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Abstract

Unsupervised disentangled representation learning is one of
the foundational methods to learn interpretable factors in the
data. Existing learning methods are based on the assumption
that disentangled factors are mutually independent and incor-
porate this assumption with the evidence lower bound. How-
ever, our experiment reveals that factors in real-world data
tend to be pairwise independent. Accordingly, we propose a
new method based on a pairwise independence assumption
to learn the disentangled representation. The evidence lower
bound implicitly encourages mutual independence of latent
codes so it is too strong for our assumption. Therefore, we
introduce another lower bound in our method. Extensive ex-
periments show that our proposed method gives competitive
performances as compared with other state-of-the-art methods.

1 Introduction
This paper is concerned with the unsupervised learning of
disentangled representation. The disentangled representation
is a distributed data representation in which latent codes
represent interpretable attributes. Disjoint dimensions of the
representation change independently in the variation of the
data and are associated with different high-level data fac-
tors (Bengio, Courville, and Vincent 2013). One example
of the disentangled representation is the task of generating
hand-written digits. The hand-written digits are generated by
the generator according to the latent codes, while different
codes control rotation, stroke width, writing style and other
different attributes. These attributes interact non-linearly in
the data. However, when one factor varies but all others
are fixed, the generated sequence of samples can show an
interpretable change to human beings. Due to its interpretabil-
ity, disentangled representations are useful in many down-
stream tasks such as supervised learning (Liu et al. 2018;
Hadad, Wolf, and Shahar 2018) and transfer learning (Zamir
et al. 2018).

Many recent works have been devoted to the super-
vised learning of disentangled representation. Bouchacourt,
Tomioka, and Nowozin (2018) and Hadad, Wolf, and Sha-
har (2018) assume the group division of samples is given.
Liu et al. (2018) require the predefined attributes. Adel,
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Ghahramani, and Weller (2018) consider side information
in the learning process. However, real-world data is often
raw data without labels or attributes, and thus the unsuper-
vised learning of disentangled representation is an important
and challenging problem. Most existing methods are based
on the prior assumption that the learned codes should be
mutually independent. It is believed that interpretable fac-
tors tend to change independently in the data, so by infer-
ring independent codes, the model may capture those in-
terpretable factors backward. To model this independence,
Higgins et al. (2017) and Burgess et al. (2018) limit the
capacity of learning model. Kumar, Sattigeri, and Balakr-
ishnan (2018) match the code distribution to the standard
normal distribution. Kim and Mnih (2018) and Chen et al.
(2018) optimize the term of total correlation to enable the
distribution to be factorial. Other works (Chen et al. 2016;
Li, Tang, and He 2018) take the principle of mutual informa-
tion minimization. Most of these methods are built on top of
variational autoencoder (Kingma and Welling 2014).

However, we find interpretable factors are pairwise inde-
pendent in experiments. We perform Pearson’s chi-squared
test on the CelebA attributes (Liu et al. 2015) and find that
some attributes pairs are independent. However, only a group
of three attributes is three-wise independent and no four-wise
independent group is observed. Therefore, we assume the
latent codes of data are pairwise independence in the design
of our model. Notice that pairwise independence is different
from mutual independence. A finite set of k random vari-
ables {Z1, . . . , Zk} are pairwise independent when any two
of them are independent. However, they are mutually inde-
pendent only when the joint cumulative distribution function
is always the product of the marginal cumulative functions,
namely FZ1,...,Zk(z1, . . . , zk) =

∏k
i=1 FZi(zi). Since mu-

tual independence is a special case of pairwise independence,
our assumption is more general.

