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Abstract

We propose a simple yet effective method for unsuper-
vised domain adaptation. When training and test distributions
are different, standard supervised learning methods perform
poorly. Semi-supervised domain adaptation methods have
been developed for the case where labeled data in the tar-
get domain are available. However, the target data are often
unlabeled in practice. Therefore, unsupervised domain adap-
tation, which does not require labels for target data, is re-
ceiving a lot of attention. The proposed method minimizes
the discrepancy between the source and target distributions
of input features by transforming the feature space of the
source domain. Since such unilateral transformations trans-
fer knowledge in the source domain to the target one with-
out reducing dimensionality, the proposed method can effec-
tively perform domain adaptation without losing information
to be transfered. With the proposed method, it is assumed
that the transformed features and the original features differ
by a small residual to preserve the relationship between fea-
tures and labels. This transformation is learned by aligning
the higher-order moments of the source and target feature dis-
tributions based on the maximum mean discrepancy, which
enables to compare two distributions without density estima-
tion. Once the transformation is found, we learn supervised
models by using the transformed source data and their labels.
We use two real-world datasets to demonstrate experimen-
tally that the proposed method achieves better classification
performance than existing methods for unsupervised domain
adaptation.

1 Introduction
Many supervised learning methods rely heavily on the as-
sumption that training and test data follow the same distri-
bution. However, this assumption is often violated in real-
word applications. For example, in computer vision, images
taken with different cameras or in different conditions fol-
low different distributions (Torralba and Efros 2011). In sen-
timent analysis, reviews on different product categories fol-
low different distributions (Blitzer et al. 2007). When the
training and test distributions are different, standard super-
vised learning methods perform significantly worse (Ben-
David et al. 2007; Saenko et al. 2010).
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Although large labeled data drawn from the test distri-
bution can alleviate this problem, such data are often time-
consuming and impractical to collect in real-world applica-
tions since labels need to be manually annotated by domain
experts. Domain adaptation is a technique that aims at solv-
ing a learning problem in a domain, called a target domain,
by using data in a related domain, called a source domain.
Existing domain adaptation methods can be divided into two
categories. The first is semi-supervised domain adaptation
which requires labeled data in the source domain and a small
number of labeled data in the target domain (Saenko et al.
2010). Although semi-supervised domain adaptation is ef-
fective, it cannot be used in situations where all data in the
target domain are unlabeled, which are quite common in
practice. The other is unsupervised domain adaptation which
uses labeled data in the source domain and unlabeled data
in the target domain. Since unsupervised domain adaptation
does not require labeled data in the target domain, it can be
used in a wider range of situations than semi-supervised do-
main adaptation. Thus, we focus on unsupervised domain
adaptation in this paper.

The core idea of recent unsupervised domain adapta-
tion is to find the domain-invariant representations where
the two domains are close and to learn supervised models
on this representation. These methods usually incorporate
the dimensionality reduction to find good representations
(Pan et al. 2011; Long et al. 2015; Sun and Saenko 2015;
Baktashmotlagh, Harandi, and Salzmann 2016). However,
as pointed out in (Sun, Feng, and Saenko 2016), the di-
mensionality reduction process risks losing important infor-
mation to be transfered. If this information disappears, the
model performs poorly in the target domain.

In this paper, we propose a simple yet effective method
for unsupervised domain adaptation. The proposed method
reduces the discrepancy between the source and target dis-
tributions of input features by transforming the feature space
of the source domain. Since such unilateral transforma-
tions match two distributions without reducing dimension-
ality while referring to the original data structure of the tar-
get domain, the proposed method can transfer knowledge in
the source domain to the target one without losing informa-
tion to be transfered. With regard to the transformations, the
transformed features and the original features are assumed
to differ by a small residual function. Since this assump-
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tion prevents the proposed method from changing source
features drastically, which tends to destroy the relationship
between features and labels, and therefore, deteriorate per-
formance on the target domain, the proposed method should
perform domain adaptation more effectively and stably with-
out destroying this relationship. To measure the difference
between two feature distributions, the proposed method uti-
lizes the maximum mean discrepancy (MMD), which is an
effective non-parametric criteria that compares two distribu-
tions in a reproducing kernel Hilbert space (RKHS). Since
the MMD compares two distributions without density esti-
mation, which is known to be difficult, the proposed method
can effectively compare the source and target feature distri-
butions. By minimizing the value of the MMD, the proposed
method finds the transformation that aligns the higher-order
moments of the source and target feature distributions. Once
the transformation is found, we can use any models for clas-
sification and regression by using the label information of
the source data.

