
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Understanding Learned Models by
Identifying Important Features at the Right Resolution

Kyubin Lee*

Clinical Genomics Analysis Branch
National Cancer Center

Republic of Korea

Akshay Sood*

Dept. of Computer Sciences
Dept. of Biostatistics & Medical Informatics

University of Wisconsin-Madison

*These authors contributed equally to this work.

Mark Craven
Dept. of Biostatistics & Medical Informatics

Dept. of Computer Sciences
University of Wisconsin-Madison

Abstract

In many application domains, it is important to characterize
how complex learned models make their decisions across the
distribution of instances. One way to do this is to identify
the features and interactions among them that contribute to
a model’s predictive accuracy. We present a model-agnostic
approach to this task that makes the following specific contri-
butions. Our approach (i) tests feature groups, in addition to
base features, and tries to determine the level of resolution at
which important features can be determined, (ii) uses hypoth-
esis testing to rigorously assess the effect of each feature on
the model’s loss, (iii) employs a hierarchical approach to con-
trol the false discovery rate when testing feature groups and
individual base features for importance, and (iv) uses hypothe-
sis testing to identify important interactions among features
and feature groups. We evaluate our approach by analyzing
random forest and LSTM neural network models learned in
two challenging biomedical applications.

Introduction
In many application domains, it is important to be able to
inspect, probe, and understand models learned by machine-
learning systems. There are several principal reasons why
it might be critical to understand how learned models make
their decisions: (i) Trust: end users and other stakeholders
need to trust the models’ decisions and understand the basis
for them in order for the models to be accepted and employed;
(ii) Model development: to help improve the predictive per-
formance of models, interpretable descriptions can aid in
selecting among models, detecting and avoiding overfitting,
and gaining insight into differences among input representa-
tions; (iii) Discovery: our knowledge of a problem domain
can be augmented by identifying previously unrecognized
salient features and relationships that models have learned.

In such application domains, there is a strong incentive to
use a learning method that directly learns interpretable mod-
els, such as logistic regression or a generalized additive model
(Lou et al. 2013). However, there is often tension between
the desiderata of model comprehensibility and predictive
performance. It may be the case that the machine-learning
approaches that provide the best predictive performance in a
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given domain learn models that are highly challenging to in-
spect and understand. For this reason, a number of approaches
have been developed for gaining insight into complex learned
models such as random forests and deep neural networks.

Methods for gaining comprehensible descriptions of
learned models can be divided into two broad categories.
The first category, which is referred to as prediction in-
terpretability encompasses methods that lend insight into
learned models by locally explaining the decisions they make
for individual instances (Alvarez-Melis and Jaakkola 2017;
Fong and Vedaldi 2017; Koh and Liang 2017; Lei, Barzi-
lay, and Jaakkola 2016; Leino et al. 2018; Ribeiro, Singh,
and Guestrin 2016; 2018). The second category, referred
to as model interpretability, refers to methods that aim to
provide characterizations of how models make decisions
across the distribution of instances. Some methods in this
category are tailored to specific types of models (Bau et
al. 2017; Bojarski et al. 2017; Hara and Hayashi 2018;
Karpathy, Johnson, and Fei-Fei 2016), whereas others are
agnostic to the model type (Craven and Shavlik 1996;
Ribeiro, Singh, and Guestrin 2016; 2018).

Here we present a model-agnostic approach that is fo-
cused on gaining model interpretability. The crux of our
approach is to identify important features, groups of fea-
tures, and interactions among them. The prior research
that is most closely related to ours includes methods that
aim to provide model interpretability by identifying impor-
tant features through perturbations of input (Breiman 2001;
Friedman 2001; Li, Monroe, and Jurafsky 2016). There are
also methods that identify important features, but which are
not model agnostic (Epifanio 2017; Fabris et al. 2018). The
specific contributions of our approach are the following. First,
it is well suited to tasks with large, structured feature spaces.
In such applications, the base features that are used as input
to the model might not provide the best level of resolution
for understanding or characterizing what is important to the
learned model. Our approach tests feature groups, in addition
to base features, and tries to determine the level of resolution
at which we can determine the important features. Second,
we go beyond just ranking features according to their impor-
tance, and instead use hypothesis testing to assess the effect
of each feature on the model’s loss. Given the potentially
large number of hypothesis tests that must be done, we use
a hierarchical approach to control the false discovery rate
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when testing feature groups and base features for importance.
Third, we propose a method based on hypothesis testing
to identify important interactions among base features and
feature groups.