The pairwise independence assumption cannot be incorpo-
rated with variational autoencoder directly. This is because
variational autoencoder is based on the evidence lower bound,
which implicitly encourages mutual independence among
codes (Hoffman and Johnson 2016). We introduce another
lower bound of log-likelihood according to the principle of
variational inference. Similar to the evidence lower bound, it
enables the model to recover the sample given the inferred
code. However, it restricts the marginal distribution instead
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of the joint distribution of the latent code. As a result, it can
incorporate the pairwise independence assumption which
constrains the joint distribution between code pairs. Finally,
the discussed lower bound is combined with a designed pair-
wise independence term. Inspired by (Kingma and Welling
2014), our model is implemented with deep neural networks
and trained with the stochastic optimization method and the
reparameterization trick. Figure 1 shows an illustration of our
model.

x x̂
zq�(z | x) p✓(x | z)

Figure 1: The architecture of our proposed method. Given
a sample x, the encoder qφ(z | x) infers the code z and the de-
coder pθ(x | z) recovers x̂ accordingly. The aggregated poste-
rior distribution qφ(z) is encouraged to be pairwise indepen-
dent. To illustrate the idea, we visualize the pairwise joint dis-
tributions of qφ(z). Here zi, zj , zm and zn are different code
components. Ideally we have qφ(zi, zm) = qφ(zi)qφ(zm)
and the same holds for other code pairs. The notations are
summarized in Table 1. The figure is best viewed magnified
on screen.

An outline of the remainder of our paper is as follows.
Section 2 gives a brief review of related works. Section 3
describes our experiments on CelebA attributes and shows
the attributes tend to be pairwise independent. Based on
this observation, Section 4 introduces our proposed model,
which combines our discussed lower bound and the de-
signed term to measure pairwise independence. In Sec-
tion 5, we perform canonical correlation analysis between
the CelebA attributes and the learned codes of different mod-
els to show how well the methods capture the attributes.
Finally, Section 6 concludes our paper. Our source code is
available on https://github.com/ZejianLi/Pairwise-Indepence-
Autoencoder.

2 Related Works
In this part, we give a brief introduction of variational au-
toencoder (Kingma and Welling 2014) and its variants which
learn disentangled representations.

Variational autoencoder (VAE) has been a foundational
generative model to learn the latent representation. Given
a k-dimensional latent code z ∈ Z sampled from a prior
distribution p(z), a new sample x ∈ X can be generated
with pθ(x | z). To increase the log-likelihood of the observed
samples log pθ(x), VAE maximizes the evidence lower bound
(ELBO) (Jordan et al. 1999) defined as:

L(θ, φ) = Ep(x)Eqφ(z|x) log
pθ(x, z)

qφ(z | x)
≤ Ep(x) log pθ(x).

(1)
The notations are summarized in detail in Table 1.

Table 1: Notations.
Notation Definition

x An observed sample from the data space X .
z A code in the k-dimensional latent spaceZ .

p(x) The ground-truth data distribution of x, as-
sumed to be absolutely continuous.

p(z) The prior distribution of z, assumed to be
N (0, I).

pθ(x | z) The distribution to generate a new sample
x given z, parameterized by θ.

pθ(x) The marginal distribution of pθ(x, z) =
p(z)pθ(x | z).

qφ(z | x) The variational distribution of the posterior
pθ(z | x), parameterized by φ.

qφ(z) The marginal distribution of qφ(x, z) =
p(x)qφ(z | x).

B A mini-batch of b samples {x1, . . . , xb}.

VAE can disentangle factors by encouraging the latent
codes to be independent (Hoffman and Johnson 2016). To
see this, the ELBO is decomposed as:

Ep(x)Eqφ(z|x) log
pθ(x, z)

qφ(z | x)

=Ep(x)Eqφ(z|x) log pθ(x | z)− Eqφ(z,x) log
qφ(z | x)
p(z)

.

(2)
The first term is the expected log-likelihood to recover the
sample x. The second term can be further decomposed as:

Eqφ(z,x) log
qφ(z | x)
p(z)

=Eqφ(z,x) log
qφ(z, x)

qφ(z)p(x)
+ Eqφ(z) log

qφ(z)

p(z)

=Iφ(z;x) + KL(qφ(z)‖p(z)).