2 Related Work
The literature on domain adaptation spans a very broad
range, so we only review unsupervised domain adaptation
where the feature representation for the source and target
domains is the same.

Instance re-weighting methods are early techniques for
unsupervised domain adaptation (Shimodaira 2000; Huang
et al. 2006; Kumagai and Iwata 2017). These methods re-
duce the discrepancy of two domains by weighting a source
sample with its importance, which is defined by the ratio
between the source and target feature distributions. These
methods require the following assumption to hold the con-
ditional distribution of the class label given the features is
constant between training and test phases. On the other hand,
the proposed method does not require this assumption.

Recent unsupervised approaches try to find a projection
of both the source and target data into a lower-dimensional
latent common space where the source and target distribu-
tions are close (Pan et al. 2011; Gong et al. 2012; Long et
al. 2015; Baktashmotlagh, Harandi, and Salzmann 2016).
These methods usually apply the dimensionality reduction
to both the source and target data for finding the lower-
dimensional latent common space. However, as pointed out
in (Sun, Feng, and Saenko 2016), the dimensionality re-
duction methods risk losing important information to be
transfered since they try to find only common parts of two
domains. In contrast, the proposed method uses unilateral
transformations, which transform the source features into
the target space, to try to bridge the two domains without
losing important information to be transfered.

Some methods use unilateral transformations, which
transform source data into the target space for matching the
two domains. The proposed method belongs to this category.
Subspace alignment (Fernando et al. 2013) and Subspace
distribution alignment (Sun and Saenko 2015) use unilateral
transformations after projecting both the source and target
data into lower-dimensional subspaces. Correlation align-
ment (CORAL) (Sun, Feng, and Saenko 2016) is the most

closely related to the proposed method. CORAL uses unilat-
eral transformations that convert the source original features
into the target space and outperforms various existing meth-
ods (Sun, Feng, and Saenko 2016). Although CORAL aligns
only the second order moment of the source and target dis-
tributions using a Frobenius norm, the proposed method can
match the higher-order moments using the MMD, which is
more effective for domain adaptation tasks.

Deep neural networks (DNN) have recently been ap-
plied to unsupervised domain adaptation. Many methods
learn domain-invariant features by introducing additional
loss layers to minimize the discrepancy between two do-
mains (Long et al. 2015; Ganin et al. 2016; Long et al. 2016;
Long, Wang, and Jordan 2017; Zellinger et al. 2017). Some
methods use the generative adversarial network (Goodfel-
low et al. 2014) to transform source images to target im-
ages for visual domain adaptation (Shrivastava et al. 2017;
Bousmalis et al. 2017; Benaim and Wolf 2017; Hoffman et
al. 2018). Although DNN based methods perform impres-
sively, they require a large amount of data for training, and
have many hyper parameters to be tuned such as the num-
ber of hidden layers, the size of mini-batch, and the learning
rate. The proposed method has a simpler structure than DNN
based methods, so it should perform well even when data
size is small, and be easy to implement. Indeed, we will ex-
perimentally demonstrate that the proposed method achieves
better performance than a existing DNN based method when
the amount of data is small in Section 5. In addition, many
DNN based methods deteriorate the interpretability since the
original features are collapsed by the multi-layer non-linear
functions (Ribeiro, Singh, and Guestrin 2016). In contrast,
the proposed method can preserve the original feature space
of the target domain.

The MMD is widely used non-parametric metric that
measures the discrepancy between two distributions. Al-
though the MMD has been used in many unsupervised
domain adaptation methods, many methods use it in a
lower-dimensional latent common space (Pan et al. 2011;
Long et al. 2015; Baktashmotlagh, Harandi, and Salzmann
2016). To our knowledge, the proposed method is the first
attempt to use the MMD in the framework of the unilateral
transformations.

3 Preliminaries
In this section, we review key concepts used in the proposed
method: the kernel embeddings of distributions and the max-
imum mean discrepancy.

3.1 Kernel Embeddings of Distributions
The kernel embeddings of distributions are to embed a dis-
tribution P into an RKHS Hk endowed with a kernel k
(Sriperumbudur et al. 2010). P is represented as an ele-
ment µP in the RKHS. Formally, the element µP is de-
fined as µP := Ex∼P[k(·,x)] ∈ Hk, where kernel k is
referred to as the embedding kernel and Ex∼P[f(x)] de-
notes the expectation of function f with respect to random
variable x. The kernel embedding preserves all the prop-
erties about the distribution such as mean, covariance and
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higher-order moments if k is characteristic (e.g. RBF ker-
nel) (Sriperumbudur et al. 2010). If k is the polynomial ker-
nel of degree d, which is non-characteristic, the kernel em-
bedding µP preserves information up to the d-th moment
of P (Muandet et al. 2017). Suppose we are given an sam-
ples X = {x1, . . . ,xN} from distribution P. In this case,
we can estimate µP by the following empirical average,
µ̂P := 1

N

∑N
n=1 k(·,xn) ∈ Hk, which can be approximated

with an error rate of ‖µP − µ̂P‖Hk
= O(N− 1

2 ) (Smola et
al. 2007). Unlike kernel density estimation, the error rate of
the kernel embedding is independent of the dimensionality
of the distribution.

