
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Gradient-Based Inference for
Networks with Output Constraints

Jay Yoon Lee,1∗ Sanket Vaibhav Mehta,1 Michael Wick,2∗
Jean-Baptiste Tristan,2 Jaime Carbonell1

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
2Oracle Labs, Burlington, MA

1{jaylee, svmehta, jgc}@cs.cmu.edu
2{michael.wick, jean.baptiste.tristan}@oracle.com

Abstract

Practitioners apply neural networks to increasingly complex
problems in natural language processing, such as syntactic
parsing and semantic role labeling that have rich output struc-
tures. Many such structured-prediction problems require de-
terministic constraints on the output values; for example, in
sequence-to-sequence syntactic parsing, we require that the
sequential outputs encode valid trees. While hidden units
might capture such properties, the network is not always
able to learn such constraints from the training data alone,
and practitioners must then resort to post-processing. In this
paper, we present an inference method for neural networks
that enforces deterministic constraints on outputs without
performing rule-based post-processing or expensive discrete
search. Instead, in the spirit of gradient-based training, we
enforce constraints with gradient-based inference (GBI): for
each input at test-time, we nudge continuous model weights
until the network’s unconstrained inference procedure gener-
ates an output that satisfies the constraints. We study the ef-
ficacy of GBI on three tasks with hard constraints: semantic
role labeling, syntactic parsing, and sequence transduction. In
each case, the algorithm not only satisfies constraints, but im-
proves accuracy, even when the underlying network is state-
of-the-art.

1 Introduction
Suppose we have trained a sequence-to-sequence (seq2seq)
network (Cho et al. 2014; Sutskever, Vinyals, and Le 2014;
Kumar et al. 2016) to perform a structured prediction task
such as syntactic constituency parsing (Vinyals et al. 2015).
We would like to apply this trained network to novel, un-
seen examples, but still require that the network’s outputs
obey an appropriate set of problem specific hard-constraints;
for example, that the output sequence encodes a valid parse
tree. Enforcing these constraints is important because down-
stream tasks, such as relation extraction or coreference res-
olution typically assume that the constraints hold. More-
over, the constraints impart informative hypothesis-limiting
restrictions about joint assignments to multiple output units,
and thus enforcing them holistically might cause a correct

∗corresponding authors
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

prediction for one subset of the outputs to beneficially influ-
ence another.

Unfortunately, there is no guarantee that the neural net-
work will learn these constraints from the training data
alone, especially if the training data volume is limited. Al-
though in some cases, the outputs of state-of-the-art systems
mostly obey the constraints for the test-set of the data on
which they are tuned, in other cases they do not. In practice,
the quality of neural networks are much lower when run on
data in the wild (e.g., because small shifts in domain or genre
change the underlying data distribution). In such cases, the
problem of constraint violations becomes more significant.

This raises the question: how should we enforce hard con-
straints on the outputs of a neural network? We could per-
form expensive combinatorial discrete search over a large
output space, or manually construct a list of post-processing
rules for the particular problem domain of interest. Though,
we might do even better if we continue to “train” the neural
network at test-time to learn how to satisfy the constraints on
each input. Such a learning procedure is applicable at test-
time because learning constraints requires no labeled data:
rather, we only require a function that measures the extent
to which a predicted output violates a constraint.

In this paper, we present gradient-based inference (GBI),
an inference method for neural networks that strongly fa-
vors respecting output constraints by adjusting the network’s
weights at test-time, for each input. Given an appropri-
ate function that measures the extent of a constraint viola-
tion, we can express the hard constraints as an optimiza-
tion problem over the continuous weights and apply back-
propagation to tune them. That is, by iteratively adjusting
the weights so that the neural network becomes increasingly
likely to produce an output configuration that obeys the de-
sired constraints. Much like scoped-learning, the algorithm
customizes the weights for each example at test-time (Blei,
Bagnell, and McCallum 2002), but does so in a way to sat-
isfy the constraints.

We study GBI on three tasks: semantic role labeling
(SRL), syntactic constituency parsing and a synthetic se-
quence transduction problem and find that the algorithm per-
forms favorably on all three tasks. In summary, our contri-
butions are that we:

4147

1. Propose a novel Gradient-Based Inference framework.
2. Verify that GBI performs well on various applications,

thus providing strong evidence for the generality of the
method.

3. Examine GBI across wide range of reference model per-
formances and report its consistency.

4. Show that GBI also perform well on out-of-domain data.
For all the tasks, we find that GBI satisfies a large percentage
of the constraints (up to 98%) and that in almost every case
(out-of-domain data, state-of-the art networks, and even for
the lower-quality networks), enforcing the constraints im-
proves the accuracy. On SRL, for example, the method suc-
cessfully injects truth-conveying side-information via con-
straints, improving SOTA network 1 by 1.03 F1 (Peters et al.
2018). This improvement happens to surpass a A*algorithm
for incorporating constraints while also being robust, in a
way that A*is not, to cases for which the side constraints are
inconsistent with the labeled ground-truth.

2 Constraint-aware inference in neural
networks

Our goal is to design an approximate optimization algo-
rithm that is similar in spirit to Lagrangian relaxation in
that we replace a complex constrained decoding objective
with a simpler unconstrained objective that we can optimize
with gradient descent (Koo et al. 2010; Rush et al. 2010;
Rush and Collins 2012), but is better suited for non-linear
non-convex optimization with global constraints that do not
factorize over the outputs. Although the exposition in this
section revolves around Lagrangian relaxation, we empha-
size that the purpose is merely to provide intuition and mo-
tivate design choices.