We evaluate our approach by analyzing random forest and
LSTM neural network models learned in two application
domains: identifying viral genotype-to-disease-phenotype
associations, and predicting asthma exacerbations from elec-
tronic health records (EHRs). Additionally, we validate our
approach using synthetic data sets in which we know which
features and groups are truly important.

Methods
In this section, we describe the key elements of the model-
agnostic approach we have developed for characterizing
learned models. The source code for our methods is available
at https://github.com/Craven-Biostat-Lab/mihifepe.

Identifying Important Features via Perturbation
As shown in Algorithm 1, a general approach to identifying
important features in a learned model is to measure how
the output of the model, or its loss, varies when individual
features in a given set of instances are perturbed in some way.
Breiman (2001) proposed an approach based on this idea
as a way to characterize learned random forest models, and
Friedman proposed a similar approach for generating partial
dependency plots (Friedman 2001; Friedman and Popescu
2008). In Breiman’s method, the perturbation is done by
permuting the values of the given feature across a set of
instances. However, the approach can be generalized to other
perturbations, including feature “erasure” (Li, Monroe, and
Jurafsky 2016), flipping binary features, or replacing features
with “background” values.

Algorithm 1: General approach to identifying important
features via perturbation

input : learned model h, feature set F , test set
T = {

(
x(1), y(1)

)
. . .
(
x(m), y(m)

)
}

output : set {(j, vj) |j ∈ F} summarizing the effect vj
on loss L when perturbing each feature j

foreach feature j ∈ F do
foreach instance

(
x(i), y(i)

)
in T do

let ∆x
(i)
j represent x(i) with feature j perturbed

in some way
compare loss L

[
y(i), h

(
x(i)
)]

to

L
[
y(i), h

(
∆x

(i)
j

)]
calculate summary statistic vj characterizing the
effect of perturbing feature j on L

A key extension of this idea in our approach is that it
uses hypothesis testing to determine whether a given feature
has a generally consistent effect on the model’s loss across
the distribution of instances. We do this using held-aside

test instances so that our importance assessment measures
whether a feature truly impacts a model’s predictive accuracy.
In the results presented here, we use the Wilcoxon matched-
pairs signed-rank test to assess the null hypothesis that the
median difference between pairs:

L
[
y(i), h

(
x(i)
) ]
− 1

P

P∑
p=1

L
[
y(i), h

(
∆x

(i,p)
j

) ]
(1)

is zero. Here ∆x
(i,p)
j is defined as x(i) with feature j per-

turbed on the pth permutation. For perturbations that do not
involve randomness, such as erasure, P = 1 and x

(i,1)
j de-

notes the single perturbation that can be done to feature j.
We use the Wilcoxon test in place of a paired t-test due to

significant non-normality in the changes to loss introduced by
feature perturbations. Here, we use the one-tailed version of
the test, corresponding to the median difference being greater
than zero, in order to focus on features that provide predictive
value to the model. Alternatively, we could use a two-tailed
test to also detect features whose perturbation decreases loss,
thereby indicating overfitting.

Considering Feature Groups
The approach described in Algorithm 1 is typically applied
to the set of features that are used as input to the model,
which we refer to as base features. We argue that, in many
domains, characterizing the importance of base features may
not be the right level of resolution for gaining a thorough
understanding of a learned model. In some domains, there
may be a large number of features that are important to the
model, and it may be difficult to discern which high-level
factors are most important for the model’s predictions unless
groupings of related features are considered. For example
models that perform risk assessment from electronic health
records often have thousands of base features representing
distinct diagnoses. Our understanding of such a model is
likely to be aided by analyzing the importance of groups
of related diagnoses, or even the entire set of diagnoses, in
addition to very specific ones. Moreover, it might be the case
that few, if any, individual base features show a statistically
significant change to the model’s loss when perturbed, or the
effect sizes of these changes to the loss are small. In such
cases, we can potentially detect statistical significance and
larger effect sizes by considering groups of related features.

In contrast to assessing feature importance only at the level
of base features, our approach also assesses the importance
of feature groups. We assume that we are given a hierarchy
in which internal nodes represent groups of features, and leaf
nodes represent base features. We can then apply Algorithm 1
to both base features and feature groups in order to determine
which are important.

In some application domains, such as risk assessment from
EHRs, there are standard ontologies which can be used to
define the hierarchy of feature groups. For example, the In-
ternational Classification of Diseases (ICD) and the Clinical
Classifications Software (CCS) both define hierarchies of
semantically related groups of diagnoses and procedures. In a
risk-assessment application, the base features might represent
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the occurrence of specific recorded diagnoses in a given pa-
tient’s EHR, such as reflux esophagitis (ICD-9 code 530.11)
or acute esophagitis (ICD-9 530.12). We could test the im-
portance of such features by erasing all occurrences of the
given diagnosis from patients’ records and measuring the
resulting loss. Moreover, we might test the importance of
the feature groups esophagitis (ICD-9 530.1), which has
five children diagnoses including the two listed above, or
diseases of the esophagus (ICD-9 530), which has 28
descendant diagnoses. To test a feature group, we could erase
all recorded diagnosis that are encompassed by the group.

In other application domains, the feature groups might be
derived from data. For example, in our viral genotype-to-
phenotype task, we calculate feature groups using a hierar-
chical clustering method. Our base features are haplotype
blocks, which are variable-sized regions of the genome that
have been inherited as a unit from one of two parental virus
strains. Our feature groups consist of sets of neighboring
haplotype blocks (i.e., larger regions of the viral genome).

In a natural language domain, we might define feature
groups on the basis of syntactic or semantic categories. In
an image classification domain, the base features might cor-
respond to pixels and we might define feature groups to
represent superpixels or objects as feature groups. Perturba-
tions could involve replacing a region with a constant value,
injecting noise, or blurring (Fong and Vedaldi 2017).

In domains with temporal or sequential input, feature
groups could represent sets of features with restrictions based
on their occurrence in time/sequence. For example, in a clini-
cal risk-assessment domain we might define feature groups
representing occurrences of diagnoses restricted to certain
time windows, such as diseases of the esophagus within
the past year, or esophagitis when patient’s age > 50.

In contrast to approaches for hierarchical feature selec-
tion (Wan and Freitas 2018), the hierarchies used by our
approach do not necessarily represent is-a or generalization-
specialization relationships. Each internal node needs only
to group features that are related in some meaningful way
(e.g., neighboring regions of a genome). Moreover, our ap-
proach is not focused on feature selection per se, but instead
on characterizing which feature groups are important in a
given learned model.

Controlling the False Discovery Rate
Given a hierarchy over the features, we can compute the
effect of perturbing each base feature and each feature group
using Algorithm 1 across a given set of instances. We treat
each node in the hierarchy as representing the null hypothesis
that perturbing the corresponding feature group does not
have a significant effect on the loss function, in the sense that
the median of the differences computed using Formula (1)
is zero. A hypothesis is rejected if this median difference is
statistically significantly different from zero, and a hypothesis
is tested only if its parent hypothesis has been rejected.

However, there is a notable multiple-comparisons problem
due to the potentially large number of hypotheses tested. For
instance, there are 8,740 hypotheses to be tested (counting
both base features and feature groups) in the asthma exac-
erbation prediction task that we address. Moreover, when

adjusting for multiple comparisons, we need to take into
account the hierarchical organization of the hypotheses be-
ing tested. We address this issue by using the hierarchical
false discovery rate (FDR) control methodology developed
by Yekutieli (2008) as described in Algorithm 2.

This algorithm uses a recursive procedure to consider a
hierarchical set of hypotheses, which in our case consist of
feature groups to be tested. If the null hypothesis is rejected
for a given node in the hierarchy (i.e., we determine that a
feature group is important), then the children of that node are
tested using the Benjamini-Hochberg method (Benjamini and
Hochberg 1995) to control false discoveries. Otherwise, the
descendants of the given node are not tested. The algorithm
returns a subtree representing the set of feature groups and
base features for which the null hypothesis was rejected.

Using this algorithm, we can identify the set of feature
groups and base features that have a significant effect on a
model’s loss while controlling the rate of false discoveries in
this set. Of particular interest is the set of outer nodes: those
nodes for which we reject the null hypotheses (i.e., determine
that they are important) that have no children for which we
reject the null hypotheses. These nodes represent the finest
level of resolution at which we can determine the importance
of features and feature groups.

