius of G being
bounded by 1 is not required.

Let us state and prove our main approximation result:

Theorem 2 (LDS Approximation). Let L = L(F,G, v,W )
be an observable LDS with W > 0.

1. For any ε > 0, and any B0 > 0, there is T0 > 0, s > 0
and θ ∈ Rs, such that for every sequence Yt with |Yt| ≤
B0, and for every t ≥ T0,∣∣∣∣∣ft+1 −

s−1∑
i=0

θiYt−i

∣∣∣∣∣ ≤ ε. (28)

2. For any ε, δ > 0, and any B1 > 0, there is T0 > 0,
s > 0 and θ ∈ Rs, such that for every sequence Yt with
|Yt+1 − Yt| ≤ B1, and for every t ≥ T0,∣∣∣∣∣ft+1 −

s−1∑
i=0

θiYt−i

∣∣∣∣∣ ≤ 2max (ε, δ |Yt|) . (29)

We first prove the bound on the remainder term in the
prediction equation (13).
Lemma 3 (Remainder-Term Bound). Let L =
L(F,G, v,W ) be an observable LDS with W > 0.
1. If a sequence Yt satisfies |Yt| ≤ B0 for all t ≥ 0, then

there are constants ρ′L < 1 and cL such that for any s > 0
and t > s,∣∣∣∣∣

〈
F,

(
s∏
i=0

Zt−i

)
at−s

〉∣∣∣∣∣ ≤ (ρ′L)
scL. (30)

2. If a sequence Yt satisfies |Yt+1 − Yt| ≤ B1 for all t ≥ 0,
then there are constants ρ′L and c1,L, c2,L such that for all
s > 0 and t > s,

|〈F, (
∏s
i=0 Zt−i) at−s〉| ≤

(ρ′L)
sc1,L (|Yt|+ sB1 + c2,L) . (31)

Proof. Recall that at satisfies the recursion (9),
at+1 = G(I − F ⊗At)at + YtAt = Ztat + YtGAt. (32)

Denote by [x] = [x, x]
1
2 and and by |x| = 〈x, x〉

1
2 the norms

induced by [·, ·] and 〈·, ·〉 respectively. Set P = Z ′ and Pt =
Z ′t. By Theorem 1, there is ρ = γ

1
2 < 1 such that P is a

ρ-contraction with respect to [·]. Fix some ρ′ such that ρ <
ρ′ < 1. Since Pt → P , there is some T1 such that for all
t ≥ T1, Pt is a ρ′-contraction. In addition, let T2 be such that
[GA−GAt] ≤ 1 for all t ≥ T2. Set T0 = max (T1, T2)+1.
Fix s > 0 and set t′ = t − s − 1. For t′ > T0, using (32)
write at−s as

at′+1 = Yt′GAt′

+

t′−T0∑
i=0

Yt′−i−1
 i∏
j=0

Zt′−j

GAt′−i−1


+

t′−T0∏
j=0

Zt′−j

 aT0−1. (33)
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Observe that if an operator O′ is a γ-contraction with re-
spect to [·], then for any x, y ∈ Rn,

〈y,Ox〉 = 〈O′y, x〉 (34)

≤ |O′y| |x| ≤ γµ[y] |x| ≤ γµ2[y][x],

where µ is the equivalence constant between [·] and |·|.
For every x ∈ Rn by (33) we have

〈x, at−s〉 = (35)
= Yt′ 〈x,GAt′〉+
t′−T0∑
i=0

Yt′−i−1

〈 0∏
j=i

Pt′−j

x,GAt′−i−1

〉

+

〈 0∏
j=t′−T0

Pt′−j

x, aT0−1

〉
.

By the choice of T0, as since the expansion in (35) is only up
to T0, every Pt′−j in (35) is a ρ′-contraction and all GAt′−j
satisfy [GA−GAt′−j ] ≤ 1.

Combining this with (34) and using triangle inequality,
we obtain

|〈x, at−s〉| ≤ (36)

= |Yt′ |µ2[x] ([GA] + 1)+

+

t′−T0∑
i=0

|Yt′−i−1| (ρ′)i+1µ2[x] ([GA] + 1)

+ (ρ′)t
′−T0µ2[x][aT0−1].