3.2 Maximum Mean Discrepancy
Given samples X = {x1, . . . ,xN} and Y = {y1, . . . ,yM}
drawn from two distributions PX and PY, respectively, there
are many criteria such as Kullback-Leibler divergence that
can be used for the distance between two distributions. How-
ever, many of these criteria are based on parametric models
and require density estimation, which is known to be diffi-
cult. The maximum mean discrepancy (MMD) (Gretton et
al. 2012) is an effective non-parametric criterion that com-
pares the two distributions by embedding each distribution
into the RKHS. Given two distributions PX and PY, the
MMD between these distributions is defined as

MMD(PX,PY) := ‖µPX
− µPY

‖Hk

= ‖Ex∼PX
[k(·,x)]− Ey∼PY

[k(·,y)]‖Hk
, (1)

where ‖ · ‖Hk
is the RKHS norm. It is known that

MMD(PX,PY) = 0 if and only if PX = PY when the ker-
nel k is characteristic (Gretton et al. 2012). When the kernel
k is the polynomial kernel of degree d, MMD(PX,PY) = 0
suggests that up to the d-th moments of the two distributions,
PX and PY, are the same (Borgwardt et al. 2006). The em-
pirical estimate of the squared MMD using two datasets, X
and Y, is computed by

M̂MD
2
(X,Y) =

∥∥∥∥∥
N∑

n=1

k(·,xn)

N
−

M∑
m=1

k(·,ym)

M

∥∥∥∥∥
2

Hk

=

N∑
n,m

k(xn,xm)

N2
−2

N,M∑
n,m

k(xn,ym)

NM
+

M∑
n,m

k(yn,ym)

M2
.

(2)

4 Proposed Method
In this section, we explain the details of the proposed
method.

4.1 Notations and Task
We treat a multi-class classification problem as a running
example though the proposed method is applicable to other
supervised learning tasks. Let Ds = {(xs

m, y
s
m)}Mm=1 be a

set of labeled data in the source domain, where xs
m ∈ RD is

the D-dimensional feature vector of the m-th sample of the
source domain, ysm ∈ {1, . . . , J} is its class-label, M is the
number of the labeled data in the source domain, and J is the

Figure 1: Overview of the proposed method. The proposed
method finds the transformation F , which converts the
source features into the target space, by minimizing the dis-
crepancy between the source and target feature distributions
in a RKHS based on the MMD while imposing the restric-
tions that the transformed features and the original features
do not differ significantly. After the transformation is found,
classifiers that fit on the target domain are learned by the
transformed labeled source data.

number of class-labels. We suppose that the samples in the
source domain {xs

m}Mm=1 are drawn from the source feature
distribution Ps. Dt = {xt

n}Nn=1 is a set of unlabeled data
in the target domain, where xt

n ∈ RD is the D-dimensional
feature vector of the n-th sample of the target domain and
N is the number of the unlabeled data in the target domain.
The samples in the target domain {xt

n}Nn=1 are drawn from
the target feature distribution Pt. Here we assume that the
class-labels are the same in both domains. Our purpose is to
find a classifier h : RD → {1, . . . , J}, which can accurately
classify samples drawn from the target feature distribution
Pt, given the training data Ds ∪ Dt.

4.2 Approach and Objective Function
In unsupervised domain adaptation, classifiers that fit on the
target domain cannot be learned by directly using target data
since they are unlabeled. Instead, the proposed method aims
to minimize the discrepancy between the source and target
feature distributions by applying a linear transformation F
to source features x. After transformation, we can learn any
classifiers by using transformed labeled source data. Since
the source and target feature distributions are similar after
transformation, we expect the learned classifiers to perform
well in the target domain. Figure 1 shows an overview of the
proposed method.

