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Abstract

Zero-shot learning (ZSL) and cold-start recommendation
(CSR) are two challenging problems in computer vision and
recommender system, respectively. In general, they are inde-
pendently investigated in different communities. This paper,
however, reveals that ZSL and CSR are two extensions of the
same intension. Both of them, for instance, attempt to predict
unseen classes and involve two spaces, one for direct feature
representation and the other for supplementary description.
Yet there is no existing approach which addresses CSR from
the ZSL perspective. This work, for the first time, formulates
CSR as a ZSL problem, and a tailor-made ZSL method is
proposed to handle CSR. Specifically, we propose a Low-
rank Linear Auto-Encoder (LLAE), which challenges three
cruxes, i.e., domain shift, spurious correlations and comput-
ing efficiency, in this paper. LLAE consists of two parts, a
low-rank encoder maps user behavior into user attributes and
a symmetric decoder reconstructs user behavior from user at-
tributes. Extensive experiments on both ZSL and CSR tasks
verify that the proposed method is a win-win formulation, i.e.,
not only can CSR be handled by ZSL models with a signif-
icant performance improvement compared with several con-
ventional state-of-the-art methods, but the consideration of
CSR can benefit ZSL as well.

Introduction
From a near-infinity inventory, recommender sys-
tems (Bobadilla et al. 2013; Li et al. 2017) pick a
fraction of items which a user might enjoy based on the
user’s current context and past behavior (Smith and Linden
2017). If the past behavior, however, is not available, e.g.,
for a new user, most recommender systems, especially those
popular ones based on collaborative filtering (CF) (Ekstrand
et al. 2011), would be stuck. Different solutions have been
proposed to handle this problem, which is widely known
as cold-start recommendation (CSR) (Lin et al. 2013).
Recently, cross-domain information (Fernández-Tobı́as et
al. 2012), personal information (Fernández-Tobı́as et al.
2016) and social network data (Sedhain et al. 2017) have
been used to facilitate CSR.

If we take a close look at previous work, it is not hard to
find out that the very basic idea behind existing CSR meth-
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Figure 1: Illustration of ZSL and CSR. It can be seen that
they are two extensions of the same intension. However,
there is no existing work which addresses CSR from the ZSL
perspective. For the first time, CSR is formulated as a ZSL
problem and a tailor-made method is proposed to solve CSR
in this paper.

ods (Lin et al. 2013; Li et al. 2017) is to leverage user pref-
erences to generate recommendations for new users. This
is quite reasonable, simply because you cannot deliver the
right thing to a person you barely know. With the user pref-
erences, we will then have two spaces, an attribute (e.g., user
preferences and personal information) space and a behavior
(e.g., purchase behavior and past interactions) space, in the
cold-start recommendation. The attribute space is used to de-
scribe the user preferences, and the behavior space is used to
represent the user interactions in the target system. As a re-
sult, cold-start recommendation can be defined as a problem
to generate recommendations for a fresh user where we have
nothing about the user in the behavior space but some side
information about the user in the attribute space. With the
assumption that people with the similar preferences would
have the similar consuming behavior, cold-start recommen-
dation can be done by two steps: 1) mapping the behavior
space to the attribute space, so that the new users can be
linked with the old users; 2) reconstructing user behavior
by user attributes, so that we can generate recommendations
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for new users. Does it ring a bell now? It is a special case of
zero-shot learning (ZSL) (Kodirov, Xiang, and Gong 2017;
Ding, Shao, and Fu 2017; Yang et al. 2016).

This paper, for the best of our knowledge, is the first one to
investigate CSR in light of ZSL. From Fig. 1, we can clearly
see that CSR and ZSL are two extensions of the same in-
tension. Specifically, both of them involve two spaces, one
for direct feature representation and the other for supple-
mentary description, and both of them attempt to predict un-
seen cases in the feature space by leveraging the description
space shared by both seen and unseen ones. However, CSR
and ZSL are not being connected ever before. In this paper,
we propose a novel ZSL method to handle the CSR problem.