The key assumptions made by this approach, which are
reasonable in our context, are that (i) if a given feature signif-
icantly affects the loss when perturbed, a group of features
containing this feature will also significantly affect the loss
when perturbed, (ii) the p-values for siblings are indepen-
dently distributed, and (iii) p-values for true null hypotheses
are uniformly distributed in [0,1].

Identifying Important Interactions
In addition to identifying individual base features and feature
groups that are important, we would also like to identify in-
teractions among them that a given model has determined
as important. Here we consider cases in which the model
outputs a scalar value. For this analysis, we do not treat
a given model completely as a black box, but instead as-
sume that we know the transfer function that produces the
model’s outputs. Let g(x(i)) denote the function that maps
x(i) to the value that is input to the transfer function f(·),
and h

(
x(i)
)

= f
(
g(x(i))

)
indicate the output of the model.

For example, f(·) might be a logistic activation function in a
neural network for a binary classification task, in which case
g(·) would represent the part of the network that maps from
x(i) to the net input of the logistic function. Or in a random
forest trained for a regression task, f(·) would represent the
identity function, and g(·) would represent the average of the
values predicted by the individual trees in the forest.

Our notion of an interaction among features is based on
the concept of additivity. We define an interaction between
feature j and feature k to mean that changes in g(·) when we
perturb both features are non-additive (for some instances):[

g
(

∆x
(i)
j

)
− g

(
x(i)
)]

+
[
g
(

∆x
(i)
k

)
− g

(
x(i)
)]
6≈[

g
(

∆x
(i)
j∧k

)
− g

(
x(i)
)]

(2)
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Algorithm 2: Using hierarchical FDR control to identify
important features

input : Tree T of hypotheses to be tested along with
their associated p-values, significance level q

output : A subtree S of T corresponding to hypotheses
rejected while controlling FDR at significance
level q

function HierarchicalFDR (node):
// node has already been rejected
rejectedSet = { node }
if node is not leaf then

let P(1) ≤ . . . ≤ P(k) be the set of ordered
p-values of node.children

// Apply Benjamini-Hochberg procedure to
children

let r = max{i : P(i) ≤ i×q
k }

if r > 0 then
rejectedChildren = set of r hypotheses

corresponding to P(1) ≤ . . . ≤ P(r)

foreach child ∈ rejectedChildren do
rejectedSet = rejectedSet ∪
HierarchicalFDR (child)

return rejectedSet

begin
if T.root.pvalue > q then

S = empty tree
else

S = HierarchicalFDR (T.root)

where ∆x
(i)
j∧k denotes instance x(i) with feature j and feature

k jointly perturbed.
To identify interactions that are important, we use hypoth-

esis testing to assess whether a candidate interaction exhibits
nonadditivity. We can do this by considering the median
difference between pairs formed by the two sides of the
inequality above. In the results presented here, we use the
Wilcoxon matched-pairs signed-rank test to assess the null
hypothesis that the median difference between the pairs is
zero. This approach to testing interactions can be applied to
base features, feature groups, and mixtures thereof.

Alternatively, we can consider whether a candidate interac-
tion exhibits nonadditivity which has a generally consistent
effect on the model’s loss across the distribution of instances.
We can do this by assessing the difference between pairs:

L
[
y(i), f

(
g
(
∆x

(i)
j∧k
))]
−

L
[
y(i), f

(
g
(
x(i)
)

+ ∆g
(
∆x

(i)
j

)
+ ∆g

(
∆x

(i)
k

))]
(3)

where ∆g
(
∆x

(i)
j

)
is defined as

[
g
(
∆x

(i)
j

)
− g
(
x(i)
)]

(i.e.,

the change in g(x(i)) that results from perturbing feature j).

However, the null distribution may not be as straightforward
to work with in this case because, depending on the loss
function, the difference in variances of the inner terms on
each side may lead to the loss terms having different means.

A related approach that can be used to detect interactions
is the H2 statistic (Friedman and Popescu 2008) which is
based on partial dependency scores.

Results
In this section, we evaluate our approach by (i) assessing
its ability to detect important features and interactions while
controlling FDR on synthetic data sets, and (ii) applying it in
two biomedical domains in which it is essential to understand
learned models.