(3)

Iφ(z;x) is the mutual information between x and z specified
by qφ(z, x). KL(qφ(z)‖p(z)) is the Kullback-Leibler diver-
gence between qφ(z) and p(z). It guides qφ(z) to be factorial
and the marginal distributions of qφ(z) to be Gaussian. To
see this, KL(qφ(z)‖p(z)) is decomposed as

KL(qφ(z)‖p(z))

=Eqφ(z) log
qφ(z)∏k
i=1 qφ(zi)

+

k∑
i=1

Eqφ(zi) log
qφ(zi)

p(zi)
.

(4)

Eqφ(z) log
qφ(z)∏k
i=1 qφ(zi)

is the total correlation of the latent
codes. Similar to mutual information, the total correlation
is zero when qφ(zi) for i = 1, . . . , k are mutually indepen-
dent. Therefore, VAE encourages the independence of la-
tent codes and thus disentangles the generative factors. Re-
cent works are mainly focused on putting more emphasis on
the independence. Specifically, β-VAE (Higgins et al. 2017;
Burgess et al. 2018) put more weight on Eqφ(z,x) log

qφ(z|x)
p(z)

in (2) and thus penalize the total correlation term. Fac-
torVAE (Kim and Mnih 2018) and β-TCVAE (Chen et
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Figure 2: The p-values in the Pearson’s chi-squared test on the attribute pairs of CelebA dataset. It is observed that 36
pairs are not significantly dependent with a significant level of 0.01. The figure is best viewed on screen.

al. 2018) augment the ELBO with the total correlation
term directly. Similarly, DIP-VAE (Kumar, Sattigeri, and
Balakrishnan 2018) designs an moment-matching term to
minimize KL(qφ(z)‖p(z)) in (3). The assumption behind
VAE and these variants is that interpretable factors are
mutually independent and can be captured with the fac-
torial distribution p(z). Other works (Chen et al. 2016;
Li, Tang, and He 2018) encourage disentanglement by mini-
mizing the mutual information between x and z with extra
components of the model.

3 Experiment on CelebA Attributes
We tentatively argue that the interpretable factors may be
pairwise independent, but not mutually independent. Our
argument is supported by the following experiment findings.

We conduct the Pearson’s chi-squared test on the labeled
attributes of CelebA dataset (Liu et al. 2015). These 40 at-
tributes are binary and concerned with different aspects of the
faces. Notice that some attributes are intrinsically correlated,
such as “brown hair” and “black hair”, or “narrow eyes” and
“smiling”. Firstly, we perform the test on attribute pairs and
find 36 pairs are not significantly dependent with a significant
level of 0.01. The p-values of all pairwise tests are visualized
in Figure 2. We also perform the test on groups of three and
four attributes. Only the group of “Blond Hair”, “Straight

Hair” and “Narrow Eyes” is not significantly dependent with
the p-value as 0.038, and all groups of four attributes are
significantly dependent. So in this experiment, attributes in
CelebA dataset are not mutually independent while some
attribute pairs are independent.

The assumption of mutual independence may be too strong
and interpretable factors in the real-world data tend to be pair-
wise independent. Intuitively, human beings can easily see
whether two factors are independent or not, but mutual inde-
pendence among three or more factors is not straightforward.
Given three factors A, B and C, one should first consider
they are pairwise independent or not and then investigate
whether A and the joint distribution of (B,C) are indepen-
dent. The latter investigation is involved with high-order
relations between factors, which is not intuitive. However,
most interpretable factors are intuitive and come easily from
common sense. Therefore, we hypothesize that pairwise inde-
pendent factors may be more consistent with human intuition.
Our proposed method is based on the assumption of pairwise
independence.

