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Abstract

Causal knowledge is sought after throughout data-driven fields
due to its explanatory power and potential value to inform
decision-making. If the targeted system is well-understood in
terms of its causal components, one is able to design more
precise and surgical interventions so as to bring certain desired
outcomes about. The idea of leveraging the causal understand-
ing of a system to improve decision-making has been studied
in the literature under the rubric of structural causal bandits
(Lee and Bareinboim, 2018). In this setting, (1) pulling an arm
corresponds to performing a causal intervention on a set of
variables, while (2) the associated rewards are governed by the
underlying causal mechanisms. One key assumption of this
work is that any observed variable (X) in the system is manip-
ulable, which means that intervening and making do(X = x)
is always realizable. In many real-world scenarios, however,
this is a too stringent requirement. For instance, while scien-
tific evidence may support that obesity shortens life, it’s not
feasible to manipulate obesity directly, but, for example, by
decreasing the amount of soda consumption (Pearl, 2018). In
this paper, we study a relaxed version of the structural causal
bandit problem when not all variables are manipulable. Specif-
ically, we develop a procedure that takes as argument partially
specified causal knowledge and identifies the possibly-optimal
arms in structural bandits with non-manipulable variables. We
further introduce an algorithm that uncovers non-trivial depen-
dence structure among the possibly-optimal arms. Finally, we
corroborate our findings with simulations, which shows that
MAB solvers enhanced with causal knowledge and leverag-
ing the newly discovered dependence structure among arms
consistently outperform causal-insensitive solvers.

Introduction
Causal knowledge is deemed highly valuable and desirable
across a wide range of disciplines, including in the sci-
ences, engineering, and businesses. The reasons for such
a prominence are various. First, causal knowledge entails
explanatory power, which epitomizes the very goal of sci-
ence — i.e., opening Nature’s “black box” and explain-
ing how reality “works,” or how it could be understood in
terms of more elementary, and interpretable components. Sec-
ond, and more pragmatically, purposeful agents (AI systems,
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policy-makers, physicians) are better equipped for design-
ing cleaner, more precise, and more effective interventions
once the underlying causal mechanisms are well-understood
(Bareinboim and Pearl 2016; Pearl and Mackenzie 2018;
Lee and Bareinboim 2018).

For instance, economists strive to understand the root
causes of poverty, which could allow the design of new poli-
cies (i.e., causal interventions) to improve the population’s
socioeconomic status (SES). A considerable body of evidence
was accumulated for many decades, notably by the Univer-
sity of Chicago’s Professor, and Nobel Prize laureate, James
Heckman, who demonstrated the effects of early education
on families’ SES, among other indicators (Heckman 2006).
The understanding following this causal link translated to the
larger support of early childhood education, and a push for
new policies; see, for an example, Obama’s one billion dollar
investment (The White House, Office of the Press Secretary
2014). There are abundant of such cases in public health as
well — e.g., evidence supports that tobacco smoking is one
of the determinant factors of lung cancer (Cornfield 1951;
U.S. Department of Health and Human Services 2014), or
obesity is responsible to shortening life expectancy (Flegal,
Graubard, and Williamson 2005; Pearl 2018).

Despite all the impressive results achieved so far, the treat-
ment of how to use causal knowledge to support decision-
making is still in its infancy. If our goal is to build a more
automated, data-driven society, and intelligent systems that
can reason and act autonomously, we need to move from
a heuristic understanding of the interplay between causal
knowledge and decision-making (which currently relies on
the insights of highly skilled scientists) to a more fundamen-
tal understanding of the principles that allow one to translate
causal evidence into a more robust decision-making process.

In order to realize this goal, we start by highlighting the
rich literature on automated decision-making in AI, includ-
ing the setting known as multi-armed bandits (MABs, for
short) (Robbins 1952; Lai and Robbins 1985). We’ll use the
MAB framework as the baseline of our analysis. In a typ-
ical MAB instance, there are multiple arms (or actions) to
play at each time step. Pulling an arm at each step returns
a stochastic reward from the underlying, unknown distri-
bution. Algorithms for the bandit problem attempt to min-
imize the cumulative regret, while having to cope with an
exploration and exploitation trade-off. This setting has been
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popular in experimental circles since many real-world situa-
tions can be cast as MAB instances, including clinical trials,
online advertisement placement, network routing, news ar-
ticle recommendation, just to cite a few. Remarkably, many
algorithms with attractive properties have been developed,
including the celebrated Upper Confidence Bound (Gariv-
ier and Cappé 2011; Auer, Cesa-Bianchi, and Fischer 2002;
Cappé et al. 2013) and Thompson sampling (Thompson 1933;
Chapelle and Li 2011; Kaufmann, Korda, and Munos 2012).
One critical assumption used throughout these algorithms,
and their multiple extensions, is that the arms are usually con-
sidered independent. Researchers have started to explore the
dependence across arms to make these solvers applicable to
a broader set of applications where the independence across
arms is clearly unattainable (Dani, Hayes, and Kakade 2008;
Magureanu, Combes, and Proutiere 2014).

Even though not explicitly acknowledged until recently,
MAB solvers inherently estimate causal effects, or properties
of these effects. To witness, note that (1) pulling an arm cor-
responds to intervening on a set of variables and setting them
to specific values (from whatever natural regime the decision
used to be based on, to a new compulsory policy determined
by the solver); and, (2) the rewards associated with these
arms are governed by the underlying causal mechanisms
(Bottou et al. 2013; Bareinboim, Forney, and Pearl 2015;
Lattimore, Lattimore, and Reid 2016; Zhang and Bareinboim
2017; Forney, Pearl, and Bareinboim 2017; Sen et al. 2017).