With regard to the transformations, the form of the trans-
formation must be restricted since there are many transfor-
mations destroy the relationship between features and la-
bels even if they can match two feature distributions. In
much previous works, orthogonal constraints to transforma-
tion matrices are used (Pan et al. 2011; Jhuo et al. 2012;
Gong et al. 2012; Baktashmotlagh, Harandi, and Salzmann
2016). Some methods constrain transformations by allowing
only original features to be reconstructed (Chen et al. 2012;
Jhuo et al. 2012; Hoffman et al. 2018). In this paper, we
use different transformations from these techniques. Since
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transforming the source features drastically risks destroying
the relationship between features and labels, it is important
not only to match two feature distributions but also to re-
strict the magnitude of the transformations. To realize this,
we introduce the residual function for the transformations,
i.e., we assume that the transformed features F (x) and the
original features x differ by a small residual function as fol-
lows, F (x) := (A+ I)x, where A is a D ×D matrix with
small Frobenius norm to be estimated, and I is a D × D
identity matrix. This formulation means that the proposed
method learns the residual function Ax with reference to
the source features x instead of directly learning the un-
referenced functions F (x) := Ax. By using this residual
function, the proposed method can avoid to transform the
source features drastically when matching two feature dis-
tributions. This formulation is simple but quite effective to
obtain the proper transformation, which will be empirically
demonstrated in Section 5. To the best of our knowledge,
this is the first time this transformation function is used in
the unsupervised domain adaptation.

The parameter A is estimated so as to minimize the dif-
ference between the source and target distributions based on
the MMD. Specifically, we consider the following objective
function L to be minimized for matching two distributions,

L(A) =
1

2
‖Ext∼Pt

[k(·,xt)]− Exs∼Ps [k(·, (A+ I)xs)]‖2Hk

+
γ

2
‖A‖2F, (3)

where γ is a positive constant, ‖ · ‖F denotes the matrix
Frobenius norm, and k represents the embedding kernel. The
first term on the right hand side of (3) is the square value
of the MMD between the target and source feature distri-
butions. The second term on the right hand side of (3) is
the regularization term. Note that when γ is large, the pa-
rameter A tends to become a zero matrix, which brings the
transformation F (x) close to the identity mapping. The pro-
posed method can flexibly control the magnitude of devia-
tions from the identity mapping, which does not change any
of the source features, by changing the value of γ. Therefore,
it would be more flexible than the hard orthogonal and/or
reconstruction constraints in the previous works. The empir-
ical estimate of the objective function L̂ can be computed
as

L̂= 1

2

∥∥∥∥∥
N∑
n

k(,xt
n)

N
−

M∑
m

k(, (A+I)xs
m)

M

∥∥∥∥∥
2

Hk

+
γ

2
‖A‖2F

=

N∑
n,m=1

k(xt
n,x

t
m)

2N2
−

N,M∑
n,m=1

k(xt
n, (A+ I)xs

m)

NM

+

M∑
n,m=1

k((A+ I)xs
n, (A+ I)xs

m)

2M2
+
γ

2
‖A‖2F. (4)

4.3 Optimization
We can optimize the empirical objective function L̂ by us-
ing gradient-based methods, which require the gradient in-

formation. The gradient of the kernel with respect A de-
pends on the choice of kernels. In much previous works,
characteristic kernels such as a RBF kernel have usually
been used for the MMD since they can strictly compare
two distributions (Huang et al. 2006; Pan et al. 2011; Long
et al. 2015; Baktashmotlagh, Harandi, and Salzmann 2016;
Long et al. 2016). However, a few studies state that using
non-characteristic kernels such as a polynomial kernel may
be more appropriate for the MMD in practice (Borgwardt et
al. 2006). Following this argument, we use the polynomial
kernel of degree d, k(x,y) = (1 + x>y)d. When the poly-
nomial kernel of degree d is used, the gradient of L̂ with
respect to the parameter A is given by,

∂L̂
∂A

=−
N,M∑
n,m

d(1+xt
n
>
(A+I)xs

m)d−1 ·xt
nx

s
m
>

NM
+ γA

+

M∑
n,m

d(1+xs
n
>(A+I)>(A+I)xs

m)d−1 ·(A+I)xs
nx

s
m
>

2M2

After the parameter A is estimated, we learn any off-the-
shell classifiers by using the transformed labeled source data
{F (xs

m), ysm)}Mm=1. Although the proposed method is ap-
plied to the original features, it is also possible to be applied
to any features such as deep features (e.g, the fc7 layer of
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) ) by re-
garding them as the original features.

5 Experiments
We conducted experiments using two real-world datasets
to asses the effectiveness of the proposed method. For
both datasets, we use a linear SVM as the base classi-
fier the same as (Pan et al. 2011; Fernando et al. 2013;
Sun, Feng, and Saenko 2016).