4 Method
Based on the discussion above, we propose an autoencod-
ing framework which learns a pairwise independent latent
distribution to capture disentangled factors. Specifically, we
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describe our method to approximate the pairwise indepen-
dence of latent codes. We also derive a variant of ELBO,
which does not contain the total correlation term and con-
strains only the marginal distributions of the latent codes. Our
proposed method combines the derived lower bound with the
term of pairwise independence.

Given two code components zi and zj where i 6= j, qφ(zi)
and qφ(zj) are expected to be independent in our scenario.
The independence is measured by the mutual information

Iφ(zi; zj) = Eqφ(zi,zj) log
qφ(zi, zj)

qφ(zi)qφ(zj)
.

To approximate qφ(zi), we use the Monte Carlo estimation
based on a mini-batch of samples B from p(x). Since the
aggregated posterior qφ(z) = Ep(x)qφ(z | x), qφ(z) can be
approximated by 1

b

∑b
l=1 qφ(z | xl), which is a mixture of

Gaussian distributions as qφ(z | xl) is N (µφ(xl), σ
2
φ(xl)I).

To sample from qφ(zi), we first choose a sample xl from B
uniformly at random. Next we use the reparameterization
trick and have z̃i = µφ,i(xl) + εσφ,i(xl) where ε ∼ N (0, I).
Then we have the estimator qφ(z̃i) = 1

b

∑b
l=1 qφ(z̃i | xl).

The same estimation can be applied to qφ(zj) and qφ(zi, zj),
too. This estimation is acceptable in our scenario because it is
in the one-dimensional or two-dimensional space, and those
high-dimensional sampling problems discussed in (Chen et
al. 2018; Kim and Mnih 2018) are avoided. We define the
average mutual information of code pairs as

PI1(qφ(z)) =
1(
k
2

) ∑
i 6=j

Iφ(zi; zj). (5)

An alternative measure of the pairwise independence is
the KL-divergence between the aggregated posterior and the
prior, defined as

KL(qφ(zi, zj)‖p(zi, zj))

=Eqφ(zi,zj) log
qφ(zi, zj)

p(zi, zj)

=Iφ(zi; zj) + KL(qφ(zi)‖p(zi)) + KL(qφ(zj)‖p(zj)).

This consists of the mutual information and the KL-
divergences which push qφ(zi) to p(zi) and qφ(zj) to p(zj).
Additionally, this is more computationally efficient because
it eliminates the computation of qφ(z̃i) and qφ(z̃j) and only
requires the probability of qφ(z̃i, z̃j) and p(z̃i, z̃j). Thus, we
define

PI2(qφ(z)) =
1(
k
2

) ∑
i 6=j

KL(qφ(zi, zj)‖p(zi, zj)). (6)

It is not appropriate to combine the pairwise independence
term with the ELBO. The ELBO contains the total correlation
term and encourages mutual independence of codes, so it is
too strong for the pairwise independence assumption. We
introduce a different lower bound based on variational infer-
ence and design a corresponding autoencoding framework.

We rewrite the expected log-likelihood as:

Ep(x) log pθ(x)

=Ep(x)Eqφ(z|x) log
pθ(z, x)

pθ(z | x)
=Eqφ(z,x) log pθ(z, x)− Ep(x)Eqφ(z|x) log pθ(z | x).

The second term is the expected cross entropy over the
random variable z given x, denoted as H(qφ(z | x), pθ(z |
x)). With Jensen’s inequality, we have

H(qφ(z | x), pθ(z | x)) ≥ H(qφ(z | x)),
where H(qφ(z | x)) is the differential entropy of z. Notice
that the differential entropy can be negative. However, when
H(qφ(z | x)) is non-negative, we have

H(qφ(z | x), pθ(z | x)) ≥ 0

and thus L′(θ, φ) = Eqφ(z,x) log pθ(z, x) is a lower bound of
the log-likelihood. The bound is tight when H(qφ(z | x)) =
0 and qφ(z | x) matches pθ(z | x).

To analyze L′(θ, φ), we decompose it into two parts.

