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Abstract

Evolutionary multitasking is a significant emerging search
paradigm that utilizes evolutionary algorithms to concur-
rently optimize multiple tasks. The multi-factorial evolution-
ary algorithm renders an effectual realization of evolution-
ary multitasking on two or three tasks. However, there re-
mains room for improvement on the performance and ca-
pability of evolutionary multitasking. Beyond three tasks,
this paper proposes a novel framework, called the symbio-
sis in biocoenosis optimization (SBO), to address evolution-
ary many-tasking optimization. The SBO leverages the notion
of symbiosis in biocoenosis for transferring information and
knowledge among different tasks through three major com-
ponents: 1) transferring information through inter-task indi-
vidual replacement, 2) measuring symbiosis through inter-
task paired evaluations, and 3) coordinating the frequency
and quantity of transfer based on symbiosis in biocoenosis.
The inter-task individual replacement with paired evaluations
caters for estimation of symbiosis, while the symbiosis in bio-
coenosis provides a good estimator of transfer. This study ex-
amines the effectiveness and efficiency of the SBO on a suite
of many-tasking benchmark problems, designed to deal with
30 tasks simultaneously. The experimental results show that
SBO leads to better solutions and faster convergence than the
state-of-the-art evolutionary multitasking algorithms. More-
over, the results indicate that SBO is highly capable of identi-
fying the similarity between problems and transferring infor-
mation appropriately.

1 Introduction
Evolutionary algorithms (EAs) (Holland 1975; Goldberg
1989; Schwefel 1995) have shown their great capability of
tackling search and optimization problems. Inspired from
Darwinian evolution theory (Darwin 1859), EAs mimic nat-
ural evolution to search for the optimal solutions by ma-
nipulating a population of candidate solutions. There have
been various EAs proposed for different problems (Eiben
and Smith 2003; Gen and Cheng 1997). In EA, a population
of individuals evolves for searching the optimal solution,
where a solution is encoded as chromosome, and the fitness
implies the quality of a solution. The principle of “survival
of the fittest” drives the population towards better and opti-
mal solutions.
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Evolutionary multitasking introduces the new concept of
simultaneously solving multiple problems through a single
run of EA (Gupta, Ong, and Feng 2016). The multi-factorial
evolutionary algorithm (MFEA) has proved effective at real-
izing evolutionary multitasking by leveraging the synergy of
fitness landscapes among different problems. By regarding
each problem as a task, MFEA seeks the optima for all tasks
in a unified decision space, where the search space of mul-
tiple problems are unified by a transformation function. The
solution information of different tasks is exchanged through
skill factor and mating. MFEA has achieved several promis-
ing results in dealing with two or three tasks. However, there
exists room for improving EAs in multitasking.

This paper aims to address three issues at evolutionary
multitasking. First, information transfer plays a crucial role
in solving multiple tasks concurrently. In MFEA, informa-
tion is transferred through recombination of individuals that
are good at some specific tasks under the user-defined ran-
dom mating probability (rmp). Nevertheless, MFEA does
not control the rmp during evolution; that is, it lacks a mech-
anism for controlling the quantity and frequency of informa-
tion transfer. Second, MFEA is inapplicable to the model-
based EAs, such as estimation of distribution algorithm
(Hauschild and Pelikan 2011) and ant colony optimization
(Dorigo, Maniezzo, and Colorni 1996), in that these EAs
seldom adopt recombination of individuals. The information
transfer among tasks is therefore disabled. Third, evolution-
ary multitasking is focused on two or three tasks, whereas
concurrently solving more tasks is highly desirable but has
not been investigated yet. In particular, appropriate transfer
becomes even harder as the number of tasks increases due to
the squared number

(
m
2

)
of possible transfers. Therefore, the

increase of tasks intensifies the importance of balancing the
exploitation within a task and the exploration among multi-
ple tasks.