2.1 Problem definition and motivation
Typically, a neural network parameterized by weights W is
a function from an input x to an output y. The network has
an associated compatibility function Ψ(y;x,W)→ R+ that
measures how likely an output y is given an input x under
weights W . The goal of inference is to find an output that
maximizes the compatibility function and this is usually ac-
complished efficiently with feed-forward greedy-decoding.
In this work, we want to additionally enforce that the output
values belong to a feasible set or grammar Lx that in general
depends on the input. We are thus interested in the following
optimization problem:

max
y

Ψ(x,y,W) s. t. y ∈ Lx
(1)

Simple greedy inference are no longer sufficient since the
outputs might violate the global constraints (i.e., y /∈ Lx).
Instead, suppose we had a function g(y,Lx) → R+ that
measures a loss between output y and a grammar Lx such
that g(y,Lx) = 0 if and only if there are no grammatical

1Since our submission, the previous SOTA (Peters et al. 2018)
in SRL on which we apply our technique has been advanced by 1.7
F1 points (Ouchi, Shindo, and Matsumoto 2018). However, this is
a training time improvement which is orthogonal to our work.

errors in y. That is, g(y,Lx) = 0 for the feasible region
and is strictly positive everywhere else. For example, if the
feasible region is a CFL, g could be the least errors count
function (Lyon 1974). We could then express the constraints
as an equality constraint and minimize the Lagrangian:

min
λ

max
y

Ψ(x,y,W) + λg(y,Lx) (2)

However, this leads to optimization difficulties because there
is just a single dual variable for our global constraint, result-
ing intractable problem and thus leading to brute-force trial
and error search.

Instead, we might circumvent these issues if we optimize
over a model parameters rather than a single dual variable.
Intuitively, the purpose of the dual variables is to simply pe-
nalize the score of infeasible outputs that otherwise have a
high score in the network, but happen to violate constraints.
Similarly, network’s weights can control the compatibility
of the output configurations with the input. By properly ad-
justing the weights, we can affect the outcome of inference
by removing mass from invalid outputs—in much the same
way a dual variable affects the outcome of inference. Un-
like a single dual variable however, the network expresses
a different penalty weight for each output. And, because
the weights are typically tied across space (e.g., CNNs) or
time (e.g., RNNs) the weights are likely to generalize across
related outputs. As a result, lowering the compatibility func-
tion for a single invalid output has the potential effect of
lowering the compatibility for an entire family of related, in-
valid outputs; enabling faster search. In the next subsection,
we propose a novel approach that utilizes the amount of con-
straint violation as part of the objective function so that we
can adjust the model parameters to search for a constraint-
satisfying output efficiently.

2.2 Algorithm
Instead of solving the aforementioned impractical optimiza-
tion problem, we propose to optimize a “dual” set of model
parameters Wλ over the constraint function while regulariz-
ing Wλ to stay close to the originally learned weights W .
The objective function is as follows:

min
Wλ

Ψ(x, ŷ,Wλ)g(ŷ,Lx) + α‖W −Wλ‖2
where ŷ = argmax

y
Ψ(x,y,Wλ) (3)

Although this objective deviates from the original optimiza-
tion problem, it is reasonable because by definition of the
constraint loss g(·), the global minima must correspond to
outputs that satisfy all constraints. Further, we expect to find
high-probability optima if we initialize Wλ = W . More-
over, the objective is intuitive: if there is a constraint viola-
tion in ŷ then g(·) > 0 and the gradient will lower the com-
patibility of ŷ to make it less likely. Otherwise, g(·) = 0 and
the gradient of the energy is zero and we leave the compat-
ibility of ŷ unchanged. Crucially, the optimization problem
yields computationally efficient subroutines that we exploit
in the optimization algorithm.

To optimize the objective, the algorithm alternates max-
imization to find ŷ and minimization w.r.t. Wλ (Algo-

4148

Algorithm 1 Constrained inference for neural nets
Inputs: test instance x, input specific CFL Lx, max epoch
M , pretrained weights W
Wλ ←W #reset instance-specific weights
while g(y,Lx) > 0 and iteration< M do
y← f(x;Wλ) #perform inference using weights Wλ

∇ ← g(y,Lx) ∂
∂Wλ

Ψ(x,y,Wλ) +α W−Wλ

‖W−Wλ‖2 #com-
pute constraint loss
Wλ ← Wλ − η∇ #update instance-specific weights
with SGD or a variant thereof

end while

rithm 1). In particular, we first approximate the maximiza-
tion step by employing the neural network’s inference proce-
dure (e.g., greedy decoding, beam-search, or Viterbi decod-
ing) to find the ŷ that approximately maximizes Ψ, which
ignores the constraint loss g. Then, given a fixed ŷ, we min-
imize the objective with respect to the Wλ by performing
stochastic gradient descent (SGD). Since ŷ is fixed, the con-
straint loss term becomes a constant in the gradient; thus,
making it easier to employ external black-box constraint
losses (such as those based on compilers) that may not be
differentiable. As a remark, note the similarity to REIN-
FORCE (Williams 1992): the decoder outputs as actions and
the constraint-loss as a negative reward. However, GBI does
not try to reduce expected reward and terminates upon dis-
covery of an output that satisfies all constraints. Further-
more, GBI also works on sequence-tagging problem, SRL
(Section 4.1), where next output does not depend on the cur-
rent output, which is far from REINFORCE setting.

3 Applications
There are multiple applications that involve hard-constraints
and we provide two illustrative examples that we later em-
ploy as case-studies in our experiments: SRL and syntac-
tic parsing. The former exemplifies a case in which exter-
nal knowledge encoded as hard constraints conveys bene-
ficial side information to the original task of interest while
the latter studies a case in which hard constraints are inher-
ent to the task of interest. Finally, we briefly mention se-
quence transduction as framework in which constraints may
arise. Of course, constraints may in general arise for a va-
riety of different reasons, depending on the situation. We
provide example-based case studies for each application in
Appendix A,B.

3.1 Semantic Role Labeling
As a first illustrative example, consider SRL. SRL focuses
on identifying shallow semantic information about phrases.
For example, in the sentence “it is really like this, just look
at the bus sign” the goal is to tag the arguments given “is” as
the verb predicate: “it” as its first argument and the prepo-
sitional phrase “like this” as its second argument. Tradition-
ally SRL is addressed as a sequence labeling problem, in
which the input is the sequence of tokens and the output are
BIO-encoded class labels representing both the regimenta-
tion of tokens into contiguous segments and their semantic

roles.
Note that the parse tree for the sentence might provide

constraints that could assist with the SRL task. In particu-
lar, each node of the parse tree represents a contiguous seg-
ment of tokens that could be a candidate for a semantic role.
Therefore, we can include as side-information constraints
that force the BIO-encoded class labeling to produce seg-
ments of text that each agree with some segment of text ex-
pressed by a node in the parse tree.2 To continue with our
example, the original SRL sequence-labeling might incor-
rectly label “really like this” as the second argument rather
than “like this.” Since according to the parse tree “really”
is part of the verb phrase, thus while the tree contains the
spans “is really like this” and “like this” it does not con-
tain the span “really like this.” The hope is that enforcing
the BIO labeling to agree with the actual parse spans would
benefit SRL. Based on the experiments, this is indeed the
case, and our hypothetical example is actually a real data-
case from our experiments, which we describe later. The
g(y,Lx) for SRL factorizes into per-span constraints gi.
For ith span si, if si is consistent with any node in the
parse tree, gi(si,Lx) = 0, otherwise gi(si,Lx) = 1/nsi
where nsi is defined as the number of tokens in si. Over-
all, Ψ(x, ŷ,Wλ)g(ŷ,Lx) =

∑k
i=1 g(si,Lx)Ψ(x, si,Wλ)

where k is number of spans on output ŷ.

3.2 Syntactic parsing
As a second illustrative example, consider a structured pre-
diction problem of syntactic parsing in which the goal is
to input a sentence comprising a sequence of tokens and
output a tree describing the grammatical parse of the sen-
tence. Syntactic parsing is a separate but complementary
task to SRL. While SRL focuses on semantic information,
syntactic parsing focuses on identifying relatively deep syn-
tax tree structures. One way to model the problem with neu-
ral networks is to linearize the representation of the parse
tree and then employ the familiar seq2seq model (Vinyals et
al. 2015). Let us suppose we linearize the tree using a se-
quence of shift (s) and reduce (r,r!) commands that con-
trol an implicit shift reduce parser. Intuitively, these com-
mands describe the exact instructions for converting the in-
put sentence into a complete parse tree: the interpretation of
the symbol s is that we shift an input token onto the stack
and the interpretation of the symbol r is that we start (or
continue) reducing (popping) the top elements of the stack,
the interpretation of a third symbol ! is that we stop reduc-
ing and push the reduced result back onto the stack. Thus,
given an input sentence and an output sequence of shift-
reduce commands, we can deterministically recover the tree
by simulating a shift reduce parser. For example, the se-
quence ssrr!ssr!rr!rr! encodes a type-free version
of the parse tree (S (NP the ball) (VP is (NP
red))) for the input sentence “the ball is red”. It is easy
to recover the tree structure from the input sentence and the
output commands by simulating the shift reduce parser. Of

2The ground-truth parse spans do not always agree with the
SRL spans, leading to imperfect side information.

4149

course in practice, reduce commands include the standard
parts of speech as types (NP, VP, etc).

Note that for output sequences to form a valid tree over
the input, the sequence must satisfy a number of constraints.
First, the number of shifts must equal the number of input
tokens mx, otherwise either the tree would not cover the en-
tire input sentence or the tree must contain spurious sym-
bols. Second, the parser cannot issue a reduce command if
the stack is empty. Third, at the end of the parser commands,
the stack must have just a single item, the root node. The
constraint loss g(y,Lx) for this task simply counts the er-
rors of each of the three types. (Appendix C.2)

As a minor remark, note that other encodings of trees,
such as bracketing (of which the Penn Tree Bank’s S-
expressions are an example), are more commonly used as
output representations for seq2seq parsing (ibid). However,
the shift-reduce representation described in the above para-
graphs is isomorphic to the bracketing representations and
as we get similar model performance to single seq2seq mode
on the same data (ibid.), we chose the former representation
to facilitate constraint analysis. Although output represen-
tations sometimes matter, for example, BIO vs BILOU en-
coding of sequence labeling, the difference is usually minor
(Ratinov and Roth 2009), and breakthroughs in sequence la-
beling have been perennially advanced under both represen-
tations. Thus, for now, we embrace the shift reduce represen-
tation as a legitimate alternative to bracketing, pari passu.

3.3 Synthetic sequence transduction
Finally, although not a specific application per se, we also
consider sequence transduction as it provides a framework
conducive to studying simple artificial languages with ap-
propriately designed properties. A sequence transducer T :
LS → LT is a function from a source sequence to a target
sequence. As done in previous work, we consider a known
T to generate input/output training examples and train a
seq2seq network to learn T on that data (Grefenstette et al.
2015). The constraint is simply that the output must belong
to LT and also respect problem-specific conditions that may
arise from the application of T on the input sentence. We
study a simple case in Section 4.3.

4 Experiments
In this section we study our algorithm on three differ-
ent tasks: SRL, syntactic constituency parsing and a syn-
thetic sequence transduction task. All tasks require hard con-
straints, but they play a different role in each. In the trans-
duction task they force the output to belong to a particular
input-dependent regular expression, in SRL, constraints pro-
vide side-information about possible true-spans and in pars-
ing, constraints ensure that the outputs encode valid trees.
While the SRL task involves more traditional recurrent neu-
ral networks that have exactly one output per input token,
the parsing and transduction tasks provide an opportunity to
study the algorithm on various seq2seq networks .

We are interested in answering the following questions
(Q1) how well does the neural network learn the constraints
from data (Q2) for cases in which the network is unable

to learn the constraints perfectly, can GBI actually enforce
the constraints (Q3) does GBI enforce constraints without
compromising the quality of the network’s output. To more
thoroughly investigate Q2 and Q3, we also consider: (Q4)
is the behavior of the method sensitive to the reference net-
work performance, and (Q5) does GBI also work on out-of-
domain data. Q3 is particularly important because we adjust
the weights of the network at test-time and this may lead to
unexpected behavior. Q5 deals with our original motivation
of using structured prediction to enhance performance on the
out-of-domain data.

To address these various questions, we first define some
terminology to measure how well the model is doing in
terms of constraints. To address (Q1) we measure the
failure-rate (i.e., the ratio of test sentences for which the
network infers an output that fails to fully satisfy the con-
straints). To address (Q2) we evaluate our method on the
failure-set (i.e., the set of output sentences for which the
original network produces constraint-violating outputs) and
measure our method’s conversion rate; that is, the percent-
age of failures for which our method is able to completely
satisfy the constraints (or “convert”). Finally, to address
(Q3), we evaluate the quality (e.g., accuracy or F1) of the
output predictions on the network’s failure-set both before
and after applying our method.

4.1 Semantic Role Labeling
We employ the AllenNLP (Gardner et al. 2017) SRL net-
work with ELMo embeddings, which is a multi-layer high-
way bi-LSTM that produces BIO output predictions for each
input token (Peters et al. 2018). For data we use OntoNotes
v5.0, which has ground-truth for both SRL and syntactic
parsing (Pradhan et al. 2013). We evaluate GBI on the test-
set (25.6k examples), out of which consistent parse infor-
mation is available for 81.25% examples (we only include
side-information in terms of constraints for this subset).

We repeat the same experimental procedure over multi-
ple networks, SRL-X, while varying the portion (X%) of the
training dataset. In Table 1, we see that GBI is able to convert
42.25 % of failure set, and this boosts the overall F1 measure
by 1.23 point over the SOTA network (SRL-100) which does
not incorporate the constraints (they report 84.6 F1, we ob-
tain a similar 84.4 F1 with their network, and achieve 85.63
after enforcing constraints with our inference). Further, to
address (Q1) we measure the sentence-level failure rate as
well as span-level disagreement rate (i.e., the ratio of pre-
dicted spans in a sentence that disagree with the spans im-
plied by the true syntactic parse of the sentence). To address
(Q2) we evaluate our method on the failure set (i.e., the set
of sentences for which disagreement rate is nonzero) and
measure our method’s average disagreement rate. Finally, to
address (Q3), we evaluate the quality (F1 and exact match)
of the output predictions on the network’s failure-set both
before and after applying our method. From Table 1, we
can see that by applying GBI on SRL-100, the average dis-
agreement rate on the failure set goes down from 44.85%
to 24.92% which results in an improvement of 11.7 F1 and
19.90% in terms of exact match on the same set. These im-
provements answer Q1-3 favorably.

4150

Network Failure Inference Conv

Failure set Test set
Average (%) F1 Exact Match F1

rate(%) rate(%) Disagreement (%)
before after before after before after before after

SRL-100 9.82 GBI 42.25 44.85 24.92 48.00 59.70 (+11.7) 0.0 19.90 84.40 85.63 (+1.23)
A* 40.40 33.91 48.83 (+0.83) 13.79 84.51 (+0.11)

SRL-70 10.54 GBI 46.22 45.54 23.02 47.81 59.37 (+11.56) 0.0 19.57 83.55 84.83 (+1.28)
A* 44.42 32.32 50.49 (+2.68) 16.12 83.90 (+0.35)

SRL-40 11.06 GBI 47.89 45.71 22.42 46.53 58.83 (+12.3) 0.0 19.45 82.57 84.03 (+1.46)
A* 44.74 32.17 46.53 (+2.88) 15.15 82.98 (+0.41)

SRL-10 14.15 GBI 44.28 47.14 24.88 44.19 54.78 (+10.59) 0.0 15.28 78.56 80.18 (+1.62)
A* 43.66 32.80 45.93 (+1.74) 12.28 78.87 (+0.31)

SRL-1 21.90 GBI 52.85 50.38 21.45 37.90 49.00 (+11.10) 0.0 12.83 67.28 69.97 (+2.69)
A* 48.96 30.28 41.59 (+3.69) 11.25 67.97 (+0.69)

Table 1: Comparison of the GBI vs. A*inference procedure for SRL. We report the avg. disagreement rate, F1-scores and exact
match for the failure set (columns 5-10) and F1-score for the whole test set (last 2 columns). Also, we report performances on a
wide range of reference models SRL-X, where X denotes % of dataset used for training. We employ Viterbi decoding as a base
inference strategy (before) and apply GBI (after) in combination with Viterbi.

name F1 hyper-parameters data
BS-9 greedy hidden layer dropout (%)

Net1 87.58 87.31 128 3 0.5 100
Net2 86.63 86.54 128 3 0.2 100
Net3 81.26 78.32 172 3 no 100
Net4 78.14 74.53 128 3 no 75
Net5 71.54 67.80 128 3 no 25

Table 2: Parsing Networks with various performances (BS-9
means beam size 9). Net1,2 are GNMT seq2seq models
whereas Net3-5 are lower-resource and simpler seq2seq
models, providing a wide range of model performances on
which to test GBI.

Net Failure Conv F1 (Failure set) F1 (whole test)
(/2415) rate before after before after

Net1 187 93.58 71.49 77.04 87.31 87.93
Net2 287 89.20 73.54 79.68 86.54 87.57

Table 3: Evaluation of GBI on syntactic parsing using
GNMT seq2seq. Note that GBI without beam search per-
forms higher than BS-9 in Table 2.

To enforce constraints during inference, He et al. pro-
posed to employ constrained-A*decoding. For the sake of a
fair comparison with GBI, we consider A*decoding as used
in (He et al. 2017) and report results for the SRL-X net-
works. We see from Table 1, that the GBI procedure con-
sistently outperforms A*decoding on all evaluation metrics,
thus demonstrating the superiority of the approach.

4.2 Syntactic parsing
We now turn to a different task and network: syntactic con-
stituency parsing. We investigate the behavior of the con-
straint inference algorithm on the shift-reduce parsing task
described in Section 3. We transform the Wall Street Jour-
nal (WSJ) portion of the Penn Tree Bank (PTB) into shift-
reduce commands in which each reduce command has a
phrase-type (e.g., noun-phrase or verb-phrase) (Marcus et al.

Net Infer Failure Conv F1 (Failure set)
method (/2415) rate before after

Net3

Greedy 317 79.81 65.62 68.79 (+3.14)
Beam 2 206 87.38 66.61 71.15 (+4.54)
Beam 5 160 87.50 67.5 71.38 (+3.88)
Beam 9 153 91.50 68.66 71.69 (+3.03)

Net4

Greedy 611 88.05 62.17 64.49 (+2.32)
Beam 2 419 94.27 65.40 66.65 (+1.25)
Beam 5 368 92.66 67.18 69.4 (+2.22)
Beam 9 360 93.89 67.83 70.64 (+2.81)

Net5

Greedy 886 69.86 58.47 60.41 (+1.94)
Beam 2 602 82.89 60.45 61.35 (+0.90)
Beam 5 546 81.50 61.43 63.25 (+1.82)
Beam 9 552 80.62 61.64 62.98 (+1.34)

Table 4: Evaluation of GBI on simpler, low-resource seq2seq
networks. Here, we also evaluate whether GBI can be used
in combination with different inference techniques: greedy
and beam search of various widths.

1999). We employ the traditional split of the data with sec-
tion 22 for dev, section 23 for test, and remaining sections
01-21 for training. We evaluate on the test set with evalb3

F1. In each experiment, we learn a seq2seq network on a
training set and then evaluate the network directly on the
test set using a traditional inference algorithm to perform
the decoding (either greedy decoding or beam-search).

In order to study our algorithm on a wide range of accu-
racy regimes (section 4.4), we train many networks with dif-
ferent hyper-parameters producing models of various qual-
ity, from high to low, using the standard split of the WSJ
portion of the PTB. In total, we train five networks Net1-5
for this study, that we describe below. We train our two
best baseline models (Net1,2) using a highly competitive
seq2seq architecture for machine translation, GNMT (Wu et
al. 2016) with F1 scores, 86.78 and 87.33, respectively. And,
to study a wider range of accuracies, we train a simpler ar-
chitecture with different hyper parameters and obtain nets

3http://nlp.cs.nyu.edu/evalb/

4151

(Net3-5). For all models, we employ Glorot initialization,
and basic attention (Bahdanau, Cho, and Bengio 2014). See
Table 2 for a summary of the networks, hyper-parameters,
and their performance.

We report the behavior of the constraint-satisfaction
method in Table 3 for Net1-2, and in Table 4 for Net3-5.
Across all the experimental conditions (Table 3, 4), the con-
version rates are high, often above 80 and sometimes above
90 supporting Q2. Note that beam search alone can also in-
crease constraint satisfaction with conversion rates reaching
as high as 51.74% (164/317) in the case of Net3 with beam
size 9. However, as the quality of the model increases, the
conversion rate becomes minuscule; in the case of Net1,2
the conversion rate is less than 14% with beam 9; in Net1
converting 26 out of 187 and in Net2 converting just 1 out
of 287 instances from failure set.

In order to address question Q3—the ability of our ap-
proach to satisfy constraints without negatively affecting
output quality—we measure the F1 scores on the failure-sets
both before and after applying the constraint satisfaction al-
gorithm. Since F1 is only defined on valid trees, we employ
heuristic post-processing to ensure all outputs are valid.

Note that an improvement on the failure-set guarantees
an improvement on the entire test-set since our method pro-
duces the exact same outputs as the baseline for examples
that do not initially violate any constraints. Consequently,
for example, the GNMT network improves (Net2) on the
failure-set from 73.54 to 79.68 F1, resulting in an overall
improvement from 86.54 to 87.57 F1 (entire test-set). These
improvements are similar to those we observe in the SRL
task, and provide additional evidence for answering Q1-3
favorably. We also measure how many iterations of our al-
gorithm it takes to convert the examples that have constraint-
violations. Across all conditions, it takes 5–7 steps to convert
25% of the outputs, 6–20 steps to convert 50%, 15–57 steps
to convert 80%, and 55–84 steps to convert 95%.

4.3 Simple Transduction Experiment
In our final experiment we focus on a simple sequence trans-
duction task in which we find that despite learning the train-
ing data perfectly, the network fails to learn the constraint
in a way that generalizes to the test set. For our task, we
choose a simple transducer, similar to those studied in recent
work (Grefenstette et al. 2015). The source language LS is
(az|bz)? and the target language LT is (aaa|zb)?. The
transducer is defined to map occurrences of az in the source
string to aaa in the target string, and occurrences of bz
in the source string to zb in the target string. For example,
T (bzazbz) 7→ zbaaazb. The training set comprises 1934
sequences of length 2–20 and the test set contain sentences
of lengths 21-24. We employ shorter sentences for training
to require generalization to longer sentences at test time.

We employ a 32 hidden unit single-layered, attention-less,
seq2seq LSTM in which the decoder LSTM inputs the fi-
nal encoder state at each decoder time-step. The network
achieves perfect train accuracy while learning the rules of
the target grammar LT perfectly, even on the test-set. How-
ever, the network fails to learn the input-specific constraint
that the number of a’s in the output should be three times

the number of a’s in the input. This illustrates how a net-
work might rote-memorize constraints rather than learn the
rule in a way that generalizes. Thus, enforcing constraints
at test-time is important. To satisfy constraints, we employ
GBI with a constraint loss g, a length-normalized quadratic
(3xa − ya)2/(m + n) that is zero when the number of a’s
in the output (ya) is exactly three times the number in the
input (xa) with m,n denoting input, output, respectively.
GBI achieves a conversion rate of 65.2% after 100 itera-
tions, while also improving the accuracy on the failure-set
from 75.2% to 82.4%. This synthetic experiment provides
additional evidence in support of Q2 and Q3, on a simpler
small-capacity network.

4.4 GBI on wide range of reference models
The foregoing experimental results provide evidence that
GBI is a viable method for enforcing constraints. However,
we hitherto study GBI on high quality reference networks
such as SRL-100. To further bolster our conclusions, we
now direct our investigation towards lower quality networks
to understand GBI’s viability under a broader quality spec-
trum. We ask, how sensitive is GBI to the reference net-
work’s performance (Q4)? To this end, we train poorer qual-
ity networks by restricting the amount of available training
data or employing simpler architectures.

For SRL, we simulate low-resource models by limiting the
training data portion to 1%, 10%, 40%, and 70% resulting in
F1 score range of 67.28-83.55. Similarly, for syntactic pars-
ing, we train additional low-quality models Net3-5 with a
simpler uni-directional encoders/decoders, and on different
training data portions of 25%, 75%, and 100% (Table 2). We
evaluate GBI on each of them in Table 1, 4 and find further
evidence in support of favorable answers to Q2 (satisfying
constraints) and Q3 (improving F1 accuracy) by favorably
answering Q4. Moreover, while not reported fully due to
page limits, we examined both tasks with over 20 experi-
ments and different baseline networks in combination with
different inference strategies, and we found GBI favorable in
all but one case (but by just 0.04 comparing without GBI).

We also study whether GBI is compatible with better
underlying discrete search algorithms, in particular beam
search for seq2seq. As we seen in column 2 of Table 4, that
although beam-search improves the F1 score and reduces the
percentage of violating constraints, GBI further improves
over beam-search when using the latter in the inner-loop as
the decoding procedure. In conclusion, improving the un-
derlying inference procedure has the effect of decreasing the
number of violating outputs, but GBI is still very much ef-
fective on this increasingly small set, despite it intuitively
representing more difficult cases that even eludes constraint
satisfaction via beam search inference.

4.5 Experiments on out-of-domain data
Previously, we saw how GBI performs well even when the
underlying network is of lower quality. We now investigate
GBI on actual out-of-domain data for which the model qual-
ity can suffer. For SRL, we train a SOTA network with
ELMo embedding on the NewsWire (NW) section of the
OntoNotes v5.0 English PropBank corpus and then test on

4152

Syntactic Parsing SRL
Genre Failure Conversion F1 on failure set Failure Conversion F1 on failure set

rate (%) rate (%) before after rate (%) rate (%) before after
Broadcast Conversation (BC) 19.3 98.8 56.4 59.0 (+2.6) 26.86 53.88 39.72 52.4 (+12.68)

Broadcast News (BN) 11.7 98.1 63.2 68.8 (+5.6) 18.51 55.19 39.28 50.58 (+11.3)
Pivot Corpus (PT) 9.8 97.8 71.4 75.8 (+4.4) 10.01 62.34 47.19 63.69 (+16.5)

Telephone Conversation (TC) 10.1 86.2 56.9 57.6. (+0.7) 19.09 54.62 47.7 58.04 (+10.34)
Weblogs (WB) 17.6 95.3 62.0 63.2 (+1.2) 20.32 44.13 47.6 57.39 (+9.39)

Table 5: Evaluation of syntactic parser and SRL system on out-of-domain data. F1 scores are reported on the failure set. SRL
model was trained on NW and the syntactic parser was trained on WSJ Section on OntoNote v5.0. Except PT, which is new
and old Testament, all failure rate on out-domain data is higher than that of in-domain (11.9% for parsing and 18.1% for SRL)
as suspected. The table shows that GBI can be successfully applied to resolve performance degradation on out-of-domain data.

the other genres provided in the corpus: BC, BN, PT, TC,
WB. The failure rate on the within genre data (test set of
NW) is 18.10%. We can see from Table 5, the failure rate
for the NW trained SRL network in general is higher for
out-of-genre data with the highest being 26.86% for BC (vs.
18.10% NW). Further, by enforcing constraints, we see sig-
nificant gains on the failure set in terms of F1 score across
all genres (ranging from 9.39-16.5 F1), thus, providing ad-
ditional evidences for answering Q5.

As we did for SRL, we train a GMNT seq2seq model on
the WSJ NW section in OntoNotes v5.0 Treebank 4 which
shares the same genre classification with PropBank. The F1
on the within-genre data (test set of WSJ) is 85.03, but the
F1 on these genres is much lower, ranging from the mid-
forties on BC (46.2–78.5 depending on the subcategory) to
the low-eighties on BN (68.3–81.3. depending on the sub-
category). Indeed, we find that overall the F1 is lower and in
some cases, like WB, the failure rate is much higher (17.6%
for WB vs. 11.9% for WSJ). Following the same experimen-
tal protocol as on the PTB data, we report the results in Ta-
ble 5 (aggregating over all subcategories in each genre). We
see that across all genres, the algorithm has high conversion
rates (sometimes close to 100%), and that in each case, en-
forcing the constraints improves the F1. Again, we find sup-
port for Q2, Q3 and Q5.

4.6 Robustness and Runtime analysis
We perform additional experiments to analyze the robust-
ness and runtime of GBI. First, to measure robustness, we
consider a variant of the SRL task in which we include noisy
constraints, and compare GBI to A*(Appendix D). We find
that in this case, A*performs significantly worse than the
baseline, while GBI improves over the same baseline, thus
showing the robustness of GBI.

In terms of runtime, GBI is generally faster than A*,
though, the difference is less clear on smaller evaluation sets
(Appendix E). In the case study with noisy constraints, the
runtimes are similar; however, GBI has much better accu-
racy, showing similar gains as the noise-free setting. Lastly,
in Appendix D, we discuss GBI’s trade off between runtime
and accuracy by varying the max epoch M .

4The PTB (40k instances) and OntoNotes (30k instances) cov-
erage of WSJ are slightly different.

5 Related work
Recent work has considered applying neural networks to
structured prediction; for example, structured prediction en-
ergy networks (SPENs) (Belanger and McCallum 2016).
SPENs incorporate soft-constraints via back-propagating an
energy function into “relaxed” output variables. In con-
trast, we focus on hard-constraints and back-propagate into
the weights that subsequently control the original non-
relaxed output variables via inference. Separately, there has
been interest in employing hard constraints to harness un-
labeled data in training-time for simple classifications (Hu
et al. 2016). Our work instead focuses on enforcing con-
straints at inference-time. More specifically, for SRL, pre-
vious work for enforcing constraints have focused on con-
strained A*decoding (He et al. 2017) or integer linear pro-
gramming (Punyakanok, Roth, and Yih 2008). For parsing,
previous work in enforcing hard constraints has focused on
post-processing (Vinyals et al. 2015) or building them into
the decoder transitions (Dyer et al. 2016) or search con-
straints (Wiseman and Rush 2016).

Finally, as previously mentioned, our method highly re-
sembles dual decomposition and more generally Lagrangian
relaxation for structured prediction (Koo et al. 2010; Rush
et al. 2010; Rush and Collins 2012). In such techniques, it
is assumed that a computationally efficient inference algo-
rithm can maximize over a superset of the feasible region
(this assumption parallels our case because unconstrained
inference in the neural network is efficient, but might violate
constraints). Then, the method employs gradient descent to
concentrate this superset onto the feasible region. However,
these techniques are not directly applicable to our non-linear
problem with global constraints.

6 Conclusion
We presented an algorithm for satisfying constraints in neu-
ral networks that avoids combinatorial search, but employs
the network’s efficient unconstrained procedure as a black
box to coax weights towards well-formed outputs. We eval-
uated the algorithm on three tasks including SOTA SRL,
seq2seq parsing and found that GBI can successfully convert
failure sets while also boosting the task performance. Accu-
racy in each of the three tasks was improved by respecting
constraints. Additionally, for SRL, we employed GBI on a
model trained with similar constraint enforcing loss as GBI’s

4153

(Mehta*, Lee*, and Carbonell 2018), and observe that the
additional test-time optimization of GBI still significantly
improves the model output whereas A*does not. We believe
this is because GBI searches in the proximity of the provided
model weights; however, theoretical analysis of this hypoth-
esis is left as a future work.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
CoRR, arXiv preprint arXiv:1409.0473.
Belanger, D., and McCallum, A. 2016. Structured prediction
energy networks. In International Conference on Machine
Learning.
Blei, D. M.; Bagnell, A.; and McCallum, A. K. 2002. Learn-
ing with scope, with application to information extraction
and classification. In Uncertainty in Artificial Intelligence
(UAI).
Cho, K.; Van Merriënboer, B.; Gülçehre, Ç.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder–decoder for statis-
tical machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 1724–1734. Association for Computa-
tional Linguistics.
Dyer, C.; Kuncoro, A.; Ballesteros, M.; and Smith, N. A.
2016. Recurrent neural network grammars. In NAACL-HLT,
199–209.
Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.;
Liu, N. F.; Peters, M.; Schmitz, M.; and Zettlemoyer, L. S.
2017. Allennlp: A deep semantic natural language process-
ing platform.
Grefenstette, E.; Hermann, K. M.; Suleyman, M.; and Blun-
som, P. 2015. Learning to transduce with unbounded mem-
ory. In Neural Information Processing Systems (NIPS).
He, L.; Lee, K.; Lewis, M.; and Zettlemoyer, L. S. 2017.
Deep semantic role labeling: What works and what’s next.
In ACL.
Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. P. 2016.
Harnessing deep neural networks with logical rules. In As-
sociation for Computational Linguistics (ACL).
Koo, T.; Rush, A. M.; Collins, M.; Jaakkola, T.; and Son-
tag, D. 2010. Dual decomposition for parsing with non-
projective head automata. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, 1288–1298. Association for Computational Lin-
guistics.
Kumar, A.; Irsoy, O.; Ondruska, P.; Iyyer, M.; Bradbury, J.;
Gulrajani, I.; Zhong, V.; Paulus, R.; and Socher, R. 2016.
Ask me anything: Dynamic memory networks for natural
language processing. Machine Learning 1378–1387.
Lyon, G. 1974. Syntax-directed least-errors anallysis for
context-free languages: A practical approach. Programming
Languages 17(1).
Marcus, M. P.; Santorini, B.; Marcinkiewicz, M. A.; and

Taylor, A. 1999. Treebank-3 ldc99t42 web download. In
Philidelphia: Linguistic Data Consortium.
Mehta*, S. V.; Lee*, J. Y.; and Carbonell, J. 2018. Towards
semi-supervised learning for deep semantic role labeling. In
Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, 4958–4963.
Ouchi, H.; Shindo, H.; and Matsumoto, Y. 2018. A span se-
lection model for semantic role labeling. In EMNLP, 1630–
1642. Association for Computational Linguistics.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. In Proc. of NAACL.
Pradhan, S.; Moschitti, A.; Xue, N.; Ng, H. T.; Björkelund,
A.; Uryupina, O.; Zhang, Y.; and Zhong, Z. 2013. Towards
robust linguistic analysis using ontonotes. In Proceedings of
the Seventeenth Conference on Computational Natural Lan-
guage Learning, 143–152.
Punyakanok, V.; Roth, D.; and Yih, W.-t. 2008. The im-
portance of syntactic parsing and inference in semantic role
labeling. Computational Linguistics 34(2):257–287.
Ratinov, L., and Roth, D. 2009. Design challenges and mis-
conceptions in named entity recognition. In Computational
Natural Language Learning (CoNNL).
Rush, A. M., and Collins, M. 2012. A tutorial on dual de-
composition and lagrangian relaxation for inference in nat-
ural language processing. Journal of Artificial Intelligence
Research 45:305–362.
Rush, A. M.; Sontag, D.; Collins, M.; and Jaakkola, T.
2010. On dual decomposition and linear programming re-
laxations for natural language processing. In Proceedings
of the 2010 Conference on Empirical Methods in Natural
Language Processing, 1–11. Association for Computational
Linguistics.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In Neural Informa-
tion Processing Systems (NIPS).
Vinyals, O.; Kaiser, L.; Koo, T.; Petrov, S.; Sutskever, I.; and
Hinton, G. 2015. Grammar as a foreign language. In NIPS.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8:229–256.
Wiseman, S., and Rush, A. M. 2016. Sequence-to-sequence
learning as beam-search optimization. In Empirical Methods
in Natural Language Processing, 1296–1306.
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.;
Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;
et al. 2016. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
CoRR, arXiv preprint arXiv:1609.08144.

4154