By formulating CSR as a ZSL problem, we challenge
three cruxes in this paper. The first one is the domain shift
problem. Not only are the behavior space and the attribute
space heterogeneous but also the old users and the new users
are divergent in probability distribution. Thus, we have to
guarantee that the user behavior can be reconstructed by
the user attributes. The second crux is that user behavior in
CSR, differs from ZSL in computer vision tasks, is incredi-
bly sparse. In real-world retail giants, such as amazon.com,
there are hundreds of millions of users and even more items.
A specific user, however, only has a small number of inter-
actions in the system with even less items. In consequence,
the user-item matrix would be pretty sparse. The last chal-
lenge lies in efficiency. Recommender systems are on-line
systems, and people hate waiting.

Technically, we propose a novel ZSL model, named
as Low-rank Linear AutoEncoder (LLAE), based on the
encoder-decoder paradigm (Kodirov, Xiang, and Gong
2017; Boureau et al. 2007) to handle CSR problems. LLAE
consists of an encoder which maps the user behavior space
into the user attribute space, and a decoder which recon-
structs the user behavior by the user attribute. The recon-
struction part guarantees that the user behavior can be gen-
erated from user attributes, so that the domain shifts between
user behavior and user attributes can be mitigated. We for-
mulate LLAE as a linear model for the efficiency, the com-
putational cost of our model is irrelevant to the number of
samples. As a result, it can be applied to large-scale datasets.
Furthermore, a low-rank constraint is deployed to handle
sparse issues. Low-rank representation (Li et al. 2016) has
proven to be efficient for the problem of revealing true data
from corrupted observations. We know that a behavior can
be linked with numerous attributes, while these attributes
should have different weights, and some of the attributes are
trivial. If we consider all the attributes, it may weaken the
dominant factors, introduce over-fitting and relax the gener-
alization ability. The low-rank constraint, for its mathemati-
cal property, helps reveal the dominant factors and filter out
trivial connections, or in other words, spurious correlations.
It is worth noting that low-rank constraint also helps align
the domain shifts from the view of domain adaptation (Li
et al. 2018a; 2018b). In summary, the contributions of this
paper are:

1) We reveal that CSR and ZSL are two extensions of the
same intension. CSR, for the first time, is formulated and

solved as a ZSL problem. Our work builds a connection
between CSR and ZSL by cross domain transfer, so that
the advances in the two communities can be shared. For
instance, when someone who focuses on ZSL noticed our
work, he might want to look through recent publications
on CSR for inspiration, and vice versa.

2) A tailor-made ZSL model, low-rank linear autoencoder
(LLAE), is presented to handle the challenging CSR
tasks. LLAE takes the efficiency into account, so that it
suits large-scale problem.

3) Extensive experiments on both ZSL and CSR tasks
demonstrate the effectiveness of our method. Excitingly,
we find that not only can CSR be handled by ZSL mod-
els with a significant performance improvement, but the
consideration of CSR can benefit ZSL as well. By linking
CSR and ZSL, we wish that this work will benefit both
of the communities and elicit more contributions.

Related Work
Zero-shot learning. A basic assumption behind conven-
tional visual recognition algorithms is that some instances
of the test class are included in the training set, so that other
test instances can be recognized by learning from the train-
ing samples. For a large-scale dataset, however, collecting
training samples for new and rare objects is painful. A cu-
rious mind may ask if we can recognize an unseen object
with some semantic description just like human beings do.
To that end, zero-shot learning (Zhang and Saligrama 2016;
Ding, Shao, and Fu 2017) has been proposed. Typically,
ZSL algorithms learn a projection which maps visual space
to the semantic space, or the reverse. Different models are
proposed based on different projection strategies. From a
macro perspective, existing ZSL methods can be grouped
into three categories: 1) Learning a mapping function from
the visual space to the semantic space (Lampert, Nickisch,
and Harmeling 2014; Ding, Shao, and Fu 2017); 2) Learn-
ing a mapping function from the semantic space to the vi-
sual space (Kodirov et al. 2015); 3) Learning a latent space
which shared by the visual domain and the semantic do-
main (Zhang and Saligrama 2015; 2016).