Finally, choose x =
(∏0

i=s Pt−i

)
F . Note that [x] ≤

(ρ′)s+1[F ]. Therefore,∣∣∣∣∣
〈
F,

(
s∏
i=0

Zt−i

)
at−s

〉∣∣∣∣∣ = 〈x, at−s〉 (37)

≤ (ρ′)s+1 |Yt′ |µ2[F ] ([GA] + 1)+ (38)

+

t′−T0∑
i=0

(ρ′)s+1 |Yt′−i−1| (ρ′)i+1µ2[F ] ([GA] + 1) (39)

+ (ρ′)s+1(ρ′)t
′−T0µ2[F ][aT0−1]. (40)

Observe that the term [aT0−1] in (40) is a constant, inde-
pendent of t, and that the series in (39) are summable w.r.t
t′. Therefore, in the bounded case |Yt| ≤ B0, the proof is
complete.

In the Lipschitz case, for every i > 0, we have

|Yt′−i−1| ≤ |Yt′ |+ (i+ 1)B1. (41)

Substituting this into (37)-(40), and observing that the re-
sulting series are still summable, we obtain∣∣∣∣∣
〈
F,

(
s∏
i=0

Zt−i

)
at−s

〉∣∣∣∣∣ ≤ (ρ′)sc1 (|Yt′ |+ c2) . (42)

Thus using
|Yt′ | ≤ |Yt|+ sB1, (43)

completes the proof in the Lipschitz case.

We now prove Theorem 2.

Proof. Recall that ft+1 is given by (13). Fix some s >
0 and set θ0 = 〈F,GA〉, and θj+1 =

〈
F,Zj+1GA

〉
for j = 0, . . . , s − 1. Note that θ ∈ Rs+1 and s here
corresponds to s + 1 in the statement of the Theorem.
Set also rt = 〈F,GAt〉 and for j ≥ 0, rt−j−1 =〈
F,
(∏j

i=0 Zt−i

)
GAt−j

〉
. Clearly rt → θ0 with t and

rt−j−1 → θj+1 for every fixed j. Next, using Lemma 3,
the discrepancy between ft+1 and the θ predictor is given
by∣∣∣∣∣∣ft+1 −

s∑
j=0

Yt−jθj

∣∣∣∣∣∣ ≤ (44)

|Yt| |rt − θ0|+
s−1∑
j=0

|Yt−j−1| |rt−j−1 − θj+1|+ (ρ′L)
scL

in the bounded case. In this case, therefore, choosing regres-
sion depth s large enough so that (ρ′L)

scL ≤ ε/2 and T0
large enough so that for all t ≥ T0, |rt−j−1 − θj+1| ≤ ε

2sB0

for all j ≤ s, suffices to conclude the proof. The proof of
the Lipschitz case follows similar lines and is given in the
Supplementary Material due to space constraints.

To conclude this section, we discuss the relation between
exponential convergence and the non-degenerate noise as-
sumption, W > 0. Note that the crucial part of Theorem 1,
inequality (26), holds if and only if we can guarantee that
〈〈x, x〉〉 > 0 for every x for which [x, x] > 0. In particu-
lar, this holds when W > 0 – that is, the noise is full di-
mensional. We now demonstrate that at least some noise is
necessary for the exponential decay to hold.

Consider first a one dimensional example.

Example 4. With n = 1, assume that Yt are generated by an
LDS withG = F = 1,W = 0 and some v > 0. Assume that
the true process starts from a deterministic state m0,ture >
0. Since we do not know m0,true, we start the Kalman filter
with m0 = 0 and initial covariance C0 = 1.

In this case, clearly the observations Yt are independent
samples of a fixed distribution with mean m0,true and vari-
ance v. The Kalman filter in this situation is equivalent to a
Bayesian mean estimator with prior distribution N(0, C0 =
1). From general considerations, it follows thatRt → R = 0
with t. Indeed, if we start with C0 = 0, then we haveRt = 0
for all t. Since the limit R does not depend on the initializa-
tion, (Harrison 1997), we have R = 0 for every initializa-
tion. As a side note, in this particular case it can be shown,
either via the Bayesian interpretation or directly, that Rt de-
cays as 1/t (that is, tRt → const, with t). Now, note that
Zt = 1 − Rt

Rt+v
= v

Rt+v
→ 1, and that for any fixed

j > 0, At−j → 0 as t grows. Next, for fixed s > 0,
consider the prediction equation (13). On the one hand, we
know that ft+1 converges tom0,true > 0 in probability. This
is clear for instance from the Bayesian estimator interpreta-
tion above. On the other hand, the coefficients of all Yt−j in
(13) converge to 0. It follows therefore, that the remainder
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term in (13), F ′ (
∏s
i=0 Zt−i) at−s, converges in probability

to m0,true as t→∞. In particular, the remainder term does
not converge to 0. This is in sharp contrast with the expo-
nential convergence of this term to zero in the W > 0 case,
as given by Lemma 3.

