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Abstract

Aspect-level sentiment classification (ASC) aims at identify-
ing sentiment polarities towards aspects in a sentence, where
the aspect can behave as a general Aspect Category (AC)
or a specific Aspect Term (AT). However, due to the espe-
cially expensive and labor-intensive labeling, existing pub-
lic corpora in AT-level are all relatively small. Meanwhile,
most of the previous methods rely on complicated structures
with given scarce data, which largely limits the efficacy of
the neural models. In this paper, we exploit a new direction
named coarse-to-fine task transfer, which aims to leverage
knowledge learned from a rich-resource source domain of
the coarse-grained AC task, which is more easily accessible,
to improve the learning in a low-resource target domain of
the fine-grained AT task. To resolve both the aspect granular-
ity inconsistency and feature mismatch between domains, we
propose a Multi-Granularity Alignment Network (MGAN).
In MGAN, a novel Coarse2Fine attention guided by an aux-
iliary task can help the AC task modeling at the same fine-
grained level with the AT task. To alleviate the feature false
alignment, a contrastive feature alignment method is adopted
to align aspect-specific feature representations semantically.
In addition, a large-scale multi-domain dataset for the AC
task is provided. Empirically, extensive experiments demon-
strate the effectiveness of the MGAN.

Introduction
Aspect-level sentiment classification (ASC) aims to infer
sentiment polarities over aspect categories (AC) or aspect
terms (AT) distributed in sentences (Pang, Lee, and others
2008; Liu 2012). An aspect category implicitly appears in
the sentence, which describes a general category of the enti-
ties. For example, in the sentence “The salmon is tasty while
the waiter is very rude”, the user speaks positively and nega-
tively towards two aspect categories “food” and “service”,
respectively. An aspect term characterizes a specific entity
that explicitly occurs in the sentence. Considering the same
sentence “The salmon is tasty while the waiter is very rude”,
the aspect terms are “salmon” and “waiter”, and the user
expresses positive and negative sentiments over them, re-
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spectively. In terms of the aspect granularity, the AC task
is coarse-grained while the AT task is fine-grained.

To model aspect-oriented sentiment analysis, equipping
Recurrent Neural Networks (RNNs) with the attention
mechanism has become a mainstream approach (Tang et
al. 2015; Wang et al. 2016; Ma et al. 2017; Chen et al.
2017), where RNNs aim to capture sequential patterns and
the attention mechanism is to emphasize appropriate context
features for encoding aspect-specific representations. Typi-
cally, attention-based RNN models can achieve good per-
formance only when large corpora are available. However,
AT-level datasets require the aspect terms to be comprehen-
sively manually labeled or extracted by sequence labeling
algorithms from the sentences, which is especially costly to
obtain. Thus, existing public AT-level datasets are all rela-
tively small, which limits the potential of neural models.

Nonetheless, we observe that plentiful AC-level corpora
are more easily accessible. This is because that aspect cate-
gories are usually in a small set of general aspects that can be
pre-defined. For example, commercial services such as re-
view sites or social media can define a set of valuable aspect
categories towards products or events in a particular domain
(e.g., “food”, “service”, “speed”, and “price” in the Restau-
rant domain). As a result, the mass collections of user pref-
erences towards different aspect categories become practica-
ble. Motivated by this observation, we propose a new prob-
lem named coarse-to-fine task transfer across both domain
and granularity, with the aim of borrowing knowledge from
an abundant source domain of the coarse-grained AC task to
a small-scale target domain of the fine-grained AT task.

The challenges in fulfillment of this setting are two-fold:
(1) task discrepancy: the two tasks concern with the aspects
with different granularity. Source aspects are coarse-grained
aspect categories, which lack a priori position information
in the context. However, target aspects are fine-grained as-
pect terms, which have accurate position information. Thus,
inconsistent granularity in aspects causes the discrepancy
between tasks; (2) feature distribution discrepancy: gener-
ally the domains in the two tasks are different, which causes
the distribution shift for both the aspects and its context be-
tween domains. For example, in the source Restaurant do-
main, tasty and delicious are used to express positive senti-
ment towards the aspect category “food”, while lightweight
and responsive often indicate positive sentiment towards the
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aspect term “mouse” in the target Laptop domain.
To resolve the challenges, we propose a novel framework