Recently, Lee and Bareinboim (2018) combined these ob-
servations (i.e., that MABs are inherently causal and that
the dependence across arms carries decision-making value)
and introduced what they called the structural causal ban-
dits problem (SCM-MAB), where a Structural Causal Model
(SCM) (Pearl 2000) is used to describe the underlying causal
system. The dependency among arms naturally arises due to
the causal relationships among the endogenous and exoge-
nous variables. Given partial knowledge about the underlying
SCM, the authors characterized two structural properties
computable from any SCM-MAB, i.e., i) arms with the same
reward distribution using do-calculus constraints, and ii) un-
der what topological conditions one arm can be optimal.

For concreteness, we consider the SCM-MAB instance
shown in Fig. 1, where Y represents the reward, X and
Z represent two variables that can be manipulated, and
the dashed-bidirected arrow, following standard notation,
represents the existence of a latent common cause (exoge-
nous) affecting both X and Y . There are four sets of vari-
ables that can be intervened upon in this case (intervention
sets), i.e., {∅, {X}, {Z}, {X,Z}}, which totals 9 arms if
we assume binary variables. The first property reveals that
P (y|do(z)) = P (y|do(x, z)), which means that intervening
on X and Z simultaneously is regarded as wasteful — one
should always prefer intervening on do(Z) over do(X,Z).
Intuitively, all effects of X on Y are mediated by Z in
this case, which means X has no effect on Y whenever
we intervene on Z. The second property characterizes that
maxz µz ≥ maxx µx where µx = E[Y |do(x)] holds true
in any model, which implies that do(Z) should be always
preferred over do(X). This implies that three arms, do(∅),
do(z = 0), and do(z = 1), relating to the non-dominated,

X Z Y

Figure 1: A causal model where Y is the outcome variable.

minimal intervention sets, ∅ and {Z}, are contenders to be
optimal relative to the underlying SCM compatible with G.1
Such a minimal set that can be optimal when intervened upon
was termed a possibly-optimal minimal intervention set, or
POMIS, in (Lee and Bareinboim 2018).

In many settings, however, it is not the case that every ob-
served variable is manipulable. For the graph discussed ear-
lier, imagine that X , Z, and Y correspond to diet, cholesterol
level, and heart failure. Changing the cholesterol directly is
not a conceivable physical manipulation, despite the obvious
effect of cholesterol in heart failure. Given that Z is not ma-
nipulable, then intervening on X , e.g., diet, may lead to the
desired outcome. Clearly, POMISs under non-manipulable
variables will not be, in general, a subset of the POMISs
with only manipulable variables. We’ll show in the paper that
do(X), which was dominated by do(Z), should be regarded
as a POMIS whenever Z is not manipulable. It is critical,
therefore, to be able to identify the POMISs from a causal
graph under an arbitrary set of non-manipulable variables.

Previous work considered identifying the POMISs based
on the graph structure, which allowed a more precise decision-
making by the corresponding MAB solver. Still, the depen-
dence structure across arms was not fully exploited. More
sophisticated relations among arms can be learned through
the do-calculus (Pearl 2000, Ch. 3). For instance, the iden-
tity P (y|do(x)) =

∑
z P (z|x)

∑
x′ P (y|z,x′)P (x′) holds

in Fig. 1, which is known as the ‘front-door’ formula. The
front-door implies that the distribution of the arm do(X = x)
can be learned from do(∅), i.e., without having to directly in-
tervene on X . More generally, an interventional distribution
can be expressed in terms of the other distributions, which
implies new learning opportunities we aim to leverage.

Specifically, our contributions are as follow:

1. We start by formalizing the SCM-MAB problem under
non-manipulability constraints using the language of struc-
tural causality. We formally characterize POMIS with ma-
nipulability constraints, i.e., the collection of interventions
that are possibly optimal.

2. We develop a new algorithm that derives an expression
for the arm’s distribution given an arbitrary set of inter-
ventional distributions (other arms). We use this result
to enhance standard MAB algorithms with causal capa-
bilities, which will now exploit the structural properties
of the underlying causal graph and the relations across
interventional distributions, improving their efficiency.

Simulations corroborate our intuition — solvers that leverage
causal knowledge can operate orders of magnitude more
data-efficiently than their non-causal counterparts.

1Note that this implies that not intervening, and letting the sys-
tem operate in its natural state, can yield an optimal reward.
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Preliminaries
We follow the convention in the field and use a capital letter
as a variable, X , and the corresponding lower case, x, as its
realization. Bold face is used for a set of variables or values,
X or x, blackboard bold for a set of sets, X. We denote by
XX the domain of X . We also use caligraphies for graphs
and models. The basic semantical framework of our analysis
relies on Structural Causal Models (SCM, Pearl, 2000), i.e.,
Definition 1 (SCM). A structural causal model (SCM) M is
a 4-tuple 〈U,V,F,P (U)〉 where:
• U is a set of exogenous (unobserved) variables, which are

determined by factors outside of the model;
• V is a set {Vi}ni=1 of endogenous (observed) variables that

are determined by variables in U ∪V;
• F is a set of structural functions {fi}ni=1 where each fi is a

process by which Vi is assigned a value vi ← fi(pa
i,ui)

in response to the current values of PAi⊂V and Ui⊆U;
• P (U) is a distribution over the exogenous variables U.