The above example can be generalized as follows:
Example 5. In any dimension n, let (G,F ) define an LDS
such that G is a rotation, and such that G,F is observable.
Again choose W = 0 and v > 0. As before, let the true
process start from a state m0,true 6= 0 and start the filter
with m0 = 0 and C0 = Id.

Considerations similar to those of the previous example
imply that Rt → 0 but ft+1 does not. Consequently, the
remainder term will not converge to zero.

An Algorithm and Regret Bounds
In this section, we introduce our prediction algorithm and
prove the associated regret bounds. Our on-line algorithm
maintains a state estimate, which is represented by the re-
gression coefficients θ ∈ Rs, where s is the regression
depth, a parameter of the algorithm. At time step t, the algo-
rithm first produces a prediction of the observation Yt, using
the current state θ and previous observations, Yt−1, . . . , Y0.
Specifically, we will predict Yt by

ŷt(θ) =

s−1∑
i=0

θiYt−i−1. (45)

After the prediction is made, the true observation Yt is re-
vealed to the algorithm, and a loss associated with the pre-
diction is computed. Here we consider the quadratic loss for
simplicity: We define `(x, y) as (x− y)2. The loss function
at time t will be given by

`t(θ) := `(Yt, ŷt(θ)). (46)

In addition, the state is updated. We use the general scheme
of on-line gradient decent algorithms, (Zinkevich 2003),
where the update goes against the direction of the gradient of
the current loss. In addition, it is useful to restrict the state to
a bounded domain. We will use a Euclidean ball of radius D
as the domain, where D is a parameter of the algorithm. We
denote this domain by D = {x ∈ Rs | |x| ≤ D} and de-
note by πD the Euclidean projection onto this domain. If the
gradient step takes the state outside of the domain, the state
is projected back onto D. The pseudo-code is presented in
Algorithm 1, where the gradient ∇θ`t(θ) of the cost at θ at
time t is given by

− 2

(
Yt −

s−1∑
i=0

θiYt−i−1

)
(Yt−1, Yt−2, . . . , Yt−s) . (47)

Note a slight abuse of notation in Algorithm 1: the vec-
tor θt ∈ Rs denotes the state at time t, while in (45) and
elsewhere in the text, θi denotes the scalar coordinates of
θ. Whether the vector or the coordinates are considered will
always be clear from context.

For any LDS L, let ft(L), defined by (13), be the pre-
diction of Yt that Kalman filter associated with L makes,

Algorithm 1 On-line Gradient Descent

1: Input: Regression length s, domain bound D.
Observations {Yt}∞0 , given sequentially.

2: Set the learning rate ηt = t−
1
2 .

3: Initialize θs arbitrarily in D.
4: for t = s to∞ do
5: Predict ŷt =

∑s−1
i=0 θt,iYt−i−1

6: Observe Yt and compute the loss `t(θt) of (46)
7: Update θt+1 ← πD (θ − ηt∇`t(θt)) using (47)
8: end for

given Yt−1, . . . , Y0. We start all filters with the initial state
m0 = 0, and initial covariance C0 = Ids, the s× s identity
matrix. Let S be any family of LDSs. Then for any sequence
{Yt}T0 , the quantity

T∑
t=0

`(θt)−min
L∈S

T∑
t=0

`(Yt, ft(L)), (48)

where θt are the sequence of states produced by Algorithm
1, is called the regret. As discussed in the introduction,∑T
t=0 `(θt) is the total error incurred by the algorithm, and

minL∈S
∑T
t=0 `(Yt, ft(L)) is the loss of the best (in hind-

sight) Kalman filter in S. Therefore, small regret means that
the algorithm performs on sequence {Yt}T0 as well as the
best Kalman filter in S, even if we are allowed to select that
Kalman filter in hindsight, after the whole sequence is re-
vealed.