named Multi-Granularity Alignment Network (MGAN) to
simultaneously align aspect granularity and aspect-specific
feature representations across domains. Specifically, the
MGAN consists of two networks for learning aspect-specific
representations for the two domains, respectively. First, to
reduce the task discrepancy between domains, i.e., model-
ing the two tasks at the same fine-grained level, we pro-
pose a novel Coarse2Fine (C2F) attention module to help
the source task automatically capture the corresponding as-
pect term in the context towards the given aspect category
(e.g., “salmon” to the “food”). Without any additional label-
ing, the C2F attention module can learn the coarse-to-fine
process by an auxiliary task. Actually, more specific aspect
terms and their position information are most directly perti-
nent to the expression of sentiment. The C2F module makes
up these missing information for the source task, which ef-
fectively reduces the aspect granularity gap between tasks
and facilitates the subsequent feature alignment.

Second, considering that a sentence may contain multiple
aspects with different sentiments, thus capturing incorrect
sentiment features towards the aspect can mislead feature
alignment. To prevent false alignment, we adopt the Con-
trastive Feature Alignment (CFA) (Motiian et al. 2017) to
semantically align aspect-specific representations. The CFA
considers both semantic alignment by maximally ensuring
the equivalent distributions from different domains but the
same class, and semantic separation by guaranteeing distri-
butions from both different classes and domains to be as dis-
similar as possible. Moreover, we build a large-scale multi-
domain dataset named YelpAspect with 100K samples for
each domain to serve as highly beneficial source domains.
Empirically, extensive experiments demonstrate that the pro-
posed MGAN model can achieve superior performances on
two AT-level datasets from SemEval‘14 ABSA challenge
and an ungrammatical AT-level twitter dataset.

Our contributions of this paper are four-fold: (1) to the
best of our knowledge, a novel transfer setting cross both do-
main and granularity is first proposed for aspect-level senti-
ment analysis; (2) a new large-scale, multi-domain AC-level
dataset is constructed; (3) the novel Coarse2Fine attention
is proposed to effectively reduce the aspect granularity gap
between tasks; (4) empirical studies verify the effectiveness
of the proposed model on three AT-level benchmarks.

Related Work
Traditional supervised learning algorithms highly depend
on extensive handcrafted features to solve aspect-level sen-
timent classification (Jiang et al. 2011; Kiritchenko et al.
2014). These models fail to capture semantic relatedness be-
tween the aspect and its context. To overcome this issue,
the attention mechanism, which has been successfully ap-
plied in many NLP tasks (Bahdanau, Cho, and Bengio 2014;
Sukhbaatar et al. 2015; Yang et al. 2016; Shen et al. 2017),
can help the model explicitly capture intrinsic aspect-context
association (Tang et al. 2015; Tang, Qin, and Liu 2016;
Wang et al. 2016; Ma et al. 2017; Chen et al. 2017;
Ma, Peng, and Cambria 2018; Li et al. 2018a). However,

most of these methods highly rely on data-driven RNNs or
tailor-made structures to deal with complicated cases, which
requires substantial AT-level data to train effective neural
models. Different from them, the proposed model can highly
benefit from useful knowledge learned from a related abun-
dant domain of the AC-level task.

Existing domain adaptation tasks for sentiment analysis
focus on traditional sentiment classification without consid-
ering the aspect (Blitzer, Dredze, and Pereira 2007; Pan et al.
2010; Glorot, Bordes, and Bengio 2011; Chen et al. 2012;
Bollegala, Weir, and Carroll 2013; Yu and Jiang 2016;
Li et al. 2017; 2018b). In terms of data scarcity and the
value of task, transfer learning is more urgent for aspect-
level sentiment analysis that characterizes users‘ different
preferences. To the best of our knowledge, only a few stud-
ies have explored to transfer from a single aspect category
to another in a same domain based on adversarial train-
ing (Zhang, Barzilay, and Jaakkola 2017). Different from
that, we explore a motivated and challenging setting which
aims to transfer cross both aspect granularity and domain.

Multi-Granularity Alignment Network
In this section, we introduce the proposed MGAN model.
We first present the problem definition and notations, fol-
lowed by an overview of the model. Then we detail the
model with each components.

Problem Definition and Notations
Coarse-to-fine task transfer Suppose that we have suf-
ficient AC-level labeled data Xs={(xs

k,a
s
k), y

s
k}

Ns

k=1 in a
source domain Ds, where ysk is the sentiment label for the
k-th sentence-aspect pair (xs

k,a
s
k). Besides, only a small

amount of AT-level labeled data Xt={(xt
k′ ,atk′), ytk′}N

t

k′=1 is
available in a target domainDt. Note that each source aspect
ask belongs to a set of pre-defined aspect categories C while
each target aspect atk′ is a sub-sequence of xt

k′ , i.e., aspect
term. The goal of this task is to learn an accurate classifier
to predict the sentiment polarity of target testing data.

An Overview of the MGAN model
The goal of the MGAN aims to transfer from a rich-resource
source domain of an AC task to facilitate a low-resource tar-
get domain of an AT task. The architecture of the proposed
MGAN is shown in Figure 1. Specifically, the MGAN con-
sists of two networks for tackling the two aspect-level tasks
respectively. To reduce the task discrepancy, the two net-
works contain different numbers of attention hops such that
they can keep a consistent granularity and the symmetric in-
formation towards the aspect. In MGAN, two basic hop units
are used similarly as common attention-based RNN models,
where the Context2Aspect (C2A) attention aims to measure
the importance of each aspect word and generate the as-
pect representation with the aid of each context word, and
the Position-aware Sentiment (PaS) attention utilizes the ob-
tained aspect representation and the position information of
the aspect to capture relevant sentiment features in the con-
text for encoding the aspect-specific representation.
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Figure 1: The architecture of the Multi-Granularity Alignment Network (MGAN) model.

Moreover, we build a Coarse2Fine (C2F) attention upon
the C2A module to specifically model the source aspect be-
fore feeding to the PaS module. The C2F module uses the
source aspect representation to attend corresponding aspect
terms in the context and then the attended context features
is conversely predicted the category of the source aspect
(pseudo-label). After obtaining aspect-specific representa-
tions, the knowledge transfer between the two tasks is via
the contrastive feature alignment. In summary, the source
network acts as a “teacher”, which consists of three-level
attention hops (C2A+C2F+PaS) for the AC task, while the
target network is like a “student” that only uses two basic
attention hops (C2A+PaS) for the AT task. In the following
sections, we introduce each component of MGAN in details.

Bi-directional LSTM layer
Given a sentence-aspect pair (x, a) from the source or
target domain, we assume that the sentence consists of
n words, i.e., x={w1, w2, ..., wn}, and the aspect con-
tains m words, i.e., a={wa

1 , w
a
2 , ..., w

a
m}. Then we map

them into its embedding vectors e={ei}ni=1∈Rn×dw and
ea={eaj }

m

j=1
∈Rm×dw respectively. To capture phrase-level

sentiment features in the context (e.g., “not satisfactory”),
we employ a Bi-directional LSTM (Bi-LSTM) to preserve
the contextual information for each word of the input sen-
tence. The Bi-LSTM transforms the input e into the con-
textualized word representations h={hi}ni=1∈Rn×2dh (i.e.
hidden states of Bi-LSTM). For simplicity, we denote the
operation of an LSTM unit on ei as LSTM(ei). Thus, the
contextualized word representation hi∈R2dh is obtained as

hi = [
−−−−→
LSTM(ei);

←−−−−
LSTM(ei)], i∈ [1, n], (1)

where “;” denotes the vector concatenation.

Context2Aspect (C2A) Attention
Not all aspect words contribute equally to the semantic of the
aspect. For example, in the aspect term “techs at HP”, the
sentiment is usually expressed over the headword “techs”
but seldom over modifiers like the brand name “HP”. Thus,

“techs” is more important than “at” and “HP”. This also ap-
plies to the aspect category (e.g., “food seafood fish”). Thus,
we propose the Context2Aspect (C2A) attention to measure
the importance of the aspect words with regards to each con-
text word. Formally, we calculate a pair-wise alignment ma-
trix M ∈ Rn×m between the context and the aspect, where
the alignment score M(i, j) between the i-th context word
and the j-th aspect word is obtained as

M(i, j) = tanh(Wa[hi; e
a
j ] + ba), (2)

where Wa and ba are learnable parameters. Then, we apply
a row-wise softmax function to get probability distributions
in each row. By defining δ(i)∈Rm as the individual aspect-
level attention given the i-th context word, we average all
the δ(i)’s to get the C2A attention as α= 1

n

∑n
i=1 δ(i). The

C2A attention further contributes the context-aware aspect
representation by ha

∗=
∑m

j=1 αje
a
j , where ∗∈{s, t} denotes

the source or target domain. We tackle the aspect represen-
tation ha

∗ for the two tasks differently, where ha
s is fed to the

C2F module while ha
t is directly fed to the PaS module.

Coarse2Fine (C2F) Attention
Aspect terms, which act as the true “opinion entity”, are the
most directly pertinent to the expression of sentiment. How-
ever, source task concerns with coarse-grained aspect cate-
gories that lack of detailed position information in the con-
text. We wish to achieve task alignment such that the tar-
get task can leverage more useful knowledge learned from
the source task at the same fine-grained level. It is observed
that the number of source aspects is much smaller and many
instances contain same aspect category, but the underlying
entities can behave diversely in different contexts. For ex-
ample, the aspect category “food seafood fish” can be in-
stantiated as “salmon”, “tuna”, “taste” and etc.

Based on this observation, we can capture more specific
semantics of the source aspect and its position information
conditioned on its context. Motivated by autoencoders (Ben-
gio et al. 2007), we introduce an auxiliary pseudo-label pre-
diction task for the source task. In this task, a source as-
pect as is not only regarded as a sequence of aspect words,
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but also as a pseudo-label (category of the aspect) yc, where
c ∈ C and C is a set of aspect categories. We utilize the ob-
tained aspect representation ha

s for as to attend the context
and then the induced attention scores aggregate the context
information to conversely predict the pseudo category label
of as itself. If the context contains the aspect term correlated
closely to the source aspect, then the attention mechanism
can emphasize it for better prediction. We denote this mech-
anism as Coarse2Fine attention, which is calculated as:

zfi =(uf )
T tanh(Wf [hi;h

a
s ] + bf ), (3)

βf
i =

exp(zfi )∑n
i′=1 exp(z

f
i′)
, (4)

va =

n∑
i=1

βf
i hi, (5)

where Wf ∈Rdu×(2dh+de), bf ∈Rdu and uf ∈Rdu are the
weights of the layer. We feed the attended representation va

to a softmax layer for the auxiliary task prediction, which
is trained by minimizing the cross-entropy loss between the
predicted pseudo-label ŷck and its ground-truth yck as:

Laux = − 1

Ns

Ns∑
k=1

∑
c∈C

yck log ŷ
c
k. (6)

However, there may not exist corresponding aspect term
when the context implicitly expresses a sentiment toward
the aspect category. To overcome this issue, similar to the
gate mechanism in RNN variants (Jozefowicz, Zaremba, and
Sutskever 2015), we adopt a fusion gate F to adaptively con-
trols the passed proportions of ha

s and va towards a more
specific source aspect representation ras :

F = sigmoid(W[va;ha
s ]+b), (7)

ras = F� ha
s + (1− F)�W′va, (8)

where W∈Rde×(de+2dh) and b∈Rde are the weights of the
gate, W′∈Rde×2dh performs dimension reduction, and �
denotes element-wise multiplication.

Position-aware Sentiment (PaS) Attention
Following an important observation found in (Tang, Qin, and
Liu 2016; Chen et al. 2017) that a closer sentiment word is
more likely to be the actual modifier of the aspect term (e.g.,
in “great food but the service is dreadful”, “great” is more
closer to “food” than “service”), we take the position infor-
mation of the aspect term into consideration for designing
the PaS attention. For the target domain, we adopt a proxim-
ity strategy to calculate the target position relevance between
the i-th context word and aspect term as follows:

pti =

 1− m0−i
n

i < m0

0 m0 ≤ i ≤ m0 +m

1− i−(m0+m)
n

i > m0 +m
, (9)

where m0 is the index of the first aspect word, n and m are
the length of the sentence and aspect, respectively.

Unfortunately, in the source domain where aspect cate-
gory is given, the exact position of the corresponding aspect
term is not directly accessible. Instead, the C2F attention
vector βf ∈ Rn, indicating the probability of each context
word being an aspect term, can help establish the position

relevance. We first define a location matrix L∈Rn×n to rep-
resent the proximity of each word in the sentence:

Lii′ =1− |i− i
′|

n
, i, i′∈ [1, n]. (10)

Then we calculate the source position relevance for i-
th context word with the aid of C2F attention weights by
psi = Liβ

f . Obviously, the i-th context word closer to a pos-
sible aspect term with a large value in βf will have a larger
position relevance psi . Finally, the PaS attention is calculated
by a general form for both domains:

zoi =(uo)
T tanh(Wo[hi; r

a
∗] + bo), (11)

γo
i =

exp(p∗i z
o
i )∑n

i′=1 exp(p
∗
i′z

o
i′)
, (12)

vo =

n∑
i=1

γo
i hi, (13)

where p∗i is the position relevance and ra∗ is the input as-
pect representation, with ∗∈{s, t} denoting the source or
target domain (note that rat = ha

t ). Then we pass the aspect-
specific representation vo to a fully-connected layer and
a softmax layer for sentiment classification. The sentiment
classification tasks for both domain are trained by minimiz-
ing two cross-entropy losses Ls

sen and Lt
sen, respectively.

Contrastive Feature Alignment
After obtaining aspect-specific representations of two do-
mains at the same granularity, we would further bridge
the distribution gap across domains. The prevalent unsu-
pervised domain adaptation methods (Gretton et al. 2007;
Ganin et al. 2016) require enormous unlabeled target data
to achieve satisfactory performances, which is impractical
in our problem where collecting unlabeled data needs labor-
intensive annotations of all aspect terms in the sentences.
Therefore, inspired by (Motiian et al. 2017), we perform
Contrastive Feature Alignment (CFA) by fully utilizing the
limited target labeled data to semantically align representa-
tions across domains. Mathematically, we parameterize the
two networks by gs and gt, and denote the probability dis-
tribution by P. Specifically, the CFA consisits of semantic
alignment (SA) and semantic separation (SS). The SA aims
to ensure identical distributions of feature representations
P(gs(Xs)) and P(gt(Xt)) conditioned on different domains
but the same class, while the SS further alleviates false align-
ment by guaranteeing P(gs(Xs)) and P(gt(Xt)) to be as
dissimilar as possible conditioned on both different domains
and classes. Considering that only a small amount of target
labeled data is available, we revert the CFA characterizing
distributions with enough data to pair-wise surrogates as:

Lcfa=
∑
k,k′

ω(gs(x
s
k,a

s
k), gt(x

t
k′ ,atk′)), (14)

where ω(·, ·) is a contrastive function that performs semantic
alignment or separation in terms of supervised information
from both domains. Formally, ω(·, ·) is defined as:

ω(u,v)=

{
‖u−v‖2 if ysk = ytk′ ,
max(0, D−‖u−v‖2) if ysk 6= ytk′ ,

(15)

where D is a parameter dictating the degree of separation
and is set to 1 in our experiments.
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Alternating Training
Combining the losses we introduced before together with
a `2 regularization, we constitute the overall losses for the
source and target networks as:

Lsrc = Ls
sen + Laux + λLcfa + ρLs

reg, (16)

Ltar = Lt
sen + λLcfa + ρLt

reg, (17)
where λ, ρ balance the effect of the CFA loss and the `2 reg-
ularization loss, respectively. The source network has one
more auxiliary loss Laux compared with the target one to
achieve task alignment. The whole training procedure con-
sists of two stages: (1) To prevent early overfitting of the
target domain, the source network S is individually trained
on the source domain by optimizing Ls

sen + Laux + ρLs
reg.

Then, S and the BiLSTM, C2A, and PaS modules of S
are used to initialize the source and target networks of the
MGAN, respectively. (2) We alternately optimize Lsrc for
the source network and Ltar for the target network.

Experiments
Datasets
Source: AC-level We build a large-scale, multi-domain
dataset named YelpAspect as source domains, which is ob-
tained similarly as the Yelp recommendation dataset (Bau-
man, Liu, and Tuzhilin 2017). Specifically, YelpAspect con-
tains three domains: Restaurant (R1), Beautyspa (B), and
Hotel (H). The statistics of the YelpAspect dataset are sum-
marized in Table 1. Yelp reviews are collected in US cities
over six years. Aspect categories and sentiment labels are
identified by the “industrial-strength” Opinion Parser (OP)
system (Qiu et al. 2011; Liu 2015). To be consistent with
the target domain datasets, YelpAspect is preprocessed in
the sentence level by OP, while the dataset in (Bauman,
Liu, and Tuzhilin 2017) is in the document level. More-
over, we manually double-check to correct wrong annota-
tions produced by OP system and purposely select more
negation, contrastive and question instances to make it more
challenging. The dataset is available at https://github.com/
hsqmlzno1/MGAN.

Source domain #Pos #Neu #Neg #Asp

Restaurant (R1) Train 46,315 45,815 16,020 68Test 5,207 4,944 1,743

Beautyspa (B) Train 45,770 42,580 16,023 45Test 5,056 4,793 1,823

Hotel (H) Train 40,775 36,901 20,864 44Test 4,418 4,048 2,450

Table 1: The YelpAspect dataset. #Asp denotes the number
of aspect categories.

Target: AT-level For target domains, we use three public
benchmark datasets: Laptop (L), Restaurant (R2) and Twit-
ter (T). The Laptop and Restaurant are from SemEval’14
ABSA challenge (Kiritchenko et al. 2014) by removing a
few examples which have “conflict labels” as done in (Chen
et al. 2017). The Twitter dataset is collected by (Dong et al.
2014), containing ungrammatical twitter posts. Table 2 sum-
marizes the statistics of the target domain datasets.

Target Domain #Pos #Neu #Neg

Laptop (L) Train 980 454 858
Test 340 171 128

Restaurant (R2) Train 2,159 632 800
Test 730 196 195

Tweets (T) Train 1,567 3,127 1,563
Test 174 346 174

Table 2: Statistics of the target domain datasets.

Experimental Setup
To evaluate our proposed method, we construct eight coarse-
to-fine transfer tasks: R1→L, H→L, B→L, H→R2, B→R2,
R1→T, H→T, B→T, where we do not use the pair (R1, R2)
as they come from the same domain. For each transfer pair
Ds→Dt, the training data from domain Ds and randomly
sampled 90% training data from domain Dt are used for
training, the rest 10% training data from Dt is used for vali-
dation, and the testing data fromDt is used for testing. Eval-
uation metrics are Accuracy and Macro-Average F1, where
the latter is more suitable for imbalanced datasets.

Implementation Details
The word embeddings are initialized with 200-dimension
GloVE vectors (Pennington, Socher, and Manning 2014)
and fine-tuned during the training. de, dh, du are set to be
200, 150 and 100, respectively. The fc layer size is 300. The
Adam (Kingma and Ba 2014) is used as the optimizer with
the initial learning rate 10−4. Gradients with the `2 norm
larger than 40 are normalized to be 40. All weights in net-
works are randomly initialized from a uniform distribution
U(−0.01, 0.01). The batch sizes are 64 and 32 for source
and target domains, respectively. The control-off factors λ, ρ
are set to be 0.1 and 10−6. To alleviate overfitting, we apply
dropout on the word embeddings of the context with dropout
rate 0.5. We also perform early stopping on the validation set
during the training process. The hyperparameters are tuned
on 10% randomly held-out training data of the target domain
in R1→L task and are fixed to be used in all transfer pairs.

Baseline Methods
The baseline methods are divided into two groups:
Non-Transfer To demonstrate the benefits from coarse-to-
fine task transfer, we compare with the following state-of-
the-art AT-level methods without transfer:

• TD-LSTM (Tang et al. 2015): It employs two LSTMs to
model the left and right contexts of the aspect and then
concatenates the context representations for prediction.

• AE-LSTM, and ATAE-LSTM (Wang et al. 2016): AE-
LSTM is a simple LSTM model incorporating the aspect
embedding as input, while ATAE-LSTM extends AE-
LSTM with the attention mechanism.

• MemNet (Tang, Qin, and Liu 2016): it applies a memory
network with multi-hops attentions and predicts sentiment
based on the top-most context representations.

• IAN (Ma et al. 2017): It adopts two LSTMs to learn the
representations of the context and the aspect interactively;
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Model L R2 T
Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Baselines

AE-LSTM (Wang et al. 2016) 68.97 62.50 76.25 64.32 69.42 56.28
ATAE-LSTM (Wang et al. 2016) 68.65 62.45 77.23 64.95 69.58 56.72

TD-LSTM (Tang et al. 2015) 68.18 62.28 75.63 64.16 66.62 64.01
IAN (Ma et al. 2017) 72.10 - 78.60 - - -

MemNet (Tang, Qin, and Liu 2016) 70.33 64.09 78.16 65.83 68.50 66.91
RAM (Chen et al. 2017) 72.08 68.43 78.48 68.54 69.36 67.30

Base Model TN 70.58 65.34 77.91 65.75 71.68 71.02
Average results over each target domain

Ablated Models MGAN w/o PI 72.98 67.71 78.99 66.41 72.88 71.57
MGAN w/o C2F 74.80 69.63 80.46 67.86 73.53 72.37

Full Model MGAN 76.21†‡ 71.42†‡ 81.49†‡ 71.48†‡ 74.62†‡ 73.53†‡

Table 3: Experimental results (%). The marker † refers to p-value < 0.05 when comparing with MGAN w/o C2F , while the
marker ‡ refers to p-value < 0.05 when comparing with RAM.

• RAM (Chen et al. 2017): It employs multiple attentions
with a GRU cell to non-linearly combine the aggregation
of word features in each layer.

• Target Network (TN): It is our proposed base model
(BiLSTM+C2A+Pas) trained on Dt for the target task.

For IAN, we report the results in the original paper and use
the source codes of other methods for experiments.

Transfer To investigate the effectiveness of the CFA ,
we also compare the following transfer methods:
• Source-only (SO): It uses a source network trained onDs

to initialize a target network and then tests it on Dt.
• Fine-tuning (FT): It advances SO with further fine-

tuning the target network on Dt.
• M-DAN: It is a multi-adversarial version of Domain Ad-

versarial Network (DAN) (Ganin et al. 2016) based on
multiple domain discriminators. All discriminators are
built upon the PaS layers of the two networks, each of
which aligns one class distribution between domains.

• M-MMD: Similar with M-DAN, M-MMD aligns differ-
ent class distributions between domains based on multi-
ple Maximum Mean Discrepancy (MMD) (Gretton et al.
2007). For each MMD, following the (Bousmalis et al.
2016), we use a linear combination of 19 RBF kernels
with the width parameters ranging from 10−6 to 106.

The original DAN and MMD are unsupervised domain
adaptation methods. Thus, for fair comparison, we use the
source code of DAN and MMD, and extend them to M-DAN
and M-MMD that utilize target supervised information and
have higher performances, respectively.

Result Analysis
Comparison with Non-Transfer Note that we are the first
to explore transfer techniques and achieve the best perfor-
mances in this task. Thus, it is necessary to show our im-
provements over current superior non-transfer methods. The
classification results are shown in Table 3. The results of our
full model and its ablations are calculated by averaging over
each target domain among eight transfer pairs (e.g., R2 is ob-
tained by averaging over H→R2 and B→R2). Based on the

Acc SO FT M-DAN M-MMD MGAN w/o SS MGANMacro-F1

R1→L 69.80 74.80 75.74 75.90 77.00 77.62
67.05 69.84 71.13 70.95 71.31 72.26

B→L 70.27 71.99 72.46 74.02 74.49 75.74
66.84 67.13 68.69 69.36 69.94 71.65

H→L 70.74 72.77 75.43 73.71 74.02 75.27
67.89 67.75 71.40 69.16 69.31 70.34

B→R2 72.90 79.16 79.96 81.31 81.84 81.66
64.36 66.78 68.73 70.54 71.80 71.72

H→R2 72.36 80.59 79.87 79.87 80.95 81.31
62.48 69.57 69.19 67.58 70.57 71.24

R1→T 46.39 72.83 72.11 73.41 73.41 75.00
45.74 72.10 70.69 72.52 72.76 74.00

B→T 46.39 72.25 72.98 73.27 73.27 74.00
45.62 70.30 71.88 72.34 71.79 72.87

H→T 47.40 71.82 72.55 73.27 73.99 74.86
46.71 70.05 71.07 72.11 72.32 73.73

Average 62.03 74.53 75.13 75.60 76.12 76.93†

58.34 69.19 70.33 70. 57 71.23 72.23†

Table 4: Experimental results (%). The marker † refers to
p-value < 0.05 when comparing with MGAN w/o SS.

table, we have the following observations: (1) Our full model
MGAN consistently and significantly achieves the best re-
sults in all target domains, outperforming the strongest base-
line RAM by 4.13%, 3.58%, 5.26% for accuracy and 2.99%,
2.94% and 6.23% for Macro-F1 on average. Our base model
TN that does not utilize the knowledge from the source
task, can only compete against with the baselines. It could
be more convincing that the MGAN can achieve superior
performances even with a simple model for the target task.
This also indicates that the efficacy of MGAN benefits from
leveraging useful knowledge learned from the source task.
(2) MGAN consistently outperforms the MGAN w/o C2F,
where C2F module of the source network is removed and
the source position information is missed (we set all psi to
1), by 1.41%, 1.03%, 1.09% for accuracy and 1.79%, 3.62%
and 1.16% for Macro-F1 on average. This is because that
the C2F can effectively reduce the aspect granularity gap
between tasks such that more useful knowledge can be dis-
tilled to facilitate the target task. (3) Position information is
crucial for aspect-level sentiment analysis. The MGAN w/o
PI, which does not utilize the position information, performs
very poorly.
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Figure 2: Visualization of attention: MGAN versus MGAN w/o C2F in the R1→L task. Deeper color denotes higher weights.

Figure 3: Associated aspect terms towards different aspect
categories captured by C2F attention in the R1→L task.

Comparison with Transfer To avoid the effect of aspect
granularity gap, all these models keep the C2F module. The
compared results are shown in Table 4. SO performs poorly
due to no adaptation applied. The popular technique FT can-
not achieve satisfactory results since fine-tuning may cause
the oblivion of useful knowledge from the source task. The
full model MGAN outperforms M-DAN and M-MMD by
1.80% and 1.33% for accuracy and 1.90% and 1.66% for
Marco-F1 on average, respectively. We derive two possible
reasons: First, enormous target data is unavailable since it is
hard to obtain, thus, it may be insufficient to represent tar-
get distributions by limited target labeled data for the distri-
bution alignment based methods; Second, M-DAN and M-
MMD focus on the semantic alignment but ignore semantic
separation. Remarkably, MGAN considers both of them in a
point-wise surrogate, which altogether improves the perfor-
mance of our method. Besides, MGAN outperforms its ab-
lation MGAN w/o SS removing the semantic separation loss
of the CFA by 0.81% for accuracy and 1.00% for Macro-F1
on average, which implies that the semantic separation plays
an important role in alleviating false alignment.

Effect of C2F Attention Module

We now give some illustrated examples to show the effect of
C2F for solving aspect granularity inconsistency, by com-
paring MGAN and MGAN w/o C2F. Some hard cases con-
taining multiple sentiment-aspect paris in the R1→L task are
shown in Figure 2. In the source domain R1, both models
first utilize the C2A to attend the informative part of the as-
pect category, e.g., “cheese”, “seafood sea” and “cuisine”,
which are representatives for each aspect. Then, compared
with MGAN w/o C2F, MGAN further uses C2F to capture
more specific aspect terms from the context towards the as-
pect category, such as “shells” to food seafood sea, which
helps the source task capture more fine-grained semantics
of aspect category and detailed position information like the
target task, such that the sentiment attention can be position-
aware and identify more relevant sentiment features towards
the aspect. For example, in the (a) and (c), the user expresses
a positive sentiment over food food cheese but a negative at-
titude towards restaurant cuisine (cuisine means a style of
cooking especially as a characteristic of a particular country
or region). MGAN captures the regional words for the cook-
ing style, i.e., “italian place” towards restaurant cuisine and
the related n-gram sentiment feature “fake junk” instead of
the “not the fake junk” for the “ricotta cheese”, and finally
makes a correct prediction, which helps distill more useful
knowledge for subsequent feature alignment. While MGAN
w/o C2F locates wrong sentiment contexts and fails in (c).
As such, benefited from distilled knowledge from the source
task, MGAN can better model the complicated relatedness
between the context and aspect term for the target domain
L, but MGAN w/o C2F performs poorly though it make true
predictions in (d) and (e). Moreover, as shown in Figure 3,
we list some samples of captured associated aspect terms to-
wards different aspect categories based on the highest C2F
attention weight. These underlying aspect terms make the
source task more correlated to the target task.
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Conclusion and Future Work
In this paper, we explore a motivated direction for aspect-
level sentiment classification named coarse-to-fine task
transfer and build a large-scale YelpAspect dataset as highly
beneficial source benchmarks. A novel MGAN model is pro-
posed to solve both aspect granularity inconsistency and do-
main feature mismatch problems, and achieves superior per-
formances. Moreover, there are many other potential direc-
tions, like transferring between different aspect categories
across domains, transferring to a AT-level task where the as-
pect terms are also not given and need to be firstly identified.
We believe all these can help improve the ASC task and there
will be more effective solutions coming in the near future.
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