This paper proposes a novel framework for evolutionary
multitasking, called the symbiosis in biocoenosis optimiza-
tion (SBO), which manipulates multiple EAs and each one is
responsible for a task. In SBO, the collection of EA popula-
tions constitutes the biocoenosis, while the transfer of infor-
mation between populations caters to the symbiosis. Specifi-
cally, the inter-task individual replacement is proposed for
information transfer; hence, SBO enables the use of EAs
without recombination for evolutionary multitasking. For
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measuring the symbiosis, we combine the inter-task individ-
ual replacement with paired evaluations. Furthermore, SBO
controls the quantity and frequency of information transfer
through symbiosis to balance exploitation within single task
and exploration between different tasks. The effectiveness
of SBO is verified on the suite of many-tasking problems
(MaTPs), in which each problem comprises 30 test func-
tions of CEC 2017 competition. A series of experiments is
conducted on the MaTPs to investigate the effects and ad-
vantages of SBO in evolutionary many-tasking.

The main contributions of this study are summarized as
follows:
• A novel framework SBO for evolutionary multitasking.
• Three features of SBO: transferring information through

inter-task individual replacement, measuring symbiosis
through inter-task paired evaluations, and coordinating
the frequency and quantity of transfer based on symbiosis
in biocoenosis.

• Empirical study on the effectiveness and efficiency of
SBO, in comparison with single-task optimization and
multitask optimization methods.

• Comprehensive analysis of transfer behavior for SBO and
MFEA.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work about evolutionary multi-
tasking. Section 3 elucidates the proposed SBO framework
and its components. Section 4 presents the experimental re-
sults. Finally, we draw conclusions in Section 5.

2 Related Work
Evolutionary multitasking establishes a new class of EAs ca-
pable of solving multiple problems simultaneously. MFEA
is a renowned EA for evolutionary multitasking (Gupta et
al. 2017; Gupta, Ong, and Feng 2018; Ong and Gupta 2016;
Strasser et al. 2016). MFEA utilizes a single population for
optimizing multiple tasks. The main ideas behind MFEA are
the designs of scalar fitness serving as a unified fitness func-
tion for survival selection and the assortative mating opera-
tor for information transfer. The skill factor of an individual
represents the task index with the best rank over all tasks,
while the scalar fitness is the reciprocal of the rank of the
most talented task. The assortative mating operator performs
crossover in two cases: the two parents have the same skill
factor or the predefined random mating probability (rmp)
is met. The offspring generated by crossover operator ran-
domly imitates the skill factor from either parent, whereas
the offspring perturbed only by mutation operator inherits
the skill factor. A newly generated offspring is evaluated
only on the task of the skill factor. It is worth noting that
assortative mating supports transfer of information between
different tasks. When the number of tasks m increases, the
frequency of information transfer will gradually change to
the predefined rmp owing to the decreasing probability 1/m
of selecting individuals with the same skill factor.

MFEA has been applied to a variety of applications. Wen
and Ting (2016) adopted the concept of MFEA on genetic
programming for building ensemble of decision trees. Gupta

Biocoenosis
Species A Species F

Species B

Species C Species D

Species E
Symbiosis

Figure 1: An illustration of SBO framework

et al. (2015) incorporated a nested bi-level EA into MFEA
for tackling bi-level optimization problems. Sagarna and
Ong (2016) used MFEA to solve the software testing prob-
lems. Chandra et al. (2016) utilized MFEA to optimize the
architecture and parameters of feed forward neural network.
Zhou et al. (2016) adopted MFEA on a combinatorial opti-
mization problem, i.e., the capacitated vehicle routing prob-
lem. In (Gupta et al. 2016b), MFEA tackled multi-objective
optimization problem by treating two performance metrics
for multi-objective optimization problem, i.e., the nondomi-
nated front and crowding distance, as different tasks.