In the Supplementary Material, we prove the following
bound on the regret of Algorithm 1:

Theorem 6. Let S be a finite family of LDSs, such that
every L = L(F,G, v,W ) ∈ S, is observable and has
W > 0. Let B0 be given. For any ε > 0, there are s,D, and
CS , such that the following holds:

For every sequence Yt with |Yt| ≤ B0, if θt is a sequence
produced by Algorithm 1 with parameters s and D, then for
every T > 0,∑T

t=0 `t(θt)−minL∈S
∑T
t=0 `(Yt, ft(L))

≤ CS + 2(D2 +B2
0)
√
T + εT. (49)

Due to the limited space in the main body of the text, we
describe only the main ideas of the proof here. Similarly to
other proofs in this domain, it consists of two steps. In the
first step we show that

T∑
t=0

`t(θt)−min
φ∈D

T∑
t=0

`(Yt, ŷt(φ)) ≤ 2(D2+B2
0)
√
T . (50)

This means that Algorithm 1 performs as well as the best
in hindsight fixed state vector φ. This follows from the gen-
eral results in (Zinkevich 2003). In the second step, we use
the approximation Theorem 2 to find for each L ∈ S an
appropriate θL ∈ D, such that the predictions ft,L are ap-
proximated by ŷt(θL). It follows from this step, that the best
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Kalman filter performs approximately as well as the best θL.
Specifically, we have

min
L∈S

T∑
t=0

`(Yt, ŷt(θL)) ≤ min
L∈S

T∑
t=0

`(Yt, ft(L)) + εT (51)

Because by construction θL ∈ D, clearly it holds that

min
φ∈D

T∑
t=0

`(Yt, ŷt(φ)) ≤ min
L∈S

T∑
t=0

`(Yt, ŷt(θL)),

and therefore combining (50) and (51) yields the statement
of Theorem 6.

Experiments
To illustrate our results, we present experiments on a few
well-known examples in the Supplementary Material. Out
of those, we chose one to present here:
Example 7 (Adapted from (Hazan, Singh, and Zhang
2017)). Consider the system:

G = diag([0.999, 0.5]), F ′ = [1, 1], (52)

with process noise distributed as ωt ∼ N (0, w · Id2) and
observation noise νt ∼ N (0, v) for different choices of
v, w > 0.

In Figure 2, we compare the prediction error for 4 meth-
ods: the standard baseline last-value prediction ŷt+1 := yt,
also known as persistence prediction, the spectral filtering of
(Hazan, Singh, and Zhang 2017), Kalman filter, and AR(2).
Here AR(2) is the truncation of Kalman filter, given by (13)
with regression depth s = 1 and no remainder term. Aver-
age error over 100 observation sequences generated by (52)
with v = w = 0.5 is shown as solid line, and its standard
deviation is shown a as shaded region. Note that from some
time on, spectral filtering essentially performs persistence
prediction, since the inputs are zero. Further, note that both
Kalman filter and AR(2) considerably improve upon the per-
formance of last- value prediction.

In Figure 3, we compare the performance of AR(2) and
Kalman filter under varying magnitude of noises v, w. In
particular, colour indicates the ratio of the errors of Kalman
filter to the errors of AR(2), wherein the errors are the av-
erage prediction error over 10 trajectories of (52) for each
cell of the heat-map, with each trajectory of length 50. (The
formula is given in the Supplementary Material.) Consis-
tent with our analysis, one can observe that increasing the
variance of process noise improves the approximation of the
Kalman filter by AR(2).

Finally, in Figure 4, we illustrate the decay of the remain-
der term by presenting the mean (line) and standard devia-
tion (shaded area) of the error as a function of the regres-
sion depth s. There, 4 choices of the covariance matrix W
of the process noise and the variance v of the observation
noise are considered within Example 7 and the error is av-
eraged over N = 100 runs of length T = 200. Of course,
as expected, increasing s decreases the error, until the error
approaches that of the Kalman filter. Observe again that for
a given value of the observation noise, the convergence w.r.t
s is slower for smaller process noise, consistently with our
theoretical observations.

Conclusions
We have presented a forecasting method, which is applicable
to arbitrary sequences and comes with a regret bound com-
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peting against a class of methods, which includes Kalman
filters.

We hope that our algorithms and Python code available
from https://github.com/jmarecek/OnlineLDS will spur fur-
ther research in forecasting and system identification.
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