5.1 Datasets
We used two real-world datasets: Office-Caltech10 and
Amazon-Review.

The Office-Caltech10 is a well-used benchmark dataset
for cross-domain object recognition (Gong et al. 2012).
This dataset consists of object images taken from four do-
mains: Amazon, DSLR (digital single-lens reflex), Web-
cam, and Caltech. Each image is represented by SURF
features. For experiments, we followed the standard proto-
col of (Gong et al. 2012; Gong, Grauman, and Sha 2013;
Fernando et al. 2013; Sun, Feng, and Saenko 2016). In
particular, we used 10 object classes common to all four
domains. SURF features were encoded with 800-bin bag-
of-words histograms and normalized to have a zero mean
and unit standard deviation in each dimension. We con-
ducted experiments in 20 randomized trials for each do-
main pair and report the mean accuracy and the standard
deviation for each domain pair. For each trial, we randomly
selected the same number of labeled data in the source
domain as training data (20 samples per each category),
and used all the unlabeled data as testing data. Follow-
ing the previous works (Gong, Grauman, and Sha 2013;
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Baktashmotlagh, Harandi, and Salzmann 2016), we did not
use DSLR as a source domain since its data size was too
small. Therefore, we conducted experiments on the remain-
ing nine domain pairs.

The Amazon-Review is a widely used benchmark dataset
for cross-domain sentiment analysis (Blitzer et al. 2007;
Gong, Grauman, and Sha 2013; Sun, Feng, and Saenko
2016). This dataset consists of product reviews on four do-
mains; kitchen appliances, DVDs, books, and electronics.
We used the processed data from (Gong, Grauman, and Sha
2013) , in which the dimensionality of the bag-of-words fea-
tures (words) was reduced to the top 400 words that have
the largest mutual information with the labels. This reduc-
tion did not reduce classification performance significantly.
In addition, we normalized this dataset to have a zero mean
and unit standard deviation in each dimension since some
comparison methods require this standardization. For each
domain, there are 1,000 positive and 1,000 negative reviews.
We conducted experiments on 20 randomized trials for each
domain pair. For each trial, we chose 1,600 samples in the
source domain for labeled training data and 400 samples in
the target domain for unlabeled testing data. We report the
mean accuracy and the standard deviation for each domain
pair.

5.2 Comparing Methods
We compared the proposed method with four popular unsu-
pervised domain adaptation methods: Transfer component
analysis (TCA) (Pan et al. 2011), Subspace alignment (SA)
(Fernando et al. 2013), Correlation alignment (CORAL)
(Sun, Feng, and Saenko 2016), and Central moment discrep-
ancy (CMD) (Zellinger et al. 2017). In addition, we also
evaluate a method that learns classifiers by a linear SVM
with only labeled source data as a baseline method (NoAd-
apt). TCA matches minimizes the domain discrepancy in
the lower-dimensional common latent space on the basis of
the MMD. SA aligns the source and target subspaces by
applying unilateral transformations to the source subspace.
CORAL minimizes domain shift on the original feature
space by aligning the second-order moment of the source
and target feature distributions. CMD is one of the state-of-
the-art unsupervised domain adaptation methods based on
deep learning, which minimizes the domain discrepancy in
the hidden activation space by matching higher-order mo-
ments of the distributions via the CMD metric.

For CMD, we prepared the following neural network ar-
chitectures for each dataset. For Office-Caltech10, many
previous studies have evaluated the fine-tuning of pretrained
networks using ImageNet. This means that a tremendous
amount of data in another source domain are used. To eval-
uate the performance with only the source and target data,
we did not use such pretrained networks and trained neural
nets from scratch. Since there are many tasks where there are
only a small amount of data such as bioinformatics (Con-
sortium and others 2015) and medical care (Shaikhina and
Khovanova 2017), it is meaningful to conduct experiments
with such settings. In the experiments, we used a small CNN
architecture, which is the same as MNIST architecture ex-
cept for the domain adaptation component in (Ganin et al.

2016) since the data size is small. Raw images, where each
pixel value was rescaled to [0,1], were used as the input
data instead of those of the SURF features. The CMD regu-
larizer was applied to the fully connected layer before the
output layer. In addition, we applied dropout to the both
fully connected layers before the output layer for alleviat-
ing overfitting (dropout rate is 0.5). The minibatch size is set
to 32. We used the Adadelta (Zeiler 2012), and the default
parametrization was used as implemented in Keras (Chollet
and others 2015) the same as (Zellinger et al. 2017). For the
Amazon-Review, we used the same architecture as (Ganin et
al. 2016; Zellinger et al. 2017) with one dense hidden layer
with 50 hidden nodes, sigmoid activation functions and soft-
max output function. The CMD regularizer was applied to
the dense hidden layer. The minibatch size is set to 400. We
used the Adagrad (Duchi, Hazan, and Singer 2011) to deal
with sparse data, and the default parametrization from Keras
was used the same as (Zellinger et al. 2017).