L′(θ, φ) = Eqφ(z,x) log pθ(x | z) + Eqφ(z) log p(z)

= Ep(x)Eqφ(z|x) log pθ(x | z) +
k∑
i=1

Eqφ(zi) log p(zi).

We have log p(z) =
∑k
i=1 log p(zi) because p(z) isN (0, I).

The first term is the log-likelihood that pθ(x | z) recov-
ers sample x given the latent code from qφ(z | x). The
second term is the sum of the negative cross entropies
−H(qφ(zi), p(zi)) for i = 1, . . . , k. It restricts the marginal
distributions qφ(zi) instead of the joint distribution qφ(z).

Finally, we augment L′(θ, φ) with the pairwise indepen-
dence term and arrive at the optimization problem of our
Pairwise Independence Autoencoder (PIAE) as follows:

argmax
θ,φ

L′(θ, φ)− λPIα(qφ(z)),

s.t. H(qφ(z | x)) ≥ 0 for x ∈ X .
(7)

Here λ is the penalty parameter. When we have α = 1 and
take PI1(qφ(z)) in (5), we term our model as PIAE(MI). MI
is short for mutual information. Similarly, we have PIAE(KL)
when taking (6) with α = 2.

To make the optimization easier, qφ(z | x) is assumed to
be N (µφ(x), σ

2
φ(x)I). The model is trained with stochastic

batches with the reparameterization trick. Notice that the
differential entropy of qφ(z | x) is

H(qφ(z | x)) =
1

2
ln det |2πeσ2

φ(x)|

=
1

2

k∑
i=1

ln(2πeσ2
φ,i(x)).

H(qφ(z | x)) ≥ 0 when ln(2πeσ2
φ,i(x)) ≥ 0 for any i,

which is equivalent to σ2
φ,i(x) ≥ 1

2πe ≈ 0.0585. To model
this constraint, σ2

φ(x) is defined as max(fφ(x), 0) +
1

2πe ,
where fφ is approximated by a neural network.
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Unfortunately, the proposed method does not have the
ability to generate high-quality new samples. This is because
qφ(z) is unknown and may lie in a low-dimensional manifold
due to the pairwise independence constraint. Thus, codes
sampled from p(z) may be out of the support of qφ(z).

We further show that the lower bound L′(θ, φ) is closely
related to rate-distortion theory (Cover and Thomas 2006).
We begin with the following optimization

max Eqφ(z) log p(z)
s.t. − Eqφ(z,x) log pθ(x | z) ≤ D.

(8)

D is a constant. Writing (8) as a Lagrangian we have

L′(θ, φ, β) = Eqφ(z) log p(z) + βEqφ(z,x) log pθ(x | z).
L′(θ, φ) is a special case when β = 1. (8) has a close relation
with the rate-distortion function. As H(qφ(z | x) ≥ 0,

Eqφ(z) log p(z) ≤Eqφ(z,x) log p(z) + Ep(x)H(qφ(z | x))

=− Eqφ(z,x) log
qφ(z | x)
p(z)

≤− Iφ(z;x).
In the last step we use (3) and that KL-divergence is non-
negative. Thus the mutual information Iφ(z;x) is minimized
when Eqφ(z) log p(z) is maximized. On the other hand, when
pθ(x | z) is N (µθ(z), I), we have

−Eqφ(z,x) log pθ(x | z) = Eqφ(z,x)
[‖µθ(z)− x‖2

2
+ C

]
,

where C is a constant. Thus −Eqφ(z,x) log pθ(x | z) corre-
sponds to the squared-error distortion. To summarize, (8) is
related to the following rate-distortion function

R(D′) = min Iφ(x; z)

s.t. Eqφ(z,x)‖µθ(z)− x‖2 ≤ D′,

where D′ = 2(D − C). Therefore, the optimization in (8)
helps the model to find an achievable rate and distortion pair
so as to learn a useful representation for reconstruction. This
is the same for L′(θ, φ).