Cold-start recommendation. Among the models which
address cold-start recommendation, we focus on the ones
which exploit side information, e.g., user attributes, personal
information and user social network data, to facilitate the
cold-start problem. Those models can be roughly grouped
into three categories, e.g., the similarity based models (Sed-
hain et al. 2014; Rohani et al. 2014), matrix factorization
models (Krohn-Grimberghe et al. 2012; Noel et al. 2012)
and feature mapping models (Gantner et al. 2010).

Matrix factorization models typically factorize the rela-
tionship matrix into two latent representations by optimizing
the following objective:

min
U,V
‖Y −UV‖2F + Ω(U,V), (1)

where Ω is the regularization used to avoid over-fitting. For
cold-start problems, one can learn a shared U or V from the
side-information, and then use it to predict Y.
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Table 1: Notations and corresponding descriptions, where n,
d and k denote the number of samples and dimensionality of
behavior space and attribute space, r is the rank of a matrix.

Notation Description
X ∈ Rd∗n user behavior space (CSR) / visual space (ZSL)
S ∈ Rk∗n user attribute space (CSR) / semantic space (ZSL)
W ∈ Rk∗d encoder
M,W> ∈ Rd∗k decoder
V ∈ Rk∗(k−r) the singular vectors of WW>

λ > 0, β > 0 penalty parameters

Feature mapping models normally learn a feature map-
ping between the side-information and one of the latent fea-
ture representations. The differences between the matrix fac-
torization models and the feature mapping models is that in
matrix factorization models the shared U is jointly learned
from Y and the the side-information, while in feature map-
ping models, one needs to learn an additional feature map-
ping, and further learn different Us and Ut by sharing the
feature mapping. More details can be found in (Sedhain et
al. 2017; Gantner et al. 2010).

Problem Formulation
Notations
In this paper, we use bold lowercase letters to represent
vectors, bold uppercase letters to represent matrices. For
a matrix M, its Frobenius norm is defined as ‖M‖F =√∑

i δi(M)
2, where δi(M) is the i-th singular value of

the matrix M. The trace of matrix M is represented by the
expression tr(M). For clarity, we also show the frequently
used notations in Table 1.

Linear Low-rank Denoising Autoencoder
Given an input data matrix X, suppose that we can learn a
mapping W which projects matrix X into a latent space S,
and another mapping M which can reconstructs X from S.
As an optimization problem, our aim is to minimize the re-
construction error. Thus, we have the following objective:

min
W,M

‖X−MWX‖2F , s.t.WX = S. (2)

Generally, the latent space is represented as hidden layers.
For the concern of efficiency and interpretability, we only
deploy one hidden layer S in our model. In this paper, S has
definite meanings, semantic space in ZSL or user side in-
formation in CSR. Recently, tied weights (Mohamed, Dahl,
and Hinton 2012) has been introduced into autoencoders to
learn faster models yet with less parameters. In this paper,
we consider the tied weights M = W>. Then, we have the
following formulation as illustrated in Fig. 2:

min
W
‖X−W>WX‖2F , s.t.WX = S. (3)

As we stated before, one of the challenge problems in
real-world recommender system is that we need to handle
very high-dimensional and sparse matrix, because there are
millions of items and users but a specific user only have few

Figure 2: Illustration of the proposed LLAE. Firstly, we
learn a low-rank encoder which maps user behavior into user
attributes. Then, user attributes of new users are used to re-
construct the user behavior (generate recommendations for
new users). For the sake of efficiency, the parameters of the
encoder and decoder are symmetric (tied weights). Notice
that the encoder guarantees that warm users and cold users
can be compared in the attribute space. The reconstruction,
at the same time, assures that the user behavior (recommen-
dation list) can be generated from user attributes.

interactions with few items. To avoid spurious correlations
caused by the mapping matrix, we propose that W should
be low-rank. As a result, we have:

min
W
‖X−W>WX‖2F + βrank(W), s.t.WX = S,

(4)
where rank(·) is the rank operator of a matrix, β > 0 is
a penalty parameter. It is worth noting that the rank con-
straint on W benefits the model from at least two aspects.
On one side, it helps filter out the spurious correlations from
behavior space to attribute space. On the other side, it helps
highlight the shared attributes across different users. For in-
stance, a specific attribute, e.g., basketball fan, would be
shared by many users from different ages. The low-rank con-
straint on W will reveal these common attributes.