Evaluation on Synthetic Data Sets
To verify that our approach is able to identify important
features and interactions while controlling the false discovery
rate, we first evaluate it using data sets for which we know
the truly important features. In this setting we can think of
each model as approximating a ground-truth function of the
form:

y(i) =
∑
j∈IL

αjx
(i)
j +

∑
(j,k)∈II

j 6=k

αjkx
(i)
j x

(i)
k (4)

where IL and II represent the subset of important linear
and interaction terms respectively, and αj and αjk are corre-
sponding coefficients that determine how the jth feature and
(j, k)th interaction contribute to the output. Note that a feature
is considered important if belongs to IL, or is a component
of an interaction that belongs to II , or both. We represent a
“learned” model using the following form:

h
(
x(i)
)

=
∑
j∈IL

αjx
(i)
j +

∑
(j,k)∈II

j 6=k

αjkx
(i)
j x

(i)
k + γ(i) (5)

where γ(i) ∼ N(0, σ2) represents the deviation of the
model’s output from the ground-truth function for some in-
stance i in the feature space. This formulation is intended to
simulate the situation in which a learned model provides a
fairly accurate representation of the underlying target func-
tion, but incorporates irrelevant features and other deviations
which have a small impact on the model’s outputs.

We generate synthetic data sets by drawing feature vec-
tors from a given distribution, and then using Equation 5
to determine h(x(i)) for each x(i), and similarly for each
perturbation of x(i). Here we present results in which our in-
stance spaces have 500 binary features, and each underlying
ground truth function has 50 important features and 50 impor-
tant interactions selected from among these, with coefficients
αj ∼ U(0, 1) ∀j ∈ IL and αjk ∼ U(0, 1) ∀(j, k) ∈ II .
The feature vectors are constructed by sampling each fea-
ture from an independent Bernoulli distribution. We define
feature groups by creating a balanced binary hierarchy with
features randomly assigned to leaf nodes and feature groups
represented by internal nodes. A feature group is considered
important if it contains at least one important feature in its
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subtree. We use Equation 1 for hypothesis testing of the fea-
tures, performing perturbations by erasure (i.e., setting the
feature to zero in all instances), followed by the hierarchical
FDR procedure (Algorithm 2) with q = 0.05.

To analyze interactions, we use the (base) features identi-
fied as important in the preceding analysis to construct a set of
potential interactions to test. This allows us to prune the large
search space of all possible interactions, albeit at the cost
of decreased power. We then use Equation 2 to perform hy-
pothesis testing of these interactions, and use the Benjamini-
Hochberg procedure (1995) to control FDR among this set.

features interactions
m FDR power FDR power
32 0.019 0.722 0.046 0.132
64 0.024 0.800 0.014 0.370

128 0.026 0.850 0.030 0.543
256 0.029 0.895 0.035 0.682
512 0.036 0.919 0.040 0.777

1024 0.035 0.936 0.039 0.840
2048 0.029 0.948 0.048 0.877
4096 0.029 0.960 0.045 0.913
8192 0.033 0.967 0.046 0.935

16384 0.032 0.975 0.039 0.949
(a)

features interactions
σ FDR power FDR power

0.00 0.000 0.999 0.000 0.991
0.01 0.034 0.983 0.048 0.966
0.02 0.034 0.982 0.047 0.964
0.04 0.034 0.980 0.048 0.958
0.08 0.034 0.974 0.048 0.945
0.16 0.034 0.964 0.049 0.920
0.32 0.034 0.938 0.048 0.866
0.64 0.033 0.887 0.049 0.766
1.28 0.033 0.770 0.050 0.564

(b)

Table 1: FDR and power on synthetic data sets as (a) the size
of the test set m is varied (b) σ is varied.

Table 1a shows the results of applying our method as the
number of instances in the “test set” is varied. The results
in the table represent averages over 100 randomly generated
models and datasets. For each test-set size, we report both
the mean power of the method (i.e., the fraction of the truly
important features and interactions that are identified as such)
and the mean false discovery rate (i.e., the fraction of puta-
tively important features and interactions that are not truly
important). The middle columns show FDR and power when
determining important features and feature groups, and the
rightmost columns show FDR and power when determining
important interactions. Table 1b shows the effect of varying
σ when sampling the γ(i) values for each learned model.
Here, the number of instances is 10,000. The results in Ta-
bles 1a and 1b indicate, not surprisingly, that the power of
our method to detect truly important features and interactions

increases with larger test sets, and decreases with larger val-
ues of σ. Importantly, for all conditions, the FDR ≤ 0.05 as
expected with our approach.