5.3 Hyper Parameters Setting
In the setting of unsupervised domain adaptation, we can-
not use any labeled data in the target domain for choos-
ing the value of hyper parameters. Therefore, we chose
the value of hyper parameters for these methods by doing
cross-validation with the transformed labeled source data
the same as (Sun, Feng, and Saenko 2016). By improving
the generalization performance in the source domain using
the target data as well as the source data, we expect that
the generalization performance in the target domain also im-
prove. We considered the following variations: the regular-
izer weight for linear SVM C ∈ {103, 102, . . . , 10−5} in all
methods except for CMD, the dimension of the latent space
K ∈ {10, 20, 30, 40, 50, 100, 200} in TCA and SA, the band
width of the RBF kernel is determined by median trick, that
is, it is set by the median of the squared distance between all
training samples in TCA, and the covariance regularization
parameter in the CORAL is set to one the same as for (Sun,
Feng, and Saenko 2016). The regularizer weight λ is cho-
sen in {1, 10−1, 10−2, 10−3}, and the number of the central
moments is chosen in {3, 4, 5} for CMD. The regularizer
weight for the residual function in the proposed method is
chosen in γ ∈ {2·105, 105, 2·104, 104, 2·103, 2·102, 20, 2},
the degree of the polynomial kernel in the proposed method
is chosen in {3, 4, 5}. For all datasets, the parameter A in the
proposed method is initialized by the solution of CORAL
minus the identity matrix.

5.4 Results
First, we investigated the unsupervised domain adaptation
performance of the proposed method. Tables 1 shows the av-
erage and standard deviation of accuracies with different do-
main pairs with Office-Caltech10 and Amazon-Review. The
proposed method outperformed the other methods in almost
all domain pairs with both datasets (18 of 21 cases). For the
Office-Caltech10, the proposed method achieved the high-
est performance. In contrasts, CMD deteriorated the perfor-
mance greatly in almost all domain pairs. One of the rea-
sons for this poor performance is that the number of data
was too small to train the CNN even if its architecture was
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Table 1: Average and standard deviation of accuracies of 21 domain shifts on the Office-Caltech10 and Amazon-Review. We
abbreviate each domain as follows; C: Caltech, A: Amazon, W: Webcam, D: DSLR, K: kitchen, Ds: DVDs, B: books, E:
electronics. Values in boldface are statistically better than others (in paired t-test, p = 0.05). The bottom row gives the number
of best cases of each method.

Data Pairs Proposed NoAdapt TCA SA CORAL CMD
Office- A→ C 37.91±1.287 37.30±1.351 39.87±1.700 38.55±1.542 39.79±1.357 28.86±1.573
Caltech10 A→ D 42.42±3.077 37.74±2.121 39.20±4.222 35.86±3.615 38.31±2.719 41.62±4.818

A→W 37.90±2.123 36.54±3.499 36.71±2.084 35.49±2.628 37.32±2.133 23.15±2.892
C→ A 45.40±2.261 44.36±2.215 46.72±2.180 45.75±2.400 46.13±2.279 39.15±2.978
C→ D 41.91±2.860 40.64±2.817 39.87±3.560 39.97±4.543 40.09±3.136 34.30±3.748
C→W 34.60±3.815 33.72±2.895 33.35±3.232 31.56±3.110 35.32±3.650 24.92±4.145
W→ A 36.78±1.069 34.62±1.044 36.40±1.371 36.25±1.014 37.42±1.162 23.30±2.774
W→ C 34.47±0.949 31.19±0.988 32.77±1.064 32.65±1.354 34.16±1.074 20.49±1.428
W→ D 82.45±2.487 76.85±2.027 79.58±2.404 74.36±2.731 79.97±2.421 67.36±3.751

Amazon- K→ Ds 74.08±1.771 74.03±1.794 74.04±1.995 72.34±2.107 72.85±1.855 74.11±1.672
Review K→ B 75.23±1.808 75.00±1.644 74.20±1.913 72.69±2.127 73.39±1.808 73.95±1.684