A SCM induces observational and interventional prob-
ability distributions, P (v) =

∑
u

∏
i P (vi|pai,ui)P (u),

and P (v\t|do(t)) =
∑

u

∏
i|Vi 6∈T P (vi|pai,ui)P (u). For

short, we write P (y|do(x)) as Px(y).
Each SCM is associated with a causal graph G = 〈V,E〉,

where there are two types of edges in E — directed edges
such as Vi → Vj indicating direct functional dependence, i.e.,
Vi is used to define fj ∈ F; bidirected edges such as Vi ↔
Vj indicating the existence of an unobserved confounder
(UC, for short), i.e., there exists U ∈ U which appears in
both fi and fj . We use family relations, pa, ch, an, de to
denote parents, children, ancestors, and descendants of its
argument. With Pa, Ch, An, De, we include the arguments,
e.g., An(W ) = an(W ) ∪ {W}. Given a set of variables
as argument, we use the union of individual outputs, e.g.,
An(W) =

⋃
W∈W An(W ). Note that pa(Vi) = PAi. We

denote by GX a subgraph where edges onto X are removed.
The do-calculus (Pearl 1995) consists of three rules relat-

ing observational and interventional distributions that obey
the topology of the causal graph G. For example, Px,z(y) =
Pz(y) (Fig. 1) can be inferred due to (Y⊥⊥X|Z)GX,Z

, which
is a d-separation statement between Y and X given Z in the
subgraph GX,Z . We refer readers to (Pearl 2000, Sec. 3.4) for
a more detailed discussion on SCMs and do-calculus.

A K-armed bandit problem consists of K independent
arms such that their reward distributions are independent to
each other. In this setting, the task is often minimizing RegT ,
the cumulative regret after T rounds. This is the difference
between a maximum expected cumulative reward and an
expected cumulative reward of a MAB algorithm, RegT =

Tµ∗−
∑T

t=1 E[Yat ], where at is the arm played at time t, Yat

is a random variable associated with the arm, and µ∗ is the
optimal expected reward. In a SCM-MAB setting, each arm
corresponds to intervening on a set of variables. Given G and
Y , all arms are {x ∈ XX | X ⊆ V\{Y }} with P (Yx), the
distribution of a reward variable with arm x, is equivalent to
an interventional distribution Px(Y ), and µx = E [Y |do(x)].
We denote by µx∗ the best expected reward by intervening
on X, i.e., µx∗ = maxx∈XX

µx.

SCM-MAB with Non-manipulability
In this section, we generalize SCM-MABs by allowing non-
manipulability constraints, and then characterize the POMIS
under such constraints. We start by denoting a set of non-
manipulable variables by N ⊆ V \ {Y }, where the reward
variable Y is assumed to be non-manipulable. For simplicity,
we override the definitions of MIS and POMIS by incorpo-
rating N into them, and limiting the intervention set X to be
X ⊆ V\{Y }\N instead of X ⊆ V\{Y }. First, we define
Minimal Intervention Sets, which represent a non-redundant
set of intervention sets.
Definition 2 (Minimal Intervention Set (MIS)). Given
〈G,Y ,N〉, a set of variables X ⊆ V \ {Y } \N is said to be
a minimal intervention set if there is no X′ ⊂ X such that
µx′ = µx for every SCM conforming to G where x′ ∈ XX′

that is consistent with x.
We denote by MN

G,Y a set of MISs given 〈G,Y ,N〉 where
we omit N if N = ∅. The following relationship can be
easily derived from the definition, MN

G,Y = {W ∈ MG,Y |
W ∩N = ∅}. MISs can be identified by checking whether
any two probability distributions are equal (through Rule 3
of do-calculus). Next, we define a subset of the MISs that can
lead to an optimal reward.
Definition 3 (Possibly-Optimal Minimal Intervention Set
(POMIS)). Given 〈G,Y ,N〉, let X ∈MN

G,Y . If there exists a
SCM conforming to G such that µx∗ > ∀W∈MN

G,Y \{X}
µw∗ ,

then X is a possibly-optimal minimal intervention set with
respect to 〈G,Y ,N〉.

We similarly denote by PN
G,Y , a set of POMISs given

〈G,Y ,N〉. Lee and Bareinboim (2018) introduced two key
concepts that will be instrumental to our analysis, i.e., min-
imal unobserved confounders’ territory (MUCT) and inter-
ventional border (IB). MUCT is a minimal set of variables in
An(Y ), which includes Y and is closed under descendants
and unobserved confounders given a causal graph. For ex-
ample, the MUCT in Fig. 2a includes all the variables as B
is confounded with Y , A is confounded with B, and C is a
descendant of B (or A). The IB is defined as the parents of
the MUCT excluding the MUCT itself, which is an empty set
in this case. With GA, the MUCT is {B,C,Y } and the IB is
{A} as shown in Fig. 2b. It was shown that X ⊆ V\{Y } is
a POMIS if and only if IB in GX is X. For example, {A,C}
is a POMIS in Fig. 2d while {B} is not in Fig. 2c, which
indicates that intervening on {A,C} is preferred to {B}.

Characterizing POMIS with Non-manipulability
Identifying all the POMISs given non-manipulable variables
is non-trivial as the unconstrained POMIS (i.e., N = ∅) can-
not be, in general, applicable by filtering out intervention sets
containing only manipulable variables, i.e., ∃G,Y ,N PN

G,Y 6=
{X ∈ P∅G,Y | X∩N = ∅}. This contrasts with MISs in which
a set of constrained MISs is a mere subset of unconstrained
MISs. Although the equality does not hold in general, the
feasible subset of unconstrained POMISs is related to POMIS
with constraints as shown below:
Proposition 1. If X ∈ PG,Y and X∩N=∅, then X ∈ PN

G,Y .
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Figure 2: MUCT (thick, red) and IB (blue) on manipulated
graphs. Given G and Y , POMISs are ∅, {A}, and {A,C}.

Simply put, if an arm do(x) is optimal among all arms
without constraints, then the arm is still optimal among the
manipulable subset of arms. However, this proposition only
answers the intersection between PG,Y and PN

G,Y . At this
point, the natural question is how to systematically find the
POMISs that are not unconstrained POMISs. Recall that
in the front-door graph, we noted that {X} is a POMIS
when {Z} is non-manipulable, while this isn’t the case in the
unconstrained setting. To explain this phenomenon, we note
that X , which affects Y through Z, can be seen as directly
connected to Y in the constrained setting; clearly, Z should
be disregarded since it no longer can disturb the pathway
from X to Y .

Focusing only on a subset of variables in a causal graph and
their causal relationship lies at the heart of causal modeling.
Latent projection (projection, for short) (Verma and Pearl
1990; Verma 1992) is an operation that induces a causal
graph over a subset of the variables from the original graph
while maintaining some key topological properties of the
original causal structure (Tian 2002). In general, the causal
graph at hand is already the result of the projection of some
unknown, more involved causal structure. For example, the
front-door graph (Fig. 1) with the cholesterol example might
be the projection of a larger graph such as in Fig. 3, where
the shaded nodes were marginalized out. At an intuitive level,
without constraints, POMISs in the front-door graph can be
understood as POMISs in the larger graph where the shaded
nodes are not manipulable. It would be natural to ask whether
we can obtain PN

G,Y indirectly from PH,Y , where H is the
projection of G onto V\N.

We formally describe how a projection of a causal graph G

onto V\N is constructed next. Let Ĝ be a DAG that explicitly
represents the unobserved confounders. We initialize a graph
H = 〈V \N, ∅〉, then proceed to add
1. a directed edge between Vi and Vj if Vi → Vj ∈ G or

there exists a directed path from Vi to Vj where all non-
end nodes in the path between them are in N.

2. a bidirected edge between Vi and Vj if Vi ↔ Vj ∈ G; or
there exists directed paths from an unobserved confounder
to Vi and Vj in Ĝ where all non-end nodes are in N.
Let G[V′] be a causal graph obtained by projecting G onto

X W Z C Y

A B

Figure 3: A causal graph where its projection onto {X,Y ,Z}
yields the front-door graph (Fig. 1).

B

A Y

C

(a)

B

A Y

C

(b)

B

A Y

C

(c)

Figure 4: Causal graphs after marginalizing out A, B, and C
from Fig. 2a, respectively, with added edges in thick, red.

V′. We will show PN
G,Y = PH,Y through two propositions

that guarantees that the optimality of an arm will be preserved
during i) the projection from G to H, and ii) the other way
around.

Proposition 2. Given a SCM M1 = M = 〈V,U,F,P (U)〉,
there exists a SCM M2 = M[V\N] = 〈V \N,U,F′,P (U)〉
such that P 1

x(y)=P 2
x(y) for any X,Y⊆V\N and Y 6= ∅.

Proof. Let M′ = M[V\{W}] where W ∈ N. The functions
{fX}X 6∈ch(W )G can be used without modifications in M′.
We modify functions of the children of W . For every Q ∈
ch(W )G, we devise f ′Q with fQ and fW . By the projection’s
construction, PA′Q = (PAQ\{W})∪PAW and let U′Q =
UQ ∪ UW so that f ′Q takes paW and uW as argument in
addition to paQ\{W} and uQ, which conforms to G[V\{W}].
Hence, f ′Q is simply fQ with w computed inside,

f ′Q
(
pa′Q,u′Q

)
= fQ

(
paQ\{W}, fW (paW ,uW ),uQ

)
.

This guarantees that M[V\{W}] and M yield the same ob-
servational and interventional distributions over V \ {W}.
The above procedure can be iteratively applied to the rest of
variables in N to prove the equivalence of M[V\N] and M

with respect to the distributions they yield over V \N.

Fig. 4a is an example where marginalizing out A from
Fig. 2a induces bidirected edges between B and C (due to
the UC between A and B and A → C), between C and Y
since C←A→Y . 2 Based on Prop. 2, C and Y take the UC
between A and B to compute a (the value A would take)
inside. This explains all three bidirected edges in Fig. 4a.

Proposition 3. Given a causal diagram G, let H = G[V\N].
For a SCM M1 = M[V\N] = 〈V \ N,U,F′,P (U)〉
conforming to H, there exists a SCM M2 = M =
〈V,U,F,P (U)〉 that conforms to G such that P 1

x(y) =
P 2
x(y), for any X,Y ⊆ V \N and Y 6= ∅.

2Although B↔A→Y implies a bidirected edge between B and
Y , we do not represent multiple edges of the same type.
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Proof. Consider a simple case where constructing M of G
from M′ of G[V\{W}]. Without loss of generality, assume
that U ∈ U appears in at most two functions. Otherwise, we
can decompose U into multiple U ’s and change U and P (U)
accordingly. We similarly reuse f ′X for any X 6∈ ch(W )G
to define F. We need to define fW and fQ for Q ∈ Q =
ch(W )G. By definition, endogenous variables to be used in
fW and {fQ}Q∈Q are pa(W )G and pa(Q)G, respectively.
Next, we determine Ui for V ∈ Q ∪ {W} as follows. First,
any U ∈ U that appears only in a variable V (i.e., U ∈ U′V )
will be in UV . Now consider U used in two variables, Vi and
Vj , in G[V\{W}]. If a bidirected edge between Vi and Vj exists
in G, everyU ∈ U′i∩U′j will also be included in Ui and Uj .
Otherwise, there are two (non-mutually exclusive) cases: i)
both Vi and Vj are children of W in G or ii) Vi is confounded
with W and Vj is a child of W in G (or vice versa). In both
cases, simply put U into UW . This construction guarantees
that all U are modeled in M conforming to G.

Then, we define fW be any one-to-one function so that
its argument can be passed to its children through f−1W (w).
Finally, fQ is devised to reuse f ′Q with f−1W as

fQ
(
paQ,uQ

)
= f ′Q

(
paQ \ {W}, f−1W (w),uQ

)
.

The procedure can be sequentially applied to construct M for
G from M′ for H.

We now revisit Fig. 4a for another example. We focus on
how the unobserved variables will be assigned. Let UCs be
UBC , UCY , and UBY . Unobserved variables other than UCs
will be reused as described above. First, fB = f ′B which
already takes UBC and UBY . fY takes UBY since B ↔ Y in
G. Since two red bidirected edges do not appear in G, fA will
take both UBC and UCY , and fC and fY become irrelevant
to two red UCs. Then, we can observe that A is confounded
with B via UBC , and B and Y are confounded with UBY .
However, UCY will be served as a variable-specific hidden
variable for A, which we do not explicitly represent. The
construction conforms to G.

Theorem 4. Given a causal diagram G = 〈V,E〉, a reward
variable Y ∈ V, and a set of non-manipulable variables
N ⊆ V\{Y }, let H be the projection of G onto V\N. Then,

PN
G,Y = PH,Y

Proof. This follows from Prop. 2 and Prop. 3.

In words, the projection onto the manipulable variables
preserves the causal structure among them with respect to
POMIS. Fig. 4 illustrates three projected graphs of G in
Fig. 2a with {A}, {B}, and {C} marginalized out, respec-
tively. Applying the (unconstrained) POMIS identification
procedure (Lee and Bareinboim 2018) on the graphs yields:
P{A}G,Y = {∅, {B}, {C}}, P{B}G,Y = {∅, {A}, {A,C}}, and P{C}G,Y

= {∅, {A}, {A,B}}.
This section studied the problem of which intervention

sets can be optimal. Once the POMIS under constraints are
formally characterized, the arms to be played by a MAB
algorithm can be refined and its performance improved.

Exploiting the POMISs Structure
In this section, we note that arms exhibited interesting de-
pendence structure that we will try to exploit, which follows
from the underlying causal structure. The previous section
investigated two types of dependence among arms (equality
and partial-orderedness), which helped identifying POMIS
arms, {x ∈ XX|X ∈ PN

G,Y }. In this section, we explore more
sophisticated dependence among arms that allows one arm’s
reward distribution to be inferred from pulling another arm.
Following the convention, we note that when an arm x is
pulled, a full realization of the other variables in the system is
observed, e.g., v = 〈v1, v2, . . . , vn〉, which is sampled from
the joint distribution Px(v) associated with the pulled arm.

Recall the causal model in Fig. 1 when Z is
non-manipulable. There are three POMIS arms do(∅),
do(x=0), and do(x=1), where the two do(x) arms’
reward distributions can be expressed as Px(y) =∑

z P (z|x)
∑

x′ P (y|z,x′)P (x′), which, as noted, is called
the front-door formula. Given such an expression, Px(y) can
be estimated not only with a trivial expression Px(y) =∑

v\{y} Px(v), from the experimental samples obtained by
pulling the arm do(x), but also with the front-door formula
with observational samples from P (v), in this case, by play-
ing the do-nothing arm. This possibility of leveraging sam-
ples from other arms is not an exclusive phenomenon to the
model in Fig. 1, but can be cast in much broader terms. Given
a general graph G, under what conditions can a probability
term (a reward distribution, in particular) be turned into an
expression with terms of other distributions?

In the causal inference literature, the problem of identifia-
bility (Pearl 2000; Tian and Pearl 2002) asks whether the ex-
perimental distribution of interest can be uniquely estimated
from the observational distribution (do-nothing intervention).
Given a causal graph and P (V), there exists a complete algo-
rithm which outputs an expression, if exists, for a quantity of
interest, Px(y) in this case. A more general problem, called
z-identifiability (Bareinboim and Pearl 2012), asks whether
one can identify Px(y) when a set of experiments (i.e., dis-
tributions) are available, {PZ′ | Z′ ⊆ Z}, for some Z ⊆ V.
That is, there exists a set of manipulable variables Z, and
experiments on every subset of manipulable variables are
available.

In the SCM-MAB setting with non-manipulability con-
straints, it is natural to take advantage of z-identifiability
where Z = V\{Y }\N. Although it is feasible, in a
sense, that the resulting expression will not include any
of N, the expression may include terms related to exper-
iments on non-POMISs. Consider Fig. 4a for an exam-
ple: an expression containing Pb,c will not be useful since
arms {do(b, c)}b∈XB ,c∈XC

will not be played at all since
{B,C} 6∈ PN

G,Y . Hence, there exists a need to extend the
treatment given to z-identifiability to account for an arbitrary
set of experiments, {PZ}Z∈Z, where Z is a subset of the
superset of V. We developed a generalized z-identifiability
algorithm (Alg. 1), which we call z2ID. Using this algorithm,
we can identify whether an arm’s reward distribution can be
estimated from the other arms’ information. Before explain-
ing the algorithm, we introduce a few notations. We denote
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Algorithm 1 z2ID
1: function Z2 ID(G, y, x, Z)
2: if ∅ 6∈ Z and X = ∅ then
3: return

∑
v\y

∏
Si∈CC(G) sub-z2ID(G, si,v\si,Z)

4: else return sub-z2ID(G,y,x,Z)
5: function SUB-Z2 ID(G, y, x, Z)
6: for Z ∈ Z s.t. Z ⊆ X and ¬∃Z′∈ZZ ⊂ Z′ ⊆ X do
7: return ID(G \ Z,y,x \ Z,Pz) if not FAIL
8: if V \An(Y)G 6= ∅ then
9: return sub-z2ID(G[An(Y)G],y,x ∩An(Y)G,

{Z ∩An(Y)G}Z∈Z)

10: if
(
W← (V\X)\An(Y)G

X

)
6= ∅ then

11: return sub-z2ID(G,y,x ∪w,Z)

12: if |CC(G \X)| > 1 then
13: return

∑
v\(x∪y)

∏
Si∈CC(G\X) sub-z2ID(G, si,v\si,Z)

14: return FAIL

by G [W], a vertex-induced subgraph of G by W (not to con-
fuse with G[V′]). Also, G\W = G [V\W]. CC(G) represents
C-components (Tian and Pearl 2002) of G, which is a family
of sets of endogenous variables where each set consists of
variables that are maximally connected via bidirected edges.

z2ID first examines whether the query of interest is an ob-
servational quantity where only interventional distributions
are available (Line 2). Then, the procedure tries to identify
the quantity by decomposing it into multiple interventional
quantities using C-component factorization (Tian and Pearl
2002) (Line 3). This part, especially, differs from variants of
identifiability algorithms where an observational distribution
P (V) is taken for granted. Then, z2ID recursively transforms
the query Px(y) into different forms using well-known equal-
ities that can be derived from basic probability operations and
do-calculus, and it tries to reduce Px′(y) to an expression
only made of Pz whenever Z ⊆ X′ and Z ∈ Z. This can be
understood as solving an identifiability problem where the
query is Qx′\z(y) = Px′(y), and Q(v) = Pz(v) is regarded
as an available observational distribution.

We show next that the procedure is indeed sound, i.e., any
expression that it returns is a valid equality with respect to
the underlying structural causal model.

Theorem 5 (soundness). Whenever z2ID returns an expres-
sion for Px(y), it is correct.

Proof. This follows from the previous identifiability results
(Tian and Pearl 2002; Shpitser and Pearl 2006; Bareinboim
and Pearl 2012). Specifically, Lines 2–3 correspond to C-
factorization (Tian and Pearl 2002). Lines 7–8 follow from
soundness of ID since Px(y) = Px\z,z(y) which is identi-
fying Qx\z(y) with Q = Pz in G\Z (Bareinboim and Pearl
2012). Lines 9–12 are based on do-calculus. Finally, Line 13–
14 follows from Lemma 3 of (Shpitser and Pearl 2006).

For concreteness, consider a causal graph G in Fig. 2a.
With N = {A}, the POMISs are {∅, {B}, {C}} (as shown
in Fig. 4a above). The algorithm z2ID will returns expressions

Algorithm 2 bMVWA
1: function BMVWA(D, {θ̂1, θ̂2, . . . , θ̂m}, B)

Input: D: samples {Dx}x∈A; {θ̂1, θ̂2, . . . , θ̂m}: m estima-
tors; B: the number of bootstraps

2: for b ∈ 1, . . . ,B do
3: D(b) ← {D(b)

x }x∈A . bootstrap samples
4: (∀mi=1) θ̂

(b)
i ← θ̂i(D

(b)) . evaluate expressions
5: Σ̂← Cov(θ̂1, θ̂2, . . . , θ̂m)

6: w← arg minw wTΣ̂w such that
∑m

i=1 wi = 1, wi ≥ 0

7: return
∑m

i=1 wiθ̂i(D), wTΣ̂w

for each arm’s distribution as follows:

P (y) =
∑

a,b,c Pb(c|a)Pc(a, b, y) (1)

Pb(y) =
∑

a,c P (c|a, b)
∑

b′ P (y|a, b′, c)P (a, b′) (2)

Pc(y) =
∑

a,b P (y|a, b, c)P (a, b) (3)

Pc(y) =
∑

a Pb(y|a, c)Pb(a) (4)

Note that there are two equations for Pc(y), Eqs. (3) and (4)
— the former suggests that Pc can be estimated with samples
from the do-nothing intervention, while the second says that
it can be estimated from samples from Pb. Moreover, b in
Eq. (4) can be any realization within XB . This means that
such a mapping can be viewed as two separate sources of data,
i.e.,

∑
a Pb=0(y|a, c)Pb=0(a) and

∑
a Pb=1(y|a, c)Pb=1(a).

The failing condition of z2ID implies that it encountered
a (decomposed) probability term that cannot be reduced to
any of the available distributions individually. It is an open
problem, and outside of the scope of this work, to prove the
necessity of z2ID, which requires to show how the available
distributions cannot answer the query collectively.

Integrating Expressions into MAB Algorithms
Given that we have multiple expressions for each arm’s dis-
tribution, it is crucial to find a principled way of combining
them. Let θ = Px(y) be a quantity of interest, and there
be m dependent estimators θ̂ = {θ̂i}mi=1 corresponding to
expressions relating to θ. They can be combined using a
weighted sum, θ̂ =

∑m
i=1 wiθ̂i with

∑m
i=1 wi = 1 and

(∀1≤i≤m) wi ≥ 0 (i.e., convex combination). Given that
every θ̂i is unbiased, we may focus on minimizing the vari-
ance of θ̂, Var(θ̂) = wTΣw, where Σ = Cov(θ̂, θ̂). Weights
resulting minimum variance can be obtained through solving
a constrained quadratic program. Bootstrap is a well-known
technique to estimate the variance of an estimator (Efron
and Tibshirani 1993). Given data D of size n, sampling n
instances from the data, with replacement, yields a bootstrap
sample. By repeating the procedure B times, we obtain boot-
strap samples {D(b)}Bb=1, which allow us to estimate sample
variance for an estimator.

Given multiple datasets, we bootstrap them simultaneously,
and obtain bootstrap estimates for each estimator so as to
compute a covariance matrix Σ. We then are able to com-
pute weights that yield a minimum variance estimator. A
pseudo-code (Alg. 2) describes the aforementioned proce-
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dure, named bootstrap-based minimum variance weighted
average (bMVWA).

We introduce two algorithms z2-TS and z2-KL-UCB
(Alg. 3), generalizations of the classic TS and KL-UCB
algorithms, respectively, that incorporate bMVWA so that
information about other arms’ rewards can be exploited to in-
fer an arm’s expected reward more precisely via expressions
retrieved from z2ID. We first explain z2-TS. Given a SCM-
MAB instance with non-manipulable variables (G, Y , and N),
the algorithm first computes corresponding POMISs (Line 2)
and obtain estimators for arms relevant to the POMISs (Line
4). For each arm x, bMVWA returns a minimum variance
estimate and its variance. Then, it finds a pair of parameters
for a beta distribution whose mean and variance correspond
to θ̂x and ŝ2x, and a sample is drawn from this distribution as
an approximate posterior sample.3 Similarly to TS, an arm is
chosen based on posterior samples.

Next we describe z2-KL-UCB. The algorithm follows the
same initialization steps, and computes each arm’s mean
payout and its variance through bMVWA. Conventional KL-
UCB computes the upper-confidence bound of the expected
reward of an arm x with a non-decreasing function f and
how many times the arm is pulled, Nx. It infers N̂x (Line
18), the number of ‘effective’ samples for each arm x, rather
than using the actual number of arms played, Nx.

One property of the bootstrap is that if the number of
samples is too small, bootstrap will fail, in the sense that
the bootstrap distribution will not approximate the target
distribution. In practice, the aforementioned approach will
be deferred until enough number of samples is observed. As
a rule of thumb, we do not use an expression (i.e., estimator)
unless its support is covered (i.e., every possible value with
respect to each term in the expression has positive mass).
For example, Eq. (1) will be evaluated if all 8 and 16 values
of Pb(c|a) and Pc(a, b, y) exist, respectively (assuming that
the variables are binary). Furthermore, with a binary reward
variable, we utilize a beta distribution, Beta(αx + 1,βx + 1),
for the mean and variance of a trivial estimator, e.g. θ̂i =
Px(y), where αx and βx are the number of Yx being 1 and 0,
respectively, at round t.

Empirical Evaluation
In this section, we evaluate the performance (cumulative re-
gret, CR for short) of SCM-MAB algorithms under different
strategies so as to assess the effect of employing POMIS-
based arm refinement as well as the dependence structure
among arms. In particular, we compare the following strate-
gies: Brute-force (BF), which intervenes on every combi-
nation of manipulable variables, MIS MN

G,Y ; POMIS PN
G,Y ;

POMIS+, which is POMIS enhanced with z2ID. Formally,
note that the following relationships hold: BF ⊇ MIS ⊇
POMIS = POMIS+ relative to their arms. Combined with
two base MAB algorithms, TS and KL-UCB, we compared
total eight settings, where only POMIS+ employs z2-TS and
z2-KL-UCB.

3One might simply use a weighted average of one of bootstrap
estimates, wTθ̂(b) for some b.

Algorithm 3 Bernoulli TS and KL-UCB with z2ID
1: function Z2-TS(G, Y , N, T )
2: Z← PN

G,Y

3: A← {x ∈ XX | X ∈ Z}
4: θ̂x ← {Px(y)} ∪ {z2ID(G, y,x,Z′)}Z′⊆Z\{X} for x ∈ A
5: D← {Dx = ∅}x∈A
6: for t in 1, . . . ,T do
7: for x ∈ A do
8: θ̂x, ŝ2x ← bMVWA(D, θ̂x)

9: Find α̂x, β̂x such that Beta(α̂x, β̂x) matching θ̂x, ŝ2x
10: θx ∼ Beta(α̂x, β̂x)

11: x′ ← arg maxx∈A θx
12: Sample v by do(x′) and append v to Dx′

13: function Z2-KL-UCB(G, Y , N, T , f← ln(t)+3 ln(ln(t)))
14: Initialize Z,A, {θ̂x}x∈A,D
15: (∀x∈A) Sample v by do(x), and append v to Dx

16: for t in |A|, . . . ,T do
17: θ̂x, ŝ2x ← bMVWA(D, θ̂x) for x ∈ A

18: N̂x ← θ̂x(1− θ̂x)/ŝ2x; t̂←
∑

x N̂x

19: µ=

{
sup

{
µ∈[0, 1]:KL(θ̂x,µ)≤f(t̂)

N̂x

}}
x∈A

20: x′ ← arg maxx∈A µx

21: Sample v by do(x′), and append v to Dx′

We simulated three SCM-MAB instances, i.e., the front-
door setting (Fig. 1) and two models following Fig. 2a and
Fig. 5d. The time horizon T is set to 10,000, which is enough
to observe the performance difference; simulations are re-
peated 1,000 times, and the number of bootstraps B is set
to 500. Detailed descriptions and expressions generated by
z2ID are provided in the full technical report (Lee and Barein-
boim 2019). Fig. 5 illustrates experimental results and Table 1
summarizes the average cumulative regrets. We discuss these
results in the sequel.

(The Front-door Graph with N={Z}) The results are
shown in Fig. 5a. Due to its simplicity, BF, MIS, and POMIS
are all the same in this setting.4 A gap between POMIS and
POMIS+ indicates how well expressions reduce uncertainty
of arms’ expected rewards so that the underlying MAB algo-
rithm plays the optimal arm more often (and suboptimal arms
less often). POMIS+ reduces CRs 34.5% (TS) and 39.2%
(KL-UCB) compared to POMIS.

(Causal Model for Fig. 2a with N={A}) Results are
shown in Fig. 5b. MIS and POMIS have the same perfor-
mance as their arms are the same. The gain for (PO)MIS
compared to BF is due to the fact that there are four less arms
corresponding to intervening on {B,C}. z2ID helps gain to
reduce cumulative regret for both MAB algorithms. Reduc-
tion in CRs by employing POMIS+ compared to POMIS are
46.2% and 61.0% for TS and KL-UCB, respectively. Such a
high reduction rate is achieved in part because expressions
construct reciprocal relationships among arms (see Eqs. (1)

4If two strategies share the same set of arms, then their results
will be exactly the same since we assigned a unique random seed
for each of 1,000 Monte Carlo simulations so as to reproduce the
same experimental results.
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Figure 5: (a,b,c) Simulated results for settings in Figs. 1, 2a, and 5d, where the average cumulative regret (95% confidence
interval) is shown relative to the four strategies discussed in the paper (BF, MIS, POMIS, POMIS+). The results are also shown
for the corresponding TS (solid) and KL-UCB (dashed) solvers. (d) The causal graph used in (c) with N = {A,C}.

Fig. 5a Fig. 5b Fig. 5c

TS POMIS+ 29.08 50.29 121.54
POMIS 44.40 93.53 161.54
MIS ′′ ′′ 212.24
BF ′′ 183.15 313.39

UCB POMIS+ 59.30 74.93 247.05
POMIS 97.52 192.39 359.40
MIS ′′ ′′ 469.30
BF ′′ 328.68 657.11

Table 1: Average cumulative regret at T = 10, 000

to (4)) except that Pb(y) is not expressed with Pc(v).
(Causal Model for Fig. 5d) The results are shown in

Fig. 5c. This graph clearly demonstrates the advantage of
having a smaller number of arms (BF 27, MIS 19, POMIS
15). In this setting, POMIS+ makes use of 24 expressions.
However, the larger number of arms (compared to the previ-
ous tasks) and larger number of variables involved in formu-
las, e.g., a probability term P (y|a, b, d, e) in some formula,
make POMIS+ difficult to take full advantage of every expres-
sion in a given time horizon T = 10, 000. The gap between
POMIS and POMIS+ will be more visible with a larger time
horizon. POMIS+ reduced CRs 24.8% and 31.3% for TS and
KL-UCB, respectively, compared to those for POMIS.

In sum, our experiments corroborate our theoretical find-
ings — MAB algorithms are benefited from playing a smaller
number of qualified arms (POMIS) and precise estimations
of arms’ rewards (z2ID). As per our observations, z2ID will
be less rewarding if the gap between rewards of the optimal
and sub-optimal arms is big enough so that they can easily
be distinguished before the MAB algorithm takes advantage
of available expressions. Further, the performance gain will
not be outstanding if the aforementioned gap is relatively
small and the given time horizon is limited, or if there are
many arms with low rewards that are not sufficiently played
to utilize related expressions.

Conclusions
We studied the problem of structural causal bandits that
asks whether (and how) a decision-maker should intervene
in a causal system so as to optimize a particular measure.

Our results generalize the previous treatment given to the
problem (Lee and Bareinboim 2018), which assumed that
all observed variables in the system are manipulable (i.e.,
could be intervened upon). For example, while cholesterol
has an indisputable effect on heart failure, it’s not the case
that one could physically manipulate cholesterol, but per-
haps she could intervene on another variable, say, maybe
diet, which could accomplish the same goal of decreasing
the likelihood of heart failure. Formally, we characterized
two crucial properties in structural bandits with manipulabil-
ity constraints, i.e.: (1) the possibly-optimal arms (POMIS),
and (2) the topological relationship between such arms. We
further developed an identification algorithm that outputs an
expression for an (interventional) distribution providing a
way to fuse an arbitrary set of experiments so that each arm’s
reward distribution can be estimated from samples of other
arms. We equipped existing MAB algorithms with such capa-
bilities, which are now able to play only a qualified subset of
the arms while more accurately estimating their expected re-
wards. Following the current debate on the topic (Pearl 2018),
we hope that our results will help to move the discussion
from whether a non-manipulable variable causes another to
how a decision-maker in the real world should intervene (or
not intervene) in the system and be able to optimize a socially
agreed target outcome (e.g., survival, happiness, wealth).
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