5 Experiment
In this section, we compare our proposed methods with other
state-of-the-art methods. Particularly, we compare how well
the methods capture the attributes in CelebA dataset by ex-
amining the maximum correlations and the prediction perfor-
mances in canonical correlation analysis. We also compare
the methods along subspace score (Li, Tang, and He 2018),
an unsupervised disentanglement metric. Furthermore, we
display rerendered sample sequences in the latent traversal
as appropriate. The experiments are conducted on several
image datasets, including MNIST (LeCun et al. 1998), Fash-
ionMNIST (Xiao, Rasul, and Vollgraf 2017), CelebA (Liu
et al. 2015), Flower (Nilsback and Zisserman 2008), CUB
(Wah et al. 2011), Chairs (Aubry et al. 2014) and CIFAR10
(Krizhevsky, Nair, and Hinton 2009).

Methods to be compared include β-VAE (β = 20) (Hig-
gins et al. 2017), Improved β-VAE (β = 30) (Burgess et al.

2018), DIP-VAE (λ = 20) (Kumar, Sattigeri, and Balakr-
ishnan 2018), β-TCVAE (β = 20) (Chen et al. 2018) and
FactorVAE (γ = 20) (Kim and Mnih 2018). These are meth-
ods based on the mutual independence assumption. We also
include comparisons with AnaVAE (Li, Tang, and He 2018)
and InfoGAN (Chen et al. 2016). VAE (Kingma and Welling
2014) is also compared as a baseline. Hyperparameters are
chosen as suggested in the original papers. We set λ = 20 in
(7) for our PIAE(MI) and PIAE(KL).

We does not perform comparisons along the disentangle-
ment metrics proposed in (Higgins et al. 2017; Kim and Mnih
2018; Chen et al. 2018) in our experiments. These metrics are
applied on the synthetic dataset of 2D shapes (Matthey et al.
2017), whose factors are defined to be mutual independent.
Therefore, they are not applicable in our scenario.

Implementation Details
Implementation details of our models are summarized here.
The latent dimension of z is set as 16 in MNIST and Fashion-
MNIST, and 64 in other datasets. The network architecture is
designed according to DCGAN (Radford, Metz, and Chintala
2015). Specifically, the encoder borrows the major structure
of the discriminator in DCGAN and the decoder is the same
as the generator. The architecture guidelines introduced in
(Radford, Metz, and Chintala 2015) can make the training
easier and more stable. We use Adam optimizer (Kingma
and Ba 2014) with a learning rate of 0.0001 and a momen-
tum of 0.5. The batch size is 64. Different from the notation
in (5) and (6), we randomly select only k − 1 pairs of zi
and zj in each batch to reduce the computational cost. In
the whole training process, all code pairs are constrained.
Empirically, this stochastic approximation shows acceptable
performance, but its robustness remains unclear and will be
studied in our future work. Finally, the proposed algorithms
are implemented with PyTorch (Paszke et al. 2017).

Canonical Correlation Analysis
To evaluate the learned code, we analyze the relation be-
tween the code z and the attributes y annotated in CelebA
dataset. Inspired by (Adel, Ghahramani, and Weller 2018),
we hypothesize that in the ideal case this relation can be
described by a linear model. We use canonical correlation
analysis (CCA) because CelebA attributes are correlated. The
evaluation framework (Eastwood and Williams 2018) applies
individual least square estimate for each attribute, implicitly
assuming the attributes are uncorrelated, so it is not appli-
cable here. Instead, CCA finds a sequence of uncorrelated
linear combinations zvm for m = 1, . . . , 40 and a corre-
sponding sequence of uncorrelated yum such that the corre-
lations Corr(zvm, yum)’s are successively maximized. The
leading canonical responses are those linear combinations
of attributes best predicted by the codes. By investigating
the leading correlation coefficients, we can see how well the
attributes are captured.

We conduct the CCA analysis within a tenfold cross vali-
dation and display the average performances. Table 2 shows
four leading correlations in the training set and the testing
set, respectively. The larger the correlations are, the better
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Table 2: Four leading correlation coefficients in the CCA analysis. The best performances are highlighted.
Training set Testing set

1 2 3 4 1 2 3 4

VAE 0.890 0.826 0.705 0.697 0.890 0.826 0.704 0.697
InfoGAN 0.374 0.314 0.147 0.101 0.373 0.313 0.146 0.099
β-VAE 0.751 0.729 0.649 0.648 0.751 0.729 0.647 0.649
Improved β-VAE 0.728 0.705 0.642 0.627 0.728 0.705 0.641 0.626
DIP-VAE 0.866 0.801 0.756 0.707 0.866 0.801 0.756 0.707
β-TCVAE 0.755 0.725 0.697 0.663 0.754 0.724 0.696 0.663
FactorVAE 0.884 0.825 0.721 0.693 0.883 0.825 0.720 0.693
AnaVAE 0.893 0.826 0.710 0.693 0.893 0.826 0.709 0.693
PIAE(MI) 0.892 0.830 0.716 0.695 0.891 0.829 0.716 0.695
PIAE(KL) 0.890 0.828 0.717 0.692 0.890 0.827 0.716 0.692

the codes capture the attributes. For the first correlation co-
efficients, AnaVAE has the largest values and our methods
have marginally smaller ones. For the second correlations,
our methods have the highest values. For the third and forth
correlations, DIP-VAE has the largest correlations. However,
the first two correlations of DIP-VAE are significantly lower
than those of other methods. Generally, our methods give
competitive performances.

We also investigate the prediction accuracy in CCA. A
higher accuracy means the model captures the attributes bet-
ter. The prediction accuracies are evaluated by R2 score on
the training and testing set, as shown in Table 3. R2 score
can be negative since the performance can be arbitrary inef-
fective, and its best possible value is 1. In this experiment,
our method gives the best performances in both cases.

Table 3: The average R2 score in the CCA analysis. The
best performances are highlighted.

Training set Testing set

VAE 0.2045 0.2041
InfoGAN -0.0871 -0.0873
β-VAE 0.1488 0.1483
Improved β-VAE 0.1302 0.1297
DIP-VAE 0.2027 0.2023
β-TCVAE 0.1614 0.1609
FactorVAE 0.2060 0.2057
AnaVAE 0.2035 0.2031
PIAE(MI) 0.2130 0.2126
PIAE(KL) 0.1979 0.1975

Subspace Score
In this part we present the comparison along subspace score
(Li, Tang, and He 2018). Subspace score is an unsupervised
disentanglement metric. It is based on two assumptions. The
first one is that sample sequences generated by varying one
latent code are expected to form an affine subspace, and
subspaces of different latent codes are independent. This is
measured by the clustering performance of a designed sub-
space clustering method. The second is that the union of

these subspaces should be close to the majority of observed
samples. This is reflected by the average distance between
the samples and their projections in the subspace. The model
with a higher subspace score is believed to separate indepen-
dent factors better. Different from the implementation in (Li,
Tang, and He 2018), we use the thresholding ridge regression
(Peng, Yi, and Tang 2015) instead of orthogonal match pur-
suit in the subspace clustering part, because the thresholding
ridge regression method is robust in capturing subspaces and
more computationally efficient. We calculate the subspace
score over five different sets of generated samples to get the
average.

The results are shown in Table 4. DIP-VAE has the high-
est score in FashionMNIST and CelebA dataset and has a
slightly higher score than our method in Chairs. AnaVAE
has the best performance in MNIST. PIAE(KL) enjoys the
best performances in CIFAR10, Flower and CUB datasets.
PIAE(MI) has similar performance. In summary, our methods
have competitive performances in this experiment.

Latent Traversal
In this part, we present the latent traversal to show the learned
factors. The latent traversal is conducted in the following
way. Given a selected example, the encoder infers the code
z. Then a specific component of z is varied, and accordingly
the decoder rerenders a sequence of samples. The variation
of the sample sequences can visualize attributes learned by
the autoencoding model.

Figure 3 shows the sample sequences of CelebA dataset.
The models learn to disentangle factors including gender
(a), the skin brightness (b) and the smiling of the face (c).
The β-VAE and its improved variant give blurry faces, while
other methods have samples of better clarity. In grid (a) of
Figure 3, PIAE(MI) entangles gender with color tone slightly,
which is also observed in other methods. PIAE(KL) entangles
gender with the background color; the background blueness
turns into the red hair. However, our method captures the
correlated features of gender. In the left of the sequence the
gentleman grows light beard, while in the right the lady has
heavy makeup. Since these two factors are not independent of
the gender factor, the model represents the combined factor
in a singled component. In grid (b), PIAE(MI) and AnaVAE
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Table 4: The average subspace score. The best performances are highlighted.
MNIST FashionMNIST CIFAR10 Flower CUB CelebA Chairs

VAE 0.557 0.562 0.614 0.563 0.571 0.600 0.608
InfoGAN 0.541 0.505 0.598 0.482 0.528 0.309 0.540
β-VAE 0.554 0.524 0.590 0.523 0.560 0.575 0.571
Improved β-VAE 0.554 0.517 0.589 0.522 0.551 0.572 0.561
DIP-VAE 0.560 0.597 0.609 0.560 0.558 0.625 0.630
β-TCVAE 0.541 0.522 0.582 0.529 0.540 0.565 0.586
FactorVAE 0.467 0.548 0.611 0.568 0.567 0.587 0.611
AnaVAE 0.561 0.556 0.614 0.561 0.571 0.596 0.611
PIAE(MI) 0.553 0.558 0.619 0.563 0.574 0.610 0.629
PIAE(KL) 0.551 0.557 0.625 0.570 0.577 0.609 0.626

PIAE(KL)

β-VAE

Improved
β-VAE

DIP-VAE

FactorVAE

AnaVAE

PIAE(MI)

(a) Gender (b) Brightness (c) Smiling

Figure 3: Latent factors learned in CelebA dataset. The pictures are generated by varying a component of the inferred code of
a selected input image. Each figure grid shows the variation of the similar factors, and each row shows the samples generated by
the same method. The models learn to disentangle factors including gender (a), the skin brightness (b) and the smiling of the face
(c). The pictures are best viewed magnified on screen.

seem to confuse brightness with skin color. The difference
between these two factors is subtle in image data. On the
other hand, β-VAE and its variants give almost the identi-
cal sequences in grid (b), and they isolate brightness in a
relatively clear way. They even infer the effect of overexpo-
sure at the end of the sequences. In grid (c), our methods
and DIP-VAE entangle the smiling factor with the factor of
wearing lipsticks. In general, our methods give a comparable
performance in separating disentangled factors.

6 Conclusion
In this paper, we propose our Pairwise Independence Autoen-
coder with the attempt to learn unsupervised disentangled
representation. Our method is motivated by our finding that
attributes in the real-world dataset tend to be pairwise in-
dependent rather than mutually independent. A variant of
the evident lower bound is introduced, which requires the
variational posterior to have a non-negative differential en-
tropy and restricts only marginal distributions. Our proposed

models incorporate the lower bound with the terms of pair-
wise independence. Experiments show that our models can
uncover interpretable factors in the data and give compet-
itive performances as compared with other state-of-the-art
methods. However, we believe not all interpretable factors
are pairwise independent, and some are even correlated. As
shown in Figure 3, some factors are jointly represented by
one code; correlated factors may not be disentangled with
the independence prior without supervised signal. Further-
more, the pairwise independence assumption may not be fully
satisfied in real-world data. Therefore, we will explore the
potential learning methods with a more general assumption.
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