K→ E 82.10±1.870 82.05±1.811 82.08±1.977 80.86±1.868 81.60±1.719 81.69±1.808
Ds→ K 80.45±1.718 79.58±1.725 79.24±1.958 72.39±2.771 76.39±1.467 78.59±1.710
Ds→ B 79.83±1.820 79.38±1.852 78.64±1.931 76.94±2.109 77.05±2.002 78.05±2.050
Ds→ E 76.54±1.692 76.07±1.452 75.47±1.532 73.99±1.733 72.74±1.615 75.76±1.812
B→ K 79.63±1.602 79.00±1.589 78.58±1.739 76.15±2.002 76.78±1.337 78.13±1.472
B→ Ds 79.21±1.868 78.90±1.834 79.21±1.696 77.50±1.998 77.91±1.762 78.16±1.795
B→ E 76.40±1.544 76.32±1.456 76.34±1.653 73.93±2.048 73.68±1.220 75.45±1.704
E→ K 84.75±1.717 84.83±1.677 83.90±1.620 82.56±1.762 82.94±1.871 83.58±1.412
E→ Ds 72.74±1.781 72.53±1.807 72.81±1.565 70.18±2.648 71.55±2.154 72.80±1.971
E→ B 74.24±1.955 73.86±1.881 74.07±1.964 71.30±2.047 72.99±1.798 74.00±1.700
# Best 18 5 8 0 4 4

small. This result suggests that the proposed method is more
suitable than the DNN based methods for the case where
data size is small. For the Amazon-Review, existing do-
main adaptation methods (SA, CORAL, and CMD) actu-
ally performed worse than the baseline method (NoAdapt).
This dataset has bag-of-words text features which are ex-
tremely sparse and less correlated than image features like
the Office-Caltech10. This property makes domain adapta-
tion difficult (Sun, Feng, and Saenko 2016). Nevertheless,
the proposed method had a better classification performance
than NoAdapt. These results show the proposed method can
learn classifiers that perform well on the target domain.

Second, we investigated the effect of the formulation of
the transformation function F (x) = (A + I)x. Table 2
shows the average and standard deviation of accuracies of
all domain pairs in two datasets obtained by the proposed
method with the residual function, F (x) = (A + I)x,
and with the unreferenced function, F (x) = Ax. Here, to
learn the unreferenced function F (x) = Ax, we used the
objective function with (A + I)x replaced by Ax in (3).
In addition, the parameter A in the unreferenced function
F (x) = Ax is initialized by the solution of CORAL be-
fore performing optimization for fair comparison. The pro-
posed method with the residual function outperformed that
with the unreferenced function by large margins on all do-
main pairs (21 of 21 cases). One of the reason that the un-
referenced function deteriorated performance greatly is that
it does not have any mechanism to preserve the relation-
ship between features and labels. In contrast, the proposed
method with the residual function would be able to preserve
the relationship between features and labels when matching

(a) Office-Caltech10 (b) Amazon-Review

Figure 2: Average of accuracies over all domain pairs of
each dataset when changing the value of γ.

two feature distributions owing to the form of the residual
function. From these results, we found that the residual func-
tion is effective to use in the proposed method for learning
good adaptations.

Third, we investigated how the unsupervised domain
adaptation performance of the proposed method changed
against the value of the regularizer weight for the residual
function γ, which controls the magnitude of deviations from
the identity mapping. Figure 2 represents the average of ac-
curacies over all domain pairs of each dataset when chang-
ing the value of γ. Here, we fixed the degree of the polyno-
mial kernel to three to investigate only the effect of changing
the value of γ. Note that the accuracies of NoAdapt were
constant when varying the value of γ since it does not de-
pend on γ. When the value of γ was small, the performance
of the proposed method was less accurate than NoAdapt
since the regularization term in (3) cannot suppress the mag-
nitude of the transformation. As the value of γ became large,
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Table 2: Average and standard deviation of accuracies of 21
domain shifts on the Office-Caltech10 and Amazon-Review
obtained by the proposed method with F (x) = (A + I)x
and with F (x) = Ax. Values in boldface are statistically
better than others (in paired t-test, p = 0.05). The bottom
row gives the number of best cases of each method.

Data Pairs F (x) = (A+ I)x F (x) = Ax
Office- A→ C 37.91±1.287 19.77±2.939
Caltech10A→ D 42.42±3.077 17.77±4.043

A→W 37.90±2.123 18.66±3.561
C→ A 45.40±2.261 15.03±11.61
C→ D 41.91±2.860 23.54±5.756
C→W 34.60±3.815 21.76±4.295
W→ A 36.78±1.069 13.14±4.391
W→ C 34.47±0.949 17.89±2.519
W→ D 82.45±2.487 67.36±4.871

Amazon- K→ Ds 74.08±1.771 56.42±2.636
Review K→ B 75.23±1.808 55.98±2.944

K→ E 82.10±1.870 58.66±2.481
Ds→ K 80.45±1.718 56.93±2.319
Ds→ B 79.83±1.820 57.27±2.217
Ds→ E 76.54±1.692 54.73±4.020
B→ K 79.63±1.602 57.40±3.092
B→ Ds 79.21±1.868 57.40±2.216
B→ E 76.40±1.544 56.38±2.035
E→ K 84.75±1.717 59.98±2.396
E→ Ds 72.74±1.781 55.65±2.681
E→ B 74.24±1.955 58.20±2.531
# Best 21 0

the proposed method became to show good accuracies com-
pared with NoAdapt. Since the source features did not be
drastically transformed when matching two feature distribu-
tions, the proposed method would be able to perform good
adaptation without destroying the relationship between fea-
tures and labels.

Last, we compared the proposed method with the polyno-
mial kernel in the proposed method with the RBF kernel, which
is widely used in many previous studies (Huang et al. 2006;
Pan et al. 2011; Baktashmotlagh, Harandi, and Salzmann 2016;
Long et al. 2016). In our experiments, the band width of the RBF
kernel is set by the median of the squared distance of all training
samples. Table 3 represents the average and standard deviation of
accuracies of all domain pairs for the two datasets obtained by the
proposed methods with different kernels. For many domain pairs
with both datasets (14 of 21 cases), the proposed method with the
RBF kernel tended to perform worse than the proposed method
with the polynomial kernel. One reason the RBF kernel did not
work well is that this characteristic kernel tried to match all mo-
ments of the source and target distributions too much. Since match-
ing the two distributions perfectly on the original feature space
tends to change the source features drastically, it risks destroying
the data structure between features and labels. In contrasts, the pro-
posed method with the polynomial kernel of degree d tries to match
up to the d-th moment of the source and target feature distributions.
Therefore, the proposed method with this kernel probably did not
convert source features as excessively as that with the RBF kernel.
As a result, we consider that the proposed method with the polyno-
mial kernel outperformed the RBF kernel.

Table 3: Average and standard deviation of accuracies of 21
domain shifts on the Office-Caltech10 and Amazon-Review
obtained by the proposed method with different kernels. Val-
ues in boldface are statistically better than others (in paired
t-test, p = 0.05). The bottom row gives the number of best
cases of each method.

Data Pairs Polynomial RBF
Office- A→ C 37.91±1.287 37.34±1.363
Caltech10 A→ D 42.42±3.077 37.99±3.305

A→W 37.90±2.123 36.56±2.068
C→ A 45.40±2.261 44.38±2.207
C→ D 41.91±2.860 40.64±2.788
C→W 34.60±3.815 33.88±3.014
W→ A 36.78±1.069 34.62±1.044
W→ C 34.47±0.949 31.19±0.980
W→ D 82.45±2.487 76.82±2.038

Amazon- K→ Ds 74.08±1.771 74.03±1.781
Review K→ B 75.23±1.808 75.06±1.700

K→ E 82.10±1.870 82.03±1.796
Ds→ K 80.45±1.718 79.59±1.731
Ds→ B 79.83±1.820 79.38±1.851
Ds→ E 76.54±1.692 76.07±1.451
B→ K 79.63±1.602 78.99±1.602
B→ Ds 79.21±1.868 78.90±1.834
B→ E 76.40±1.544 76.31±1.462
E→ K 84.75±1.717 84.81±1.663
E→ Ds 72.74±1.781 72.53±1.807
E→ B 74.24±1.955 73.89±1.875
# Best 21 7

6 Conclusions
We proposed a simple yet effective method for unsupervised do-
main adaptation. The proposed method minimizes the discrepancy
between the source and target distributions on the feature space by
transforming the feature space of the source domain. We assumed
that the transformed features and the original features differ by a
small residual function to preserve the relationship between fea-
tures and labels. This residual function is learned by aligning the
higher-order moments of both feature distributions based on the
MMD. In experiments, we demonstrated that the proposed method
achieved better classification performance than the existing meth-
ods when the amount of data is small. This result suggests that the
proposed method is particularly useful for real-world applications
where there are only a small amount of data such as bioinformatics,
medical care, and security.

There are several avenues that can be pursed as future work.
In our experiments, we mainly used the polynomial kernels as the
embedding kernel. We plan to evaluate other type of kernels. In
addition, the use of a non-linear transformation function such as
Gaussian processes and deep neural networks should be effective
whereas linear transformation is used in this study. Finally, we will
extend the proposed method to semi-supervised domain adaptation.
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