In some cold-start tasks, the two spaces might be not very
correlated. The low-rank constraint helps reveal the most
correlated (relatively) part (dominate factors), and the re-
construction part is even more critical because the projec-
tion can be spurious in this situation without reconstruction
constraint. The reconstruction part is effective in mitigating
the domain shift problem. This is because although the user
behavior may change from warm users to cold users, the de-
mand for more truthful reconstruction from the attributes to
behavior is generalizable across warm and cold domains, re-
sulting in the learned project function less susceptible to do-
main shift.

The low-rank constraint on W makes the optimization
more difficult for the reason that low-rank is a well-known
NP-hard problem. As an alternative method, the trace norm
‖ · ‖∗ is widely used to encourage low-rankness in previous
work (Li et al. 2016). However, the trace norm controls the
single values of the matrix, but the changes of the single val-
ues do not always lead to a change of the rank. Inspired by
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recent work (Ding, Shao, and Fu 2017), we propose to use
an explicit form of low-rank constraint as follows:

min
W
‖X−W>WX‖2F + β

d∑
i=r+1

(σi(W))2,

s.t.WX = S,

(5)

where σi(W) is the i−th singular value of W, d is the total
number of singular values of W. Different from the trace
norm,

∑d
i=r+1(σi(W))2 explicitly solves the problem of

minimizing the square sum of r-smallest singular value of
the mapping W.

Note that∑d
i=r+1(σi(W))2 = tr(V>WW>V), (6)

where tr(·) is the trace operator of a matrix, and V con-
sists of the singular vectors which correspond to the (d−r)-
smallest singular values of WW>. Thus, our objective
function can be written as:

min
W,V

‖X−W>WX‖2F + βtr(V>WW>V),

s.t.WX = S.
(7)

At last, to learn more robust hidden layers, we train a
denoising autoendocoder (Vincent et al. 2008) by introduc-
ing corruptions into the input. Specifically, we randomly set
10% of X to zeros, and get the corrupted version X̂. As a
result, we have the final objective:

min
W,V

‖X−W>WX‖2F + βtr(V>WW>V),

s.t.WX̂ = S.
(8)

Problem Optimization
To optimize Eq. (8), we first rewrite it to the following equiv-
alent form:

min
W,V

‖X−W>S‖2F + βtr(V>WW>V), s.t.WX̂ = S. (9)

However, the constraint on Eq. (9) is hard to optimize.
Here we relax the constraint and get the following optimiza-
tion problem:

min
W,V

‖X−W>S‖2F +λ‖WX̂−S‖
2

F +βtr(V>WW>V), (10)

where λ > 0 is a penalty parameter. As a result, Eq. (10) is
a convex problem which has global optimal solution. Then,
we calculate the derivative of Eq. (10) with respect to W
and set it to zero,

−S(X> − S>W) + λ(WX− S)X̂> + βVV>W = 0,

⇒ (SS> + βVV>)W + λWXX̂> = S(X> + λX̂>)
(11)

It is worth noting that the optimization of W involves
V. As an optimization trick (Ding, Shao, and Fu 2017), we
choose to alternatively update them. At first, by treating V
as a constant, we calculate the derivative w.r.t W and set it
to zero, as shown in Eq. (11). Then, we update V by Eq. (6).

At last, if we use the following substitutions:
A = SS> + βVV>

B = λXX̂>

C = SX> + λSX̂>
, (12)

Algorithm 1. Low-rank Linear AutoEncoder for CSR
Input: User behavior space X, user attribute space S,

parameters λ and β.
Output: Recommended items for new users.
Warm-up:

Repeat
1. Solve the eigen-decomposition problem to get V :

V← svd(WW>).
2. Optimize the encoder W (and the decoder W>):

W = sylvester(A,B,C),
where A = SS> + βVV>, B = λXX̂>,

C = SX> + SX̂>.
Until Convergence

Cold-start:
Xnew = W>Snew.