Some studies focus on improving or analyzing the ef-
fect of transfer. The synergy of fitness landscapes affects
the effectiveness and efficiency of MFEA. That is, a bet-
ter movement in decision space for one task can be good
for the other task. Gupta et al. (2016a) analyzed the syn-
ergy of fitness landscapes on some test functions. Wen and
Ting (2017) designed a parting ways strategy based on the
survival rate of transferred individuals; such strategy aims
at terminating information transfer between tasks if transfer
is useless. Li et al. (2018) enabled multiple rmp to deter-
mine the frequency of transfer, where each rmp is adapted
according to the survival rate after genetic transfer. Cheng et
al. (2017) applied the scheme of co-evolution to evolution-
ary multitasking, yet the performance is similar to MFEA
in bi-tasking test problems. Ding et al. (2017) improved
the transfer mechanism in MFEA by learning the decision
space transformation, including the location and permuta-
tion of decision vector. Feng et al. (2018) proposed transfer-
ring knowledge through task mapping, where the mapping is
learnt by a denoising autoencoder. Some studies utilize the
transfer from past experience or knowledge. In (Feng et al.
2015), a memetic search paradigm was proposed by incor-
porating EA with transfer learning. Specifically, the knowl-
edge is learnt as memes from past solved problems and then
used to guide the search of EA. Feng et al. (2017) incor-
porated EA with knowledge from past experiences, namely,
the solutions from the other tasks for improving the search
efficacy.

Recent studies suggest using island model or multiple
populations for evolutionary multitasking. Hashimoto et
al. (2018) presented an island model with two populations
for evolutionary multitasking. Liaw and Ting (2017) pro-
posed a multi-population based method, called the evolution
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Algorithm 1 Symbiosis in biocoenosis optimization
EAi: EA for ith task
τi: ith task
λi: Offspring size of ith task
m: number of tasks

1: for i← 1 to m do
2: Initialize EAi for τi
3: end for
4: {M,N , C,O,P,A} ← 1 . Initialize symbiosis
5: Update transfer ratesRi,j . Algorithm 3
6: while Not terminated do
7: for i← 1 to m do
8: Ofspi ←Variation (EAi) . Generate offspring
9: end for

10: for i← 1 to m do
11: j ← argmax

k∈{1,...,m|k 6=i}
Ri,k . Transferred task

12: Ri ← Ri,j . Transfer rate
13: if Rand (0,1) <Ri then
14: Si ← bRi · λic . Transfer quantity
15: for k ← 1 to Si do
16: Ofspi,λi−Si+k ← Ofspj,k
17: end for
18: Evaluate (Ofspi,τi)
19: Survive (EAi)
20: end if
21: end for
22: Update symbiosis . Algorithm 2
23: Update transfer rates . Algorithm 3
24: end while

of biocoenosis through symbiosis (EBS), in which the trans-
ferees are randomly selected from all offspring.

3 Symbiosis in Biocoenosis Optimization
This study proposes a novel framework SBO for evolution-
ary many-tasking. Inspired from the symbiosis in the bio-
coenosis, SBO enables multiple populations, each of which
is associated with an EA (see Fig. 1). The transfer of in-
formation among all tasks constitutes symbiosis. Restated,
SBO considers the pairwise correlation between tasks when
selecting transferees, and further enables adaptive control
over the transfer frequency and the number of transferees.
The SBO holds three main features: 1) information trans-
fer through inter-task individual replacement, 2) symbiosis
estimation via paired evaluations, and 3) adaptive control
of transfer frequency and quantity based on the measure of
symbiosis.

The proposed SBO framework is presented in Alg. 1.
Given m tasks to be solved concurrently, SBO manipulates
m EAs for the m tasks. In each iteration, the m EAs trans-
fer information according to the transfer rates, determined
by the degree of symbiosis among them. In SBO, the unit
of information to transfer is individual, more precisely, the
offspring. The information transfer in SBO relies on off-
spring replacement and paired evaluations. After survival se-
lection, the update of symbiosis (Alg. 2) and transfer rates

Algorithm 2 Update of symbiosis
m: number of tasks

1: for i← 1 to m do
2: for each c ∈ Ofspi do
3: j ← task(c) . Belonging task
4: if i 6= j then . Transfer occurs
5: UpdateM, N , C, O, P , and A by (10).
6: end if
7: end for
8: end for

Algorithm 3 Update of transfer rates
m: number of tasks
Ri,j : transfer rate from task τj to task τi

1: for i← 1 to m do
2: for j ← 1 to m and j 6= i do
3: T pos

i,j ←Mi,j +Oi,j + Pi,j
4: T neg

i,j ← Ai,j + Ci,j
5: T neu

i,j ← Ni,j
6: Ri,j ← T pos

i,j / (T
pos
i,j + T neg

i,j + T neu
i,j )

7: end for
8: end for

(Alg. 3) are alternately performed as per transferred individ-
uals. SBO can be viewed as an island-model EA because it
manipulates several EAs in the course of evolution. In par-
ticular, SBO features adaptive control over the transfer (mi-
gration) rate, transfer frequency, and selection of transferees.
Moreover, SBO does not require to predetermine the migra-
tion topology (ring, grid, etc.)—the topology is formed au-
tomatically and adaptively in the SBO.

3.1 Analogues of Symbiosis and Biocoenosis
In a biocoenosis, the symbiosis defines the effects of inter-
action between two species. Table 1 lists the six main types
of symbiosis in a biocoenosis. These six types of symbiosis
are determined according to two unidirectional influences
of two species with three cases, i.e., beneficial, neutral, and
harmful. A species is defined to be beneficial / neutral /
harmful to the other species if such species has positive /
no / negative effect to the other species. Two species are in
mutualism (M), neutralism (N ), or competition (C) if they
are beneficial, neutral, or harmful to each other, respectively.
On the other hand, if a species A is beneficial to the other
species B, the facts that the species B is neutral or harmful
to the species A result in different symbiosis. The relation
of species A to species B forms commensalism (O) for the
former case, and parasitism (P) for the latter case. In the last
type of symbiosis, the amensalism (A) comes from the situ-
ation that a species A is neutral to the other species B, while
the species B is harmful to the species A.

The symbiosis in biocoenosis can be a good analogue of
information transfer in evolutionary multitasking. As afore-
mentioned, SBO comprises multiple EAs, each of which is
responsible for a task. The populations of different tasks
form species, and the information transfers among EAs re-

4297



Table 1: Six types of symbiosis in biocoenosis, including
mutualism (M), commensalism (O), parasitism (P), neu-
tralism (N ), amensalism (A), and competition (C)

Interaction Species A
Benefit Neutral Harm

Species B
Benefit M O P
Neutral O N A
Harm P A C

flect symbiosis. In addition, this study uses implicit measure
of symbiosis through individuals because explicit measure
requires landscapes analysis, which is computationally ex-
pensive. Hence, this study defines the meaning of beneficial,
neutral, and harmful from an individual to a task.
Definition 1 (Beneficial). An individual c is said to be ben-
eficial to a task τ if c’s fitness is at task τ ’s top BN ranking,
denoted by

c � τ , (1)
where N represents the population size, and B is the benefi-
cial factor.
Definition 2 (Harmful). An individual c is defined to be
harmful to a task τ if c’s fitness is at task τ ’s bottom HN
ranking, expressed by

c ≺ τ , (2)
whereH stands for the harmful factor.
Definition 3 (Neutral). An individual c is defined to be neu-
tral to a task τ if c is neither beneficial nor harmful to task
τ , denoted as:

c ≈ τ . (3)
According to the above three relations between a solution

to a task, we can define the six types of symbiosis, i.e., mutu-
alism, neutralism, competition, commensalism, parasitism,
and amensalism.
Definition 4 (Mutualism). Any two tasks τi 6= τj are re-
garded as having mutualism with respect to an individual c
if such individual is beneficial to both of the tasks,

c � τ i and c � τ j . (4)

Similar concept can be extended to symbiosis of neutral-
ism and competition.
Definition 5 (Neutralism). Any two tasks τi 6= τj are re-
garded as having neutralism with respect to an individual c
if such individual is neutral to both of the tasks,

c ≈ τ i and c ≈ τ j . (5)

Definition 6 (Competition). Any two tasks τi 6= τj are re-
garded as having competition with respect to an individual
c if such individual is harmful to both of the tasks,

c ≺ τ i and c ≺ τ j . (6)

Aside from the above symmetric relations, the other three
types of symbiosis are asymmetric; that is, an individual has
different effects to two tasks.

Definition 7 (Commensalism). A task τi to the other task
τj forms commensalism if there is an individual c which is
beneficial to τi, and neutral to τj ,

c � τ i and c ≈ τ j . (7)

Definition 8 (Parasitism). A task τi to the other task τj
forms parasitism if there is an individual c which is bene-
ficial to τi, but harmful to τj ,

c � τ i and c ≺ τ j . (8)

Definition 9 (Amensalism). A task τi to the other task τj
forms amensalism if there is an individual c which is harmful
to τi, but neutral to τj ,

c ≺ τ i and c ≈ τ j . (9)

As per the above six types of symbiosis, this study ap-
proximates the degree of symbiosis (Alg. 2) by counting the
number of times these conditions are satisfied:

Mi,j ←Mi,j + 1 c � τi, c � τj ,
N i,j ← N i,j + 1 c ≈ τi, c ≈ τj ,
Ci,j ← Ci,j + 1 c ≺ τi, c ≺ τj ,
Oi,j ← Oi,j + 1 c � τi, c ≈ τj ,
Pi,j ← Pi,j + 1 c � τi, c ≺ τj ,
Ai,j ← Ai,j + 1 c ≈ τi, c ≺ τj ,

(10)

whereM,N , C,O, P , andAmaintain the degrees of mutu-
alism, neutralism, competition, commensalism, parasitism,
and amensalism, respectively. Through the degree of sym-
biosis, transfers between different tasks can be measured as
having positive, neutral, or negative effect.

3.2 Transfer Strategy
Rather than directly measuring the symbiosis between two
tasks, this study leverages individuals to estimate the degree
of symbiosis. The unit of transfer in SBO framework is an
individual. Given two tasks τi , and τj , and assume that τi
accepts the transfer from τj . When the inter-task individ-
ual replacement occurs, a portion Si of offspring of τi is
replaced by the offspring of τj :

Ofspi,λi−Si+k ← Ofspj,k k ∈ {1, ..., Si}, (11)

where λi denotes the offspring size of task τi. Paired eval-
uations of the two tasks are applied on these transferees,
and the paired evaluations will serve as the basis for mea-
suring the degree of symbiosis (10). Note that offspring are
transferred before they are evaluated; in addition, the trans-
ferred offspring will replace the same amount of offspring in
the target population. Therefore, the total number of fitness
evaluations remains the same, and SBO does not require ad-
ditional evaluations. Based on the degree of symbiosis, SBO
controls the information transfer adaptively.

3.3 Coordinating Information Transfer
Algorithm 3 is the procedure of updating the transfer rates.
Given the ith task τi, transfers with positive effect (T pos

i,j )
from the other tasks τj include mutualism Mi,j , commen-
salism Oi,j and parasitism Pi,j , while transfers with neg-
ative effect (T neg

i,j ) are composed of amensalism Ai,j and
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Table 2: Parameter setting

Parameter Value

Problem size (d) 100
#Evaluations 104d
Pop. and ofsp. sizes (GA) (50m, 50m)
Pop. and ofsp. sizes (CMAES) (17m, 34m)
Beneficial factor (B) 0.25
Harmful factor (H) 0.50

competition Ci,j . The transfers with neutral effect (T neu
i,j )

are from neutralism Ni,j . The transfer rate ought to be pro-
portional to the transfers with positive effect; therefore, the
transfer rateRi,j from τj to τi is defined by

Ri,j ← T pos
i,j / (T

pos
i,j + T neg

i,j + T neu
i,j ). (12)

The transfer rate plays an important role in the control of
transferring information. It determines 1) the task of individ-
uals to be transferred, 2) the transfer frequency, and 3) the
transfer quantity. First, each task τi selects transferees from
the task that has the highest transfer rate, denoted byRi. The
transfer frequency for task τi is determined by Ri. If trans-
fer occurs, the transfer quantity Si for τi is then calculated
by

Si ← bRi · λic . (13)

In this way, SBO is capable of adaptively controlling the
transfer frequency and quantity.

4 Experimental Results
This study investigates the performance of the proposed
SBO using GA (SBGA) and CMAES (Hansen 2006) (SBC-
MAES), in comparison with MFEA (Gupta, Ong, and Feng
2016) and EBS (Liaw and Ting 2017) on four MaTPs (cf.
Sec. 4.1). The experiments examine the solution quality and
convergence speed of the proposed method. This study fur-
ther looks into the behaviors of MFEA and SBO methods
in the course of evolution through the analysis of transfer
among tasks.

Table 2 lists the parameter setting used in the following
experiments. The beneficial and harmful factors are set to
0.25 and 0.50, respectively. The setting of MFEA follows
the use of simulated binary crossover, polynomial mutation,
and rmp set to 0.3 in (Gupta, Ong, and Feng 2016). The
population size is set to 50m to better handling the many-
tasking benchmarks. All experiments run over 30 trials due
to the stochastic nature of EAs. Significant analysis is done
by using Wilcoxon-Mann-Whitney U -test with level of sig-
nificance α = 0.05.

4.1 Many-tasking Benchmark Problems
This study presents a test suite based on the benchmark
functions of CEC 2017 competition (Awad et al. 2016;
Liaw and Ting 2017). A many-tasking problem (MaTP) is
composed of 30 benchmark functions, including 3 unimodal,
7 simple multi-modal, 10 hybrid, and 10 composite func-
tions, and each function is regarded as a task. By adjusting

the positions of optimal solutions of all tasks, there are four
MaTPs labeled as MaTPZ for zero shift, MaTPS for small
shift, MaTPM for medium shift, and MaTPL for large shift
of the positions of optimal solutions, and the four MaTPs
correspond to four shift ranges: 1) zero (no) shift, 2) small
shift U(−1, 1), 3) medium shift U(−5, 5), and 4) large shift
U(−10, 10) at each dimension between any two test func-
tions, where U denotes uniform distribution. The similarity
among tasks decreases from MaTPZ to MaTPL.

4.2 Solution Quality and Convergence
This study examines the significance of difference in so-
lution quality through non-parametric significance analysis.
Table 3 lists results of Wilcoxon-Mann-Whitney U -test with
level of significance α = 0.05 for GA, CMAES, MFEA,
EBSGA, EBSCMAES, SBGA, and SBCMAES on the four
MaTP benchmarks. The SBGA outperforms GA on most
test functions, validating that the SBO framework can im-
prove the solution quality of GA. As for CMAES, SBC-
MAES acquires significantly better results than CMAES
on 27, 24, 19, and 12 test functions in MaTPZ, MaTPS,
MaTPM, and MaTPL, respectively. Note that the decrease
in the number of better results respond to the increase in
the shift of optimal solutions. Comparing the performance
of MFEA and SBGA, SBGA achieves better solution qual-
ity than MFEA does on 29, 21, 15, and 11 test functions in
MaTPZ, MaTPS, MaTPM, and MaTPL, respectively. Ad-
ditionally, SBCMAES excels MFEA on all test functions in
all four MaTPs. In comparison of SBO and EBS, SBGA per-
forms better than EBSGA does on MaTPs, MaTPM, and
MaTPL; moreover, SBCMAES outperforms EBSCMAES
on the four MaTPs except two functions in MaTPL. These
results indicate that the proposed SBO framework can effec-
tively improve single-task methods (GA and CMAES) and
prevail multitask optimization methods (MFEA and EBS)
on many-tasking problems with varied similarities among
tasks.

Figure 2 compares the variation of fitness values during
evolution for GA, CMAES, MFEA, EBSGA, EBSCMAES,
SBGA and SBCMAES on the four MaTP benchmarks. Due
to the space limitation we illustrate only one function for
each type. The SBCMAES achieves fastest convergence on
all four MaTPs, and the SBGA gains faster convergence
speed than GA and MFEA on MaTPZ, MaTPS, MaTPM,
and composite function in MaTPL. Likewise, SBGA con-
verges faