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Abstract

Factorization Machines (FMs), a general predictor that can
efficiently model high-order feature interactions, have been
widely used for regression, classification and ranking prob-
lems. However, despite many successful applications of FMs,
there are two main limitations of FMs: (1) FMs consider fea-
ture interactions among input features by using only polyno-
mial expansion which fail to capture complex nonlinear pat-
terns in data. (2) Existing FMs do not provide interpretable
prediction to users. In this paper, we present a novel method
named Subspace Encoding Factorization Machines (SEFM)
to overcome these two limitations by using non-parametric
subspace feature mapping. Due to the high sparsity of new
feature representation, our proposed method achieves the
same time complexity as the standard FMs but can capture
more complex nonlinear patterns. Moreover, since the predic-
tion score of our proposed model for a sample is a sum of con-
tribution scores of the bins and grid cells that this sample lies
in low-dimensional subspaces, it works similar like a scor-
ing system which only involves data binning and score addi-
tion. Therefore, our proposed method naturally provides in-
terpretable prediction. Our experimental results demonstrate
that our proposed method efficiently provides accurate and
interpretable prediction.

Introduction
Feature interactions play an important role in many machine
learning algorithms for capturing nonlinear patterns in data.
One popular example of using feature-interaction is Sup-
port Vector Machine (SVM) with polynomial kernel (Cortes
and Vapnik 1995). However, implicit polynomial mapping
via kernel trick induces huge computational cost since the
number of support vectors in the SVM model increases
linearly with the dataset size (Zhang et al. 2012). This is
also known as the curse of kernelization (Wang, Crammer,
and Vucetic 2012). Efficient approaches (Chang et al. 2010;
Sonnenburg and Franc 2010) were proposed to explicitly
pre-compute the low-degree polynomial kernel mapping and
then apply linear SVM on mapped data. However, the num-
ber of features in polynomial kernel mapping scales as
O(dq), where d is the number of input features and q is the
degree of polynomial kernel (i.e. the degree of feature inter-
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action). Therefore, these approaches only work on low de-
gree feature interaction. To overcome this issue, FMs (Ren-
dle 2010) were proposed to model feature interactions us-
ing factorized parameters. FMs can model high-degree fea-
ture interaction in linear time O(d). In recent years, FMs
have been widely used for many classification, regression
and ranking problems.

Despite many successful applications of FMs, there are
two main limitations of FMs: (1) FMs consider feature in-
teractions among input features by using only polynomial
expansion; (2) FMs do not provide interpretable prediction
to user. With regards to the first limitation, FMs fail to cap-
ture complex nonlinear patterns in data. For example, many
classification problems are not linear separately after poly-
nomial feature mapping. Recently, Locally Linear Factor-
ization Machine (LLFM) (Liu et al. 2017) was proposed to
learn a complex nonlinear model by exploring local coding
technique. They formulated a joint optimization to learn an-
chor points, local coordinates and FMs parameters together.
However, due to the procedures of searching and updat-
ing local coding coordinates, LLFM requires high compu-
tational cost compared with standard FMs.

Apart from unable to capture complex nonlinear pat-
terns, another limitation of FMs is the model interpretabil-
ity. The feature interactions in FMs are modeled by poly-
nomial expansion which are not easy to explain to users.
In past few year, interpretability of machine learning mod-
els has attracted great research attention (Ribeiro, Singh,
and Guestrin 2016; Chu et al. 2018; Chen et al. 2018).
(Lou, Caruana, and Gehrke 2012) proposed Generalized Ad-
ditive Models (GAM) to provide interpretable prediciton.
The prediction of GAM is a sum of univariate models built
on individual features. GAM can be explained because the
user can visualize the contribution scores of individual in-
put features (computed by univariate models) to final pre-
diction by histogram. However, GAM does not consider
feature interactions. GAM was further extended to Gener-
alized Additive Models Plus Interactions (GA2M) (Lou et
al. 2013) by adding pairwise feature interactions among in-
put features. The contribution scores of pairwise interac-
tions to final prediction are visualized as heatmap in two-
dimensional plane for interpretability. To avoid high com-
putational cost of considering all pairwise feature interac-
tions, GA2M uses a heuristic method to select highly infor-
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mative pairwise feature interactions. Fast Flux Discriminant
(FFD) model (Chen, Chen, and Weinberger 2014) used a
non-parametric subspace mapping method to model feature
interactions. FFD first explicitly computes the mapped fea-
ture vectors by considering all possible one-dimensional and
two-dimensional subspaces and then uses submodular opti-
mization to select informative subspaces. Fully Corrective
Binning (FCB) (Sokolovska, Chevaleyre, and Zucker 2018)
was proposed to learn a scoring system from data. FCB si-
multaneously learns the interval threshold for data binning
and also the associated contribute score for each bin. How-
ever, FCB only considers individual features and does not
model feature interactions. It may result in suboptimal solu-
tions in many problems since feature interactions are impor-
tant for capturing nonlinear patterns in data.

In this paper, we propose a new method named Sub-
space Encoding Factorization Machines (SEFM). SEFM
overcomes the aforementioned two limitations of standard
FMs based on the following contributions. First, we achieve
accurate and interpretable prediction by applying element-
wise nonlinear feature mapping for both individual features
and feature interactions in standard FMs. We first cut the
low-dimensional subspaces formed by both individual fea-
tures and feature interactions into bins and grid cells 1. Each
bin (or grid cell) is associated with a contribution score for
prediction. We obtain the new feature mapping for both indi-
vidual features and feature interactions using one-hot encod-
ing. The non-zero entries in the new feature representation
denote the contribute scores of different bins and grid cells
that the samples lies in low-dimensional subspaces. The final
prediction score of a sample is a sum of contribution scores
of bins and grid cells this sample lies in low-dimensional
subspaces. Therefore, our proposed model works like a scor-
ing system that only involves data binning and score addi-
tion. It naturally gives interpretable predictions. Unlike the
scoring system learnt by FCB (Sokolovska, Chevaleyre, and
Zucker 2018) which only focus on individual features, our
model can model high-order feature interactions.

However, explicitly computing one-hot encoded feature
vectors for all feature interactions is impossible since it
scales to O(dq). Our second contribution is to reformu-
late our proposed model as standard FMs on a new fea-
ture representation obtained by one-hot encoding on one-
dimensional subspaces only. We provide a theoretical analy-
sis to prove the equivalence. Therefore, our proposed model
can be solved efficiently using existing FMs tools. More-
over, due to the high sparsity of the new feature represen-
tation, our proposed model achieves linear time complexity
O(d), which is the same as the standard FMs.

Finally, we performed extensive experiments to evalu-
ate our proposed algorithm on both synthetic and real-
life benchmark datasets. Our experimental results clearly
demonstrate the effectiveness, efficiency and interpretabil-
ity of our proposed method. On all datasets, our proposed
model always gets higher accuracy than standard FMs. The

1In this paper, the meanings of “bin” and “grid cell” are the
same. We refer to “bin” in one-dimensional subspaces and “grid
cell” in high-dimensional subspaces.

accuracies obtained by our model is close to and sometimes
higher than SVM with rbf kernel, which clearly indicates the
proposed model can capture complex nonlinear patterns in
data. We also demonstrate the efficiency and interpretability
of our proposed model in the experiments section.

Methodology
Preliminary: Factorization Machines
FMs (Rendle 2010) are highly related to our proposed
method. In this section, we introduce our notations and re-
view standard FMs. Assume we are given a training data set
D = {xi, yi}ni=1, where xi is a d dimensional input feature
vector, yi ∈ {−1, 1} is the corresponding class label. In this
paper, we use xij to denote the j-th feature value of the i-th
sample and use xj to denote the values of feature j across
all samples. FMs with degree-2 are defined as:

f(xi) =

d∑
j=1

wjxij +

d∑
j=1

d∑
k=j+1

w̃jkxijxik, (1)

where wj denotes the model coefficient for the j-th feature
and w̃jk denotes the model coefficient for the pairwise fea-
ture interaction between feature j and feature k. In FM, the
w̃jk is factorized as vT

j vk, where vj is an m-dimensional
vector. According to Lemma 3.1 in (Rendle 2010), the sec-
ond term in (1) can be computed in linear time O(md) as
shown in following

d∑
j=1

d∑
k=j+1

w̃jkxijxik =

d∑
j=1

d∑
k=j+1

〈vT
j vk〉xijxik

=
1

2

m∑
f=1

((

d∑
j=1

vj,fxij)
2 −

d∑
j=1

v2j,fx
2
ij).

(2)

Therefore, the model parameters of FMs (i.e., w ∈Rd and
V ∈ Rd×m) can be efficiently learnt by Stochastic Gradient
Descent (SGD). The gradient of FM based on one sample xi

is {
∂f(xi)
∂wj

= xij
∂f(xi)
∂vjf

= xij
∑d

f=1 vjfxij − vjfx2ij .
(3)

Compared with SVM with polynomial-2 kernel (Cortes
and Vapnik 1995), the main advantage of FMs is to reduce
the time complexity of modeling pairwise feature interac-
tions from O(d2) to O(md) by using low rank factorization
of w̃jk = vT

j vk. Many off-the-shelf tools (Rendle 2010;
Bayer 2016) have been developed to learn FMs parameters
from training data.

Subspace Encoding Factorization Machines
Despite many successful applications of FMs, there are two
main limitations of FMs: (1) FMs consider feature interac-
tions among input features by using only polynomial ex-
pansion which fail to capture complex nonlinear patterns in
data; (2) Existing FMs do not provide interpretable predic-
tion to users. To overcome these two limitations, we present
our proposed algorithm based on subspace encoding in this
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section. Our idea is to apply element-wise feature mapping
for both individual features and feature interactions in stan-
dard FMs as shown in (1). In other words, we map each indi-
vidual feature value xij to a high dimensional vector Φ(xij)
and map each feature interaction value xijxik to a high di-
mensional vector Φ(xij , xik). Without loss of generality, we
focus our discussion on degree-2 FMs in the rest of this pa-
per. However, our proposed method can be easily general-
ized to high degree FMs. By element-wise feature mapping,
the standard FMs (1) can be rewritten as

f(xi) =

d∑
j=1

wjΦ(xij) +

d∑
j=1

d∑
k=j+1

w̃jkΦ(xij , xik). (4)

Now, the key question is how to construct efficient and
interpretable Φ(xij) and Φ(xij , xik). Motivated by recent
work on learning scoring system from data (Sokolovska,
Chevaleyre, and Zucker 2018) and FFD (Chen, Chen, and
Weinberger 2014). We propose to construct the feature map-
ping by first cutting input space into different bins and grid
cells in low-dimensional subspaces. Then, we use one-hot
encoding to construct both Φ(xij) and Φ(xij , xik). The non-
zero entry in Φ(xij) denotes the contribution score of the bin
that sample xi lies in the one-dimensional subspace formed
by feature j. Similarly, the non-zero entry in Φ(xij , xik) de-
notes the contribution score of the grid cell that sample xi
lies in the two-dimensional subspace formed by feature j
and feature k. We illustrate the idea of subspace feature en-
coding in Figure 1.

Figure 1: Subspace Feature Encoding for FM

As shown in Figure 1, we first divide each dimension into
multiple bins with equal length. Suppose each dimension is
divided into b bins for simplicity 2. For a numerical feature
j, let us use min{xj} to denote the minimal value and use
max{xj} to denote the maximal value of feature j. Then the
interval boundary of the h-th (1 ≤ h ≤ b) bin for feature j
is

Bj
h =

{
[ljh, u

j
h) if h < b

[ljh, u
j
h] if h = b

, (5)

2For a categorical feature, the b is equal to the number of unique
categorical values in this feature

where

ljh = min{xj}+
max{xj} −min{xj}

b
(h− 1) (6)

and

ujh = min{xj}+
max{xj} −min{xj}

b
h. (7)

Definition 1. FM feature mapping. We define our one-
hot feature mapping for individual feature and feature-
interaction as

Φ(xij) = [0, . . . , θh, . . . , 0]

Φ(xij , xik) = [0, . . . , θ̃h1h2
, . . . , 0].

(8)

Φ(xij) is a one-hot vector with length b, where the non-
zero entry θh indicates xij ∈ Bj

h. Similarly, Φ(xij , xik) is
a one-hot vector with length b2, where the non-zero entry
θ̃h1h2 indicates xij ∈ Bj

h1
and xik ∈ Bk

h2
. In other words,

one-hot encoded feature vector of a sample tells us both the
indices of bins (e.g. h) and grid cells of this sample lies in
low-dimensional subspaces and the corresponding contribu-
tion scores of these bins (e.g. θh) and grid cells. By using (8),
FMs are able to capture complex nonlinear patterns in data.
In the meanwhile, the element-wise feature mapping Φ(xij)
and Φ(xij , xik) can be easily traced back to original input
features and non-zero values corresponding to contribution
scores can be easily explained to user. The interpretability
of our proposed model will be further discussed in a later
section.

However, explicitly computing Φ(xij , xik) for all feature
interactions is impractical because it scales to O(d2) and
d usually is large for real-life applications. To overcome
this issue, in the following, we show our proposed model
in (4) can be reformulated as standard FMs on a new
feature representation obtained by using one-hot encoding
on one-dimensional subspaces only. We also provide a
theoretical analysis to prove the equivalence.

Definition 2. One-hot encoding on one-dimensional sub-
spaces. For any input xi, we define the following one-hot
encoding on one-dimensional subspaces formed by individ-
ual input features.

zijh =

{
1, if xij ∈ Bj

h

0, otherwise.
(9)

Therefore, Z can be viewed as a matrix with size n× (b×
d). Each column in X is replaced by b columns in Z. The
new feature representation Z only contains zeroes and ones.
The key advantage of this binary one-hot encoding is that the
non-zero entry zijh tells us the bin index of the i-th sample
lies in the one-dimensional subspace formed by feature j. In
other words, zijh = 1 tells us that the i-th sample is located
in the h-th bin of the one-dimensional subspace formed fea-
ture j. Moreover, the pairwise feature interaction is also a
binary one-hot vector where non-zero value zijh1

zikh2
= 1

tells us the grid cell indices of the i-th samples lies in the
two-dimensional subspace formed by feature j and feature
k (i.e., the i-th sample is located in the intersection of the
h1-th bin of feature j and the h2-th bin of feature k in the
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two-dimensional subspace formed by feature j and feature
k.).

Proposition 1. Our proposed model defined in (4) together
with feature mapping defined in (8) is equivalent to standard
FMs on Z as defined in (9)

Proof. By definition of Φ(xij),Φ(xij , xik) and Z, (8) can
be rewritten as

Φ(xij) = [zij1θ1, zij2θ2, . . . , zijhθh, . . . , zijbθb]

Φ(xij , xik) =[zij1zik1θ̃11, . . . ,

zijh1
zikh2

θ̃h1h2
, . . . , zijbzikbθ̃bb].

(10)

By plugging (10) into (4), we obtain

f(xi) =

d∑
j=1

b∑
h=1

wj
hθhzijh+

d∑
j=1

d∑
k=j+1

b∑
h1=1

b∑
h2=1

w̃jk
h1h2

θ̃jkh1h2
zijh1zikh2 .

(11)

By treating wj
hθh together as a single variable βj

h and
treating w̃jk

h1h2
θ̃jkh1h2

together as a single variable β̃jk
h1h2

, (11)
can be rewritten as

f(xi) =

d∑
j=1

b∑
h=1

βj
hzijh+

d∑
j=1

d∑
k=j+1

b∑
h1=1

b∑
h2=1

β̃jk
h1h2

zijh1
zikh2

.

(12)

In the other hand, FM model on Z is

f(zi) =

d∗b∑
l1=1

wjzil1 +

d∗b∑
l1=1

d∗b∑
l2=l1+1

w̃l1l2zil1zil2 . (13)

By following index notation in (9), zil1 in (13) equals to
zijh1 in (12) where j = bl1/bc and h1 = l1%b. Similarly,
zil2 in (13) equals zikh2 where k = bl2/bc and h2 = l2%b.
Therefore, it is straight forward to verify that the first term
in (13) is in the same form as the first term in (12), i.e.,∑d∗b

l1=1 wjzil1 =
∑d

j=1

∑b
h=1 w

j
hzijh. And the second term

in (13) can be rewritten as

d∗b∑
l1=1

d∗b∑
l2=j+1

w̃l1l2zil1zil2 =

d∑
j=1

d∑
k=j+1

b∑
h1=1

b∑
h2=1

w̃jk
h1h2

zijh1
zikh2

+

d∑
j=1

b∑
h1=1

b∑
h2=h1+1

w̃jj
h1h2

zijh1
zijh2

.

(14)

Note that zijh1
zijh2

= 0 as long as h1 6= h2. Therefore,∑d
j=1

∑b
h1=1

∑b
h2=h1+1 w̃

jj
h1h2

zijh1
zijh2

always equals to

0 and can be removed from (14). Finally, (13) can be written
as

f(zi) =

d∑
j=1

b∑
h=1

wj
hzijh+

d∑
j=1

d∑
k=j+1

b∑
h1=1

b∑
h2=1

w̃jk
h1h2

zijh1
zikh2

.

(15)

Comparing (15) with (12), we can see that these two prob-
lems are in the same form and will have the same solution.
In conclusion, our proposed model defined in (4) together
with feature mapping defined in (8) is equivalent to standard
FMs on Z as defined in (9).

Proposition (1) clearly shows that our proposed model in
(4) can be solved efficiently by applying standard FMs on Z
as defined in (9).

Interpretability of Our Proposed Algorithm
To show the interpretability of our proposed algorithm,
let us consider our model in the form of (12). The first
term

∑d
j=1

∑b
h=1 β

j
hzijh computes a sum of the contribu-

tion scores in one-dimensional subspaces formed by indi-
vidual features in original input space. The non-zero en-
try zijh in one-hot vector zij with length b tells us the
bin index (i.e. the h-th bin) of the i-th sample lies in the
one-dimensional subspace formed by feature j. And βh
is the contribution score of this particular bin. Similarly,∑d

j=1

∑d
k=j+1

∑b
h1=1

∑b
h2=1 β̃

jk
h1h2

zijh1
zikh2

computes a
sum of the contribution scores in two-dimensional sub-
spaces. The non-zero entry zijh1zikh2 tells us grid cell in-
dices of the i-th sample in two-dimensional subspace formed
by feature j and feature k. And β̃jk

h1h2
is the contribution

score of this particular grid cell. Therefore, the final predic-
tion score of a sample is a sum of contribution scores of the
bins and grid cells that this sample lies in low-dimensional
subspaces. This prediction score can be easily explained to
users since it works like scoring system (Still et al. 2014) that
only involves data binning and score addition. Furthermore,
similar to GA2M, we can visualize contribution scores of
each individual feature by histogram and visualize contribu-
tion scores of each feature interaction by heatmap for model
interpretation.

Algorithm Implementation and Analysis
According to Proposition (1), our proposed model in (4) is
equivalent to apply standard FM on Z as defined in (9).
Therefore, our proposed can be easily implemented based
on existing FMs tools. We name our algorithm as Subspace
Encoding Factorization Machines (SEFM) and summarize
it in Algorithm 1. According the definition of Z in (9), Z
is a very sparse matrix. For encoding feature j in xi, we
only need to figure out the bin index of sample xi in one-
dimensional subspace formed by feature j. This index can
be computed by

h = min{
⌊
{xij −min{xj}}

max{xj} −min{xj}
b

⌋
+ 1, b}. (16)
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This computation only needs O(1) time. Therefore, the step
1 in Algorithm 1 only requires O(nd) time and the required
time is independent with the number of bins b. Due to the
nature of one-hot encoding, the number of non-zero values
in new representation of i-th sample zi is d. Therefore, the
step 2 of training an FM model using SGD only requires
O(nmd) time, which is the same as standard FMs when the
input data matrix is dense. If the input data matrix is sparse,
our proposed algorithm will be a few times slower than stan-
dard FMs depending on the sparsity level of the input data.
The prediction time of our model is O(md), which is very
efficient compared with other nonlinear classifiers.

Algorithm 1 Subspace Encoding Factorization Machines

Training
Input: training data set D = {xi, yi}ni=1, low-rank pa-
rameter m, number of bins b, regularization parameter C;
Output: FM model on mapped feature space;

1: Generate new feature representation Z as defined in (9)
2: Build an FM model f(z) using {zi, yi}ni=1

Related Works
In this section, we discuss the relationships of our proposed
algorithms with other work.

Fully Corrective Binning (FCB). FCB was proposed by
(Sokolovska, Chevaleyre, and Zucker 2018) for learning in-
terpretable scoring system from data. Their basic idea is to
automatically bin input data and obtain the corresponding
contribution score for each bin. The prediction score of a
sample is computed as a sum of contribution scores of the
bins that this sample lies in. The proposed learning algo-
rithm for FCB works in an iterative manner. In each itera-
tion, it greedily finds the optimal binning and the contribu-
tions scores of different bins. Our proposed algorithm is also
motivated by scoring system. However, compared with FCB,
our algorithm has several important differences. First, FCB
only considers binning individual features and ignores fea-
ture interactions while our algorithm considers all pair-wise
feature interactions. Second, FCB uses a greedy method to
find the optimal binning and the corresponding scores of
different bins. In comparison, we use equal-length bins and
learn the contribution scores of different bins and grid cells
by using FMs. The greedy schema used in FCB may result
in suboptimal solutions. Also FCB requires more computa-
tional time than our method.

Fast Flux Discriminant (FFD). FFD model uses a linear
logistic regression model on top of a feature representation
obtained by using histogram estimation in low-dimensional
subspaces. It uses submodular optimization to select infor-
mative subspaces and use l1 regularization to learn a sparse
model for interpretability. Our proposed method is related
to FFD on the subspace feature encoding. However, FFD
used histogram estimation to compute the new feature val-
ues (similar to contribution scores in our method) for each
bin/grid cell. The procedures of feature value learning and

classification model training in FFD are decoupled. In com-
parison, our proposed method couples new feature values
learning and classification model training together. By cou-
pling them together, our method could achieve more accu-
rate prediction. Another difference is efficiency. FFD needs
to explicitly compute new feature representation based on all
possible one-dimensional and two-dimensional subspaces.
It scales to O(d2) whereas our proposed method achieve
linear time complexity O(d) by applying FMs on one-hot
encoded feature representation using one-dimensional sub-
spaces only.

Generalized Additive Models Plus Interactions
(GA2M). GA2M model was proposed to extend GAM by
considering feature interactions. To avoid huge computa-
tional cost caused by a large number (i.e.O(d2)) of pairwise
feature interactions, they proposed a heuristic-based method
to select a limited number of informative pairwise feature
interactions. The prediction score GA2M is a sum of
contribution scores based on both on individual input
features and selected feature interactions. Our method also
uses similar idea for computing prediction score. However,
the contribution scores in GA2M is estimated by using
tree-based or spline-based models whereas the contribution
scores in our model are learnt by FMs model. Again, GA2M
used greedy based method to select a few pairwise feature
interactions whereas our proposed model uses FM model to
efficiently consider all pairwise feature interactions.

Experiments
In this section, we compare our proposed method with com-
peting approaches on two synthetic datasets and five bench-
mark datasets.

In our experiments, we evaluate the performance of the
following four algorithms:

• Liblinear: an efficient solver for linear support vector ma-
chine (Fan et al. 2008);

• Libsvm-rbf: support vector machine with rbf kernel
(Chang and Lin 2011);

• FM: factorization machines (Rendle 2010);

• LLFM: Locally Linear Factorization Machines (Liu et al.
2017);

• SEFM: our proposed method.

Synthetic Datasets. We first use two synthetic nonlinear
datasets circles and moons to illustrate how our proposed
method cuts the input feature space and builds the inter-
pretable nonlinear classifier. Circles is a binary classifica-
tion dataset in two-dimensional space as shown in Figure
2. The blue points in the large outer circle belong to one
class and the red points in the inner circle belong to the other
class. Moons is also a two-dimensional binary classification
dataset. It represents two interleaving half circles as shown
in Figure 3. We compare the performance of listed five algo-
rithms on both circles and moons datasets and the results
are reported in Table (1). We also show the decision bound-
aries of Liblinear, Libsvm-rbf, FM and SEFM in Figure (2)
for circles dataset and Figure (3) for moons dataset.
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(a) Liblinear (b) Libsvm-rbf

(c) FM (d) SEFM

Figure 2: Comparison of the decision boundaries of four dif-
ferent classifiers on circles data

As shown in these two figures, the linear classifier (i.e.
Liblinear) can not handle these two nonlinear classification
problems. FM can produce nonlinear decision boundaries.
However, due to that the standard FMs consider feature in-
teractions by using only degree 2 polynomial expansion,
the produced decision boundaries (i.e. sub-figure (c)) are
far from the optimal one. Both LibSVM-rbf (sub-figure (a))
and SEFM (sub-figure (d)) can perfectly separate these two
datasets. Since our proposed model uses low-dimensional
subspace encoding, it produces piecewise axis perpendicular
decision boundary. Each bin (or grid cell) is associated with
a contribution score that can be easily explained to users.

Evaluations on Benchmark Datasets. In addition to two
synthetic datasets, we also evaluate the performance of the
five algorithms on other five benchmark datasets. These five
datasets are publicly available at the Libsvm website 3. We
report our experimental results in Table (1). The summary
of each dataset (i.e., number of samples, number of fea-
tures and number of classes) is given in the first column
of the table. For each dataset, we randomly select 70% as
training data and use the remaining 30% as test data. The
process is repeated 10 times and we report the average ac-
curacy on test data. For all five algorithms, the regulariza-
tion parameter is chosen from {10−3, 10−2, . . . , 102, 103}.
For Libsvm with rfb kernel, the kernel width is chosen from
{2−5, 2−4, . . . , 24, 25}. The low-rank parameter m for FM,
LLFM and SEFM is chosen from {2, 4, 8, 16, 32, 64}. The
parameter b (i.e., the number of bins) of SEFM is chosen
from {10, 20, 30, . . . , 120}. The optimal parameter combi-
nation is selected by 5-fold cross-validation on training data.

The accuracy and running time are reported in Table
(1). With respect to accuracy, our proposed method obtains
higher accuracy than both Liblinear and FM on all seven
datasets. Compared with Libsvm with rbf kernel, our pro-

3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

(a) Liblinear (b) Libsvm-rbf

(c) FM (d) SEFM

Figure 3: Comparison of the decision boundaries of four dif-
ferent classifiers on moons data

posed method achieves comparable classification accuracies
on circles, moons, breast-cancer and cod-rna datasets.
In the other three datasets, our proposed method SEFE gets
better accuracies than Libsvm with rbf kernel. Compared
with LLFM, our method has similar accuracies on the two
synthetic datasets. LLFM only gets better accuracy than our
method on breast-cancer dataset. For the other four bench-
mark datasets, our proposed method gets better accuracies
than LLFM. With respect to running time, our proposed
method is fast. As expected, the running time of our pro-
posed method is comparable to standard FMs in all datasets
except webspam. For webspam dataset, the original data
is sparse text data. Therefore, our proposed algorithm is
slower than FM in this dataset. LLFM is slower than FM

(a) cod-rna (b) ijcnn

(c) breast-cancer (d) splice

Figure 4: Classification accuracy vs. the number of bins (b)
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Table 1: The accuracy and running time (in seconds) (The best results are in bold)

Dataset Performance Liblinear SVM-rbf FM LLFM SEFM
n/d/#class
circles accuracy(%) 48.99±1.29 99.99±0.00 49.70±1.85 99.99±0.00 99.95±0.03
5,000/2/2 time 0.02 0.17 0.24 8.2 0.22
moons accuracy(%) 88.51±0.11 99.99±0.00 87.53±0.09 99.99±0.00 99.99±0.00
5,000/2/2 time 0.03 0.19 0.24 8.1 0.23
breast-cancer accuracy(%) 95.12±0.98 95.93±0.87 94.63±0.52 98.49±0.50 96.59±0.97
683/9/2 time 0.01 0.01 0.14 2.9 0.14
splice accuracy(%) 80.33±1.63 87.22±1.39 82.17±0.22 88.03±1.72 91.44±0.17
1,000/60/2 time 0.02 0.13 0.39 8.4 0.36
ijcnn accuracy(%) 91.95±0.07 94.65±0.09 93.14±0.29 95.89±0.45 96.42±0.32
49,990/22/2 time 0.85 16.33 3.63 106.1 3.42
cod-rna accuracy(%) 92.65±0.04 95.03±0.03 93.36±0.61 85.41±2.18 95.12±0.14
59,535/8/2 time 1.77 20.12 3.0 100.7 2.70
webspam accuracy(%) 92.74±0.02 92.17±0.15 93.83±0.17 92.92±0.34 96.02±0.10
350,000/254/2 time 17 16531 116 3702 275.4

(a) cod-rna (b) ijcnn

(c) breast-cancer (d) splice

Figure 5: Runing time vs. the number of bins (b)

and SEFM due to the cost of searching and updating local
coding coordinates.

Impact of the parameters b. In this section, we evaluate
the impact of parameter b in our proposed algorithm SEFM.
Figure (4) shows the accuracy of our proposed method
SEFM on dataset cod-rna, ijcnn, breast-cancer and splice
with respect to different b. As shown in Figure (4), the accu-
racy increases as parameter b increases when b is not large
enough. Then, it will become stable very quickly. We also
report the running time of our proposed method in Figure
(5) with respect to different b, as expected, the running time
of our proposed method does not increase as we increase
parameter b. In Figure (6), we show how decision boundary
changes on circles and moons data as we increase param-
eter b. We can see that the decision boundaries will become
smoother when we increase parameter b.

(a) SEFM (b = 10) (b) SEFM (b = 100)

(c) SEFM (b = 10) (d) SEFM (b = 100)

Figure 6: The decision boundaries of SEFM with different b

Conclusion

In this paper, we propose a novel model to overcome the ex-
isting limitations of standard FMs by using subspace encod-
ing. Our proposed method achieves the same time complex-
ity as the standard FMs but can capture more complex non-
linear patterns in data. Moreover, the final prediction score
of our proposed algorithm for a sample is a sum of the con-
tribution scores of the bins and grid cells that this sample
lies in. It works like a scoring system and naturally provides
interpretable prediction. We evaluate the performance of our
proposed model on both synthetic and real-life benchmark
datasets. The experimental results clearly show our proposed
method gets better accuracies than FMs. The accuracies ob-
tained by our model is close and sometimes higher than
SVM model with rbf kernel, which indicates our model can
capture complex nonlinear patterns. We also demonstrate the
efficiency and interpretability of our model.
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