The analyses of both features and interactions show similar
trends. However, the mean power for discovering important
interactions trails the mean power for discovering important
features for any given test set size/noise level. This is because
we only test an interaction if its constituent features have
already been found to be important during the preceding
feature analysis.

Real Application Domains and Models
The first real domain we consider is focused on identify-
ing the genetic components of Herpes simplex virus type 1
(HSV-1) that are responsible for various dimensions of eye
disease. Here we analyze random-forest models that have
learned mappings from variations in viral genotypes to
three different eye disease phenotypes (Kolb et al. 2016;
Lee et al. 2016). Each instance corresponds to a genetically
distinct strain of the virus, and there are 65 recombinant
strains generated by mixed infection of two parental strains.
We represent each genotype as a vector of 547 features,
where each feature corresponds to a haplotype block which
is variable-sized regions of the genome that has been inher-
ited as a unit from one of the two parental virus strains. The
value of each binary feature indicates from which parental
strain the haplotype block was inherited. The phenotypes (ble-
pharitis, stromal keratitis, and neovascularization) for each
instance are numeric scores indicating the disease severity re-
sulting from infection in mice by a given strain. The random-
forest (RF) regression models had statistically significant
predictability for all three phenotypes and they demonstrated
better cross-validated predictive accuracy than penalized lin-
ear regression models (Lasso and Ridge) for two of these
three phenotypes, and others we have assessed. The cross-
validated R2 values for the blepharitis, stromal keratitis, and
neovascularization models are 0.45, 0.56, and 0.48, respec-
tively. Each learned RF model comprises 1,000 trees.

The second application domain we address is to predict
asthma exacerbations from electronic health records. The
data set consists of information derived from EHRs for a
cohort of 28,101 asthma patients from the University of Wis-
consin Health System over a five-year period. The infor-
mation extracted from the EHRs includes demographic fea-
tures and time-stamped events corresponding to encounters
with the healthcare system. These events include problem-
list and other coded diagnoses, procedures, medications, vi-
tals, asthma control scores, and prior exacerbations. We also
include features representing the time since the last event,
represented at multiple scales.

We learned long short-term memory (LSTM) neural
networks (Hochreiter and Schmidhuber 1997) to predict
whether a patient would experience an exacerbation within
the next 90 days or not given their clinical history as repre-
sented in the EHR. Deep recurrent neural networks (RNN)
have demonstrated state-of-the-art predictive accuracy in
learning models from healthcare data (Miotto et al. 2016;
Pham et al. 2016). Our LSTM networks have a cell state of
size 100 and a sigmoid output layer. The coded diagnoses,
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problem diagnoses, and interventions (procedures and med-
ications) all comprise large vocabularies (6,533 for coded
diagnoses, 4,398 for problem diagnoses, and 8,745 for inter-
ventions) of which only a small subset is recorded at each
encounter. Therefore, we first map event vectors for each
of these sets to an embedded space using Med2Vec (Choi
et al. 2016), resulting in shorter, dense fixed-length vectors.
Separate embeddings of size 200 were generated for each
of these sets, which were then concatenated, along with the
other temporal features, to produce the event representation
at each timestamp in the record. The ordered sequence of
events formed the input sequence for the LSTM. The static
demographic features were provided as input at the output
sigmoid layer. Using 10-fold cross-validation to assess the
predictive accuracy of the networks results in an area under
the ROC curve (AUROC) of 0.757.

Feature Groups and Perturbations

For the HSV-1 application, our feature hierarchy represents
neighboring regions of the viral genome. We compute the
hierarchy using a constrained hierarchical clustering method
applied to the base features, which represent haplotype blocks.
This clustering method uses Hamming distance to compare
columns (features) in our data matrix, and a complete linkage
function, such that every pair of features in a given cluster is
within a specified bit difference. The agglomerative cluster-
ing operator groups features that are correlated (i.e., exhibit
similar inheritance patterns) across the viral strains. Since we
want our hierarchy to group neighboring haplotype blocks
that are correlated, we constrain the clustering method such
that hierarchy adheres to the linear ordering of the haplo-
type blocks with the HSV-1 genome. Thus, the merging step
during clustering can be applied only to features or feature
groups that are adjacent to each other in the genome. The
resulting hierarchy consists of 547 leaf nodes (base features)
and 546 internal nodes (feature groups).

The perturbations we use to interrogate models in this
domain are based on permutations. For a given feature or
feature group, we randomly shuffle and reassign the values
for the feature (group) in the data matrix. When doing such
permutations for feature groups, the values in the group for
each instance are treated as a unit, being shuffled and reas-
signed together. We do this perturbation 500 times for each
feature or feature group when assessing its importance.

We consider two hierarchies over features for the asthma
exacerbation prediction task. We construct a top-level hi-
erarchy representing our broad categories of EHR-elicited
features (diagnoses, demographics, etc.). The second hierar-
chy we use is the standard ICD-9 hierarchy of diagnoses. In
this application, we use erasure perturbations which involve
zeroing out features or feature groups of interest, following
the use of erasure by Li et al. (2016). For event-based fea-
tures, the erasure operation we use removes all occurrences
of the feature from a patient’s history. For features that are
encoded in an embedded representation, the erasure opera-
tion is applied to the patient’s history and then the embedding
of the associated events is recomputed while keeping the
embedding models the same.

Identifying Important Features
In this section, we determine which features and feature
groups we can identify as being important to our learned
models in both application domains when controlling the
false discovery rate with q = 0.05. Table 2 summarizes the
results of our feature importance analysis of models learned
for four tasks in both domains. The first row in the table
indicates the number of base features and feature groups
that were assessed for each model. The second row indicates
the number of base features and feature groups that have an
unadjusted p-value < 0.05 when doing significance testing
as described in the Methods Section. The third row shows the
number of features that we ascertain are important after doing
hierarchical FDR control. The last two rows indicate, among
those nodes surviving the FDR control, the number that are
outer nodes, and the number of outer nodes that correspond
to feature groups. Recall that outer nodes refer to those that
survive the FDR control but have no children that do.

Figure 1 provides a visual depiction of these results for the
blepharitis phenotype model. Among the 1,093 base features
and feature groups that were tested, we determine that 107
are important when controlling the FDR at q = 0.05. More-
over the set of 40 outer nodes represents the finest level of
resolution at which we can say that a viral genomic region
is important to the phenotype. In the case of the blephar-
itis phenotype, six of the outer nodes are feature groups
which represent genomic regions that seem to be associated
with the phenotype but for which we cannot localize pre-
cisely which base features are important. Figure 2 shows
the identified important features for all three disease phe-
notypes mapped to the genomic coordinates of the virus.
Through the application of our approach to the learned RF
models, we are able to significantly narrow down the ge-
netic determinants of disease from a large number of can-
didate regions. Several of these regions recapitulate what
was previously known about HSV-1 pathogenicity, and oth-
ers indicate novel disease determinants (Kolb et al. 2016;
Lee et al. 2016). Moreover, the results suggest a high degree
of underlying causality among the three disease phenotypes
given the fact that there is substantial overlap among the
important regions identified.

Figure 3a shows the results of our feature importance anal-
ysis when applied to the highest level feature groups for
the asthma-exacerbation model. These results suggest that
the most informative feature groups are coded diagnoses
(DIAGNOSES), intervals between events (TIMESTAMPS),
and interventions (which combines medications and proce-
dures). We note that even when all the features are erased
(ROOT), the model still has some predictive power with AU-
ROC = 0.537. This is likely due to the fact that the number of
encounters in a patient’s history is predictive. Even when we
erase all other information, we leave the number of events
in a patient’s history intact. Figure 3b partially depicts the
results of our hierarchical FDR analysis on the diagnosis fea-
ture group. These results are also summarized in Table 2. A
large number of hypotheses are rejected at FDR control level
q = 0.05, indicating that many features and feature groups
have some predictive signal for this task. Figure 3b shows
those nodes surviving the FDR control that have larger effect
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HSV-1 genotype-phenotype association asthma exacerbation
blepharitis stromal keratitis neovascularization ICD-9

total nodes (base features + feature groups) 1,093 1,093 1,093 8,740
nodes with unadjusted p < 0.05 242 148 111 3,480
nodes rejected at q level < 0.05 107 110 80 3,179
outer nodes 40 36 24 2,120
feature groups among outer nodes 6 3 3 159

Table 2: Summary of feature-importance hypothesis testing in both application domains.

145 413 153123 5 3573335 319 7 33 373

Figure 1: Feature importance analysis of the random forest model for blepharitis. Ovals represent feature groups, squares depict
base features, and triangles depict subtrees of the hierarchy that were not tested by the FDR procedure. Color intensity indicates
the magnitude of the associated p-value. White nodes are those that were tested but did not survive the FDR procedure.

(a)

(b)

(c)

20,000 40,000 60,000 80,000 100,000 120,000 140,000 

Figure 2: Important features mapped to the HSV-1 genome coordinates for all three disease phenotypes: (a) blepharitis, (b)
stromal keratitis, (c) neovascularization. Color intensity indicates the magnitude of the associated importance p-value.
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DIAGNOSES+INTERVENTIONS+PROBLEM_DIAGNOSES
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AUROC: 0.728
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AUROC: 0.696
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AUROC: 0.757
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AUROC: 0.757

DIAGNOSES+PROBLEM_DIAGNOSES
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INTERVENTIONS
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DIAGNOSES
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(a)

DIAGNOSES
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Figure 3: Feature importance analysis of the LSTM model for predicting asthma exacerbations. Darker shades correspond to
larger effect sizes (lower AUROCs when the feature groups are perturbed). (a) Importance analysis for highest level feature
groups. (b) Importance analysis for feature groups representing the ICD-9 hierarchy of diagnoses. Note that the root node in
panel (b) corresponds to the DIAGNOSES node in panel (a).

sizes. The features identified by the analysis as important
include those with known connections to asthma, such as
the respiratory diseases subtree (460-519) terminating at
asthma (493.90), and the mental disorders subtree (290-
319) (Scott et al. 2007). It also identifies important features
with less well understood relationships to asthma, such as the
metabolic diseases subtree (240-279).

Identifying Important Interactions
We also apply our approach for detecting important fea-
ture interactions to the models learned for HSV-1 genotype-
phenotype associations. We have not yet developed an ap-
proach for effectively exploring the space of hypotheses cor-
responding to interactions while controlling the FDR, so here
we evaluate interactions among two sets. First, we assess
pairwise interactions between all outer nodes that were deter-
mined as important in the individual feature analysis. There
are 780, 630, and 276 pairwise interaction candidates to be
tested by our approach for blepharitis, stromal keratitis, and
neovascularization, respectively. After applying our hypothe-
sis testing method for interactions to the outer nodes, we use
the Benjamini-Hochberg method (1995) to control the false
discovery rate among this set. Controlling FDR at 0.1, there
is only one surviving interaction among the three phenotype
models. For stromal keratitis, we identified a significant inter-
action between two base features, where one of the features

is the one with the largest effect size among the outer nodes.
We also consider interactions among a set of nodes located

at an intermediate level in the hierarchy of features that sur-
vived FDR control in the individual feature importance anal-
ysis. We were able to detect several significant interactions
for the stromal keratitis phenotype. Among 435 candidate
interactions tested, three interactions were significant.

Conclusion
We have presented a model-agnostic approach to understand-
ing learned models by identifying important features, and
interactions among them, at various level of resolution. The
key contributions of our approach are that it employs hypoth-
esis testing, along with hierarchical feature groupings and a
hierarchical-FDR control method, in order to rigorously as-
sess which features and groups of features have a significant
effect on a model’s loss. Moreover, we have also presented
an approach for testing important feature interactions. We
have demonstrated and evaluated our approach in the context
of two biomedical domains. In both domains, our method
has lent insight into complex learned models by determining
important features and feature groups. Additionally, we have
identified important interactions in one of our HSV-1 models.

There are a number of directions we plan to explore in
future work. These include developing an effective approach
for exploring the space of candidate interactions, assessing
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the importance of time-based feature groups in the context of
our asthma exacerbation model, and analyzing feature groups
that are organized into graphs that are not necessarily trees.
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