Recommendation:
Using the logistic regression function to predict the
recommendation probability of items, and recommend
the top-k items.

Eq. (11) can be written as the following equation:

AW + WB = C, (13)

which can be effectively solved by Sylvester1 operation in
Matlab with only one line of code,

W = sylvester(A,B,C).

For clarity, we show the proposed method in Algorithm 1.

Complexity Analysis
The computational cost of our algorithm consists of two
parts: 1) the optimization of W and 2) the updating of V.
Generally, both of them cost O(d3). However, if we directly
calculate VV> instead of V, the cost of 2) can be reduced
to O(r2d) (r � d is the rank of W) (Ding, Shao, and Fu
2017). In any case, the complexity of our algorithm only de-
pends on the dimensionality. It is irrelevant to the number of
samples. As a result, it can be applied to large-scale datasets.

Zero-shot Classification
Given a training data X and a semantic representation S, we
can learn an encoder W and a decoder W> by Eq. (13).
For the new test sample set Xnew, we can embed it to a se-
mantic space Snew = WXnew. Then, the labels of Xnew

can be learned by a classifier which calculates the distances
between Snew and Sproto, where Sproto is the projected pro-
totypes in the semantic space.

f(Xnew) = arg min dis(Snew,Sproto), (14)

where f(Xnew) is a classifier which returns the labels of
Xnew, dis() is a distance metric.

1www.mathworks.com/help/matlab/ref/sylvester.html
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Table 2: Statistics of the tested dataset in ZSL experiments.
Dataset aP&aY AwA CUB SUN

# Seen classes 20 40 150 707
# Unseen classes 12 10 50 10

# Samples 15,339 30,475 11,788 14,340
# Attributes 64 85 312 102

Cold-start Recommendation
Suppose that we use X to denote the user behavior, e.g.,
purchase, browse and share, which in general is a user-item
matrix. S is the user attributes, e.g., user preferences, per-
sonal information and social network data. We can learn an
encoder W and a decoder W> by Eq. (13). Then, for the
new users, CSR aims to learn Xnew which indicates the po-
tential user-item relationship, which can be achieved by:

Xnew = W>Snew. (15)

At last, the recommendation will be formulated as a multi-
label classification problem (Zhang and Zhou 2014). Specif-
ically, we can use the logistic regression function to predict
the recommendation probability of items, and recommend
the top-k items.

Experiments
In this section, we verify the proposed method on both zero-
shot recognition and cold-start recommendation tasks. From
Eq. (13), we know that the main part of our method can be
implemented by only one line of Matlab code. The complete
codes will be released on publication.

Zero-shot Learning
Datasets. For zero-shot recognition, four most popular
benchmarks are evaluated. For instance, aPascal-aYahoo
(aP&aY) (Farhadi et al. 2009), Animal with Attribute
(AwA) (Lampert, Nickisch, and Harmeling 2014), SUN
scene attribute dataset (SUN) (Patterson and Hays 2012)
and Caltech-UCSD Birds-200-2011 (CUB) (Wah et al.
2011). The statistics of the datasets are reported in Table 2.

Settings. For ZSL, we follow the experimental pro-
tocols reported in previous work (Ding, Shao, and Fu
2017; Kodirov, Xiang, and Gong 2017), deep convo-
lutional neural networks (CNNs) features extracted by
GoogLeNet (Szegedy et al. 2015), which is the 1024-
dimensional activation of the final pooling layer, are used
as input. The hyper-parameters λ and β are tuned by cross-
validation using the training data.

Baselines. Five state-of-the-art work, e.g., DAP (Lam-
pert, Nickisch, and Harmeling 2014), ESZSL (Romera-
Paredes and Torr 2015), SSE (Zhang and Saligrama 2015),
JLSE (Zhang and Saligrama 2016) and LESD (Ding, Shao,
and Fu 2017), are selected as competitors.

Results and Discussions. The experimental results of
ZSL are reported in Table 3. From the results, we can see that
our approach, LLAE, performs much better than the com-
pared methods. Since the compared methods cover a wide
range of models which deploy different techniques for zero-
shot learning, and the state-of-the-art method LESD (Ding,

Table 3: Accuracy (%) of zero-shot recognition. The best
results are marked as bold numbers.

Method aP&aY AwA CUB SUN Avg.
DAP 38.23 60.51 39.14 71.92 52.45

ESZSL 24.37 75.31 48.75 82.12 57.64
SSE 46.22 76.35 30.49 82.51 58.89
JLSE 50.46 80.51 42.83 83.86 64.42
LESD 58.83 76.62 56.25 88.36 70.02
Ours 56.16 85.24 61.93 92.07 73.85

Shao, and Fu 2017) is reported recently, the performance of
our method is quite favorable and significant.

Different from conventional ZSL methods, our model is
bilateral. We consider not only the unilateral projection from
the feature space to the attribute space but also the recon-
struction from the attribute space to the feature space. Al-
though our initial purpose of reconstruction is tailored for
cold-start recommendation (one cannot generate the recom-
mendation list without reconstruction from the user infor-
mation in CSR), it benefits zero-shot recognition as well.
The results verify our proposition of this work—ZSL and
CSR share the similar problem framework, and the interdis-
ciplinary study on them can benefit both of the communities.

Cold-start Recommendation
Datasets. For cold-start recommendation, we mainly use so-
cial data as side information. The following four datasets,
which consist of image, video, blog and music recommen-
dation, are used for evaluation.
• Flickr (Tang, Wang, and Liu 2012) is a dataset collected

from flickr.com2, which is a popular personal photos man-
aging and sharing website. Users in flickr can tag photos
and subscribe photos in terms of tags with which he is
interested. For instance, a user can subscribe photos with
tag “baseball”. The evaluated dataset consists of 80,513
users, 195 interest groups as the items, and a social net-
work with 5,899,882 links.

• BlogCatalog (Tang, Wang, and Liu 2012) is a dataset col-
lected from blogcatalog.com3, which is a popular blog
collaboration system. Any article published by a blogger
in blogcatalog can be cataloged into some groups accord-
ing to the topics, e.g., “sports”, “business” and “technol-
ogy”. The tested dataset consists of 10,312 users, 39 top-
ics as items, and a social network with 333,983 links.

• YouTube (Tang, Wang, and Liu 2012) is a dataset col-
lected from youtube.com4, which is a popular video
watching and sharing website. Users in YouTube can also
subscribe interested topics. The evaluated dataset consists
of 1,138,499 users, 47 categories as items, and a social
network with 2,990,443 links.

• Hetrec11-LastFM (Cantador, Brusilovsky, and Kuflik
2011) is a dataset collected from last.fm5, which is an on-
2http://www.flickr.com
3http://www.blogcatalog.com
4http://www.youtube.com
5http://www.last.fm
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Table 4: CSR results of mAP@100 (%) on different datasets.
Method Flickr BlogCatalog YouTube LastFM

CBF-KNN 28.05 32.71 34.21 17.12
Cos-Cos 31.42 41.06 46.67 12.26

BPR-Map 21.59 28.22 30.35 8.85
CMF 21.41 27.76 28.16 8.13
LoCo 33.57 45.35 48.79 18.09
Ours 39.25 50.13 52.45 23.07

line music system. Hetrec11-LastFM contains social net-
working, tagging, and music artist listening information.
The tested dataset consists of 1,892 users, 17,632 artists
as items, and 186,479 tag assignments.

Settings. For the evaluated datasets, we split each of them
into two subsets, one includes 10% of the users as new users
(test dataset) for cold-start, and the remainder of 90% users
are collected as training data to learn the encoder and de-
coder. We deploy cross-validation with grid-search to tune
all hyper-parameters on training data. Specifically, we se-
lect 80% users for training and 10% for validation. The new
users are randomly selected, so we build 10 training-test
folds and report the average results.

Following previous work (Sedhain et al. 2017), we deploy
the widely used precision@k, recall@k and mean average
precision (mAP@100) as the measurements. All the hyper-
parameters in the objective are tuned by cross-validation.
The following five previous work powered by different tech-
niques are evaluated as baselines: CBF-KNN (Gantner et
al. 2010), Cos-Cos (Sedhain et al. 2014), BPR-Map (Gant-
ner et al. 2010), CMF (Krohn-Grimberghe et al. 2012) and
LoCo (Sedhain et al. 2017).

Results and Discussions. The experimental results on
different datasets are reported in Table 5 - Table 8. Table 4
shows the mAP@100 on the four datasets. Regarding to the
experimental results, we have the following discussions:

1) It has been verified by ZSL that our bilateral formula-
tion, i.e., projection from feature space to attribute space and
reconstruction from attribute space to feature space, is very
effective. In fact, the bilateral formulation is also the main
reason that our model performs better in CSR tasks. As we
stated in the section of related work, existing CSR methods
generally learn a projection from the user behavior space to
the user preference space. The learned projection is unilat-
eral. In other words, the formulations of existing work focus
on the mapping from the behavior to the preference, but it
did not take reconstruction into consideration. If we take a
further look at the CSR problem, we can find that the pro-
jection from user behavior to the user preference and the re-
construction from user preference to user behavior is equally
important. The projection guarantees that warm users and
cold users can be compared in the preference space. The re-
construction assures that the user behavior (recommendation
list) can be generated from user preference.

2) Most of the baselines are based on matrix factorization
(MF). The MF approaches, however, is highly sensitive and
easily disturbed by noises when the observations are sparse.
Compared with the recommendation scenarios where there

Figure 3: Parameters sensitivity (a-b) and convergence curve
(c) of the proposed method on AwA dataset.

(a) Low-rank (b) Reconstruction

Figure 4: The effect of the low-rank and reconstruction con-
straint. Results of the CSR evaluations are the Precision@5
on different datasets. CUB dataset is used for ZSL.

are intensive feedbacks provided by users and only lim-
ited items, social network observations are extremely sparse.
LoCo and our LLAE deploy low-rank representation to re-
veal the true data structure from corrupted inputs. Thus, they
outperform the baselines in most evaluations.

3) Although LoCo deploys low-rank representation, it
learns a unilateral projection. In social data facilitated CSR
problems, there are a large number of users and only lim-
ited attributes. Thus, a user will be linked with several at-
tributes, and a specific attribute will be attached with a lot
of users. If we learn only one projection, trivial connections
will be involved. For example, if we learn only one projec-
tion from user behavior to user attributes, a behavior can be
linked with almost all of the attributes with a low weight
since most of the elements in the projection matrix are not
zero. Such a projection will weaken the true attributes, in-
troduce over-fitting and relax the generalization ability. The
reconstruction constraint in LLAE can automatically handle
this because a bad projection will cause a bad reconstruction.

Model Analysis
Parameters Sensitivity. For different dataset, the hyper pa-
rameters vary from dataset to dataset. For instance, the op-
timal value of λ on some datasets is around 105, while on
others is less than 10. They, therefore, need to be selected
by cross-validation. However, when λ is large, we also need
to increase the value of β so that the effect of low-rank con-
straint would not be neglected (it is easy to be understood by
referring to Eq. (13)). Since it is hard to illustrate the effects
of the parameters on different datasets (the optimal values
can differ by orders of magnitude), the effect of λ and β on
AwA, as an example, are reported in Fig. 3(a) and Fig. 3(b).

Complexity and Convergence. It is worth noting that
LLAE is a linear algorithm, the main part of LLAE can be
implemented by only one line of Matlab code, and it runs
faster than most of previous work. For instance, it only costs
about 1/1000 training time of SSE on AwA. Since we update
W and V in an iterative fashion, we show the convergence
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Table 5: Cold-start recommendation results (%) on Flickr dataset.
BPR-Map CMF CBF-KNN Cos-Cos LoCo Ours

@k Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
1 16.99 13.52 15.91 12.34 20.62 15.79 22.33 17.58 28.64 22.52 33.61 26.34
5 7.29 28.12 7.55 27.24 10.10 36.69 10.34 37.56 11.99 43.47 15.32 48.27
10 4.85 37.18 5.12 36.57 6.58 47.13 6.71 47.84 7.25 51.62 11.03 55.74
20 3.28 50.21 3.28 46.67 4.01 57.17 4.12 58.24 4.12 58.31 7.67 62.45

Table 6: Cold-start recommendation results (%) on BlogCatalog dataset.
BPR-Map CMF CBF-KNN Cos-Cos LoCo Ours

@k Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
1 16.21 11.67 18.59 15.05 20.14 16.05 31.76 25.64 37.65 30.35 43.55 35.82
5 10.13 38.89 8.62 33.32 11.38 43.14 13.26 49.78 14.26 53.24 19.26 57.72
10 7.87 57.63 6.56 49.15 8.41 60.47 8.86 64.75 8.90 65.08 12.45 69.24
20 5.62 81.07 4.78 69.65 5.88 83.94 5.89 84.27 5.62 80.23 7.36 83.19

Table 7: Cold-start recommendation results (%) on YouTube dataset.
BPR-Map CMF CBF-KNN Cos-Cos LoCo Ours

@k Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
1 18.76 19.15 21.18 19.15 23.58 18.23 33.86 29.15 40.22 34.35 46.37 39.25
5 14.16 40.29 10.23 37.32 13.58 46.67 16.57 50.21 18.55 60.14 22.18 65.23
10 9.29 59.58 8.43 53.15 10.25 63.77 10.86 67.56 12.23 69.34 15.39 73.25
20 6.25 83.51 5.91 73.25 6.67 84.61 6.84 86.59 8.77 88.74 11.32 92.58

Table 8: Cold-start recommendation results (%) on Hetrec11-LastFM dataset.
BPR-Map CMF CBF-KNN Cos-Cos LoCo Ours

@k Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
1 32.53 0.81 37.54 0.94 53.39 1.35 36.54 0.92 58.11 1.42 62.95 4.33
5 26.83 3.07 30.71 3.54 45.08 5.14 31.97 3.87 48.09 5.51 55.16 10.27
10 23.99 5.31 25.64 5.95 39.65 8.91 28.07 6.56 41.87 9.58 46.67 13.19
20 20.53 9.05 20.97 9.67 32.32 14.39 22.95 10.56 33.98 15.42 39.86 18.45

curve of LLAE on AwA dataset in Fig. 3(c). It can be seen
that our model converges very fast.

Low-rank Constraint. From the parameter curve of β,
we can see that the low-rank constraint is effective for
the performance of LLAE. For ZSL, it helps to find out
shared semantics across different categories. For CSR, it
filters out spurious connections and handles the extremely
spare observations. If we investigate the CSR as a spe-
cific transfer learning problem (Ding, Shao, and Fu 2018;
Li et al. 2018c), the low-rank constraint can also mitigate
the domain shift between the user behavior space and the
user attribute space. We show the effects of the low-rank
constraints in Fig. 4(a).

Reconstruction Constraint. We have mentioned in sev-
eral places that the reconstruction constraint plays an impor-
tant role in our formulation. To verify the claim, Fig. 4(b)
shows the effects of the reconstruction part on several eval-
uations. It is obvious that the reconstruction constraint con-
tributes a lot for the performance.

Conclusion
This paper, for the first time, investigates CSR as a ZSL
problem. Although CSR and ZSL were independently stud-
ied by two communities in general, we reveal that the two

tasks are two extensions of the same intension. In this paper,
a tailor-made ZSL model is proposed to handle CSR. Specif-
ically, we present a low-rank linear autoencoder, which de-
ploys a low-rank encoder to map user behavior space to user
attribute space and a symmetric decoder to reconstruct user
behavior from the user attributes. Extensive experiments on
eight datasets, including both CSR and ZSL, verify not only
that the CSR problem can be addressed by ZSL model, but
the consideration of CSR, e.g., the reconstruction constraint,
can benefit ZSL as well. It is a win-win formulation. At last,
by linking CSR and ZSL, we wish that this work will ben-
efit both of the communities and elicit more contributions.
In our future work, we are going to investigate training deep
autoencoders for both ZSL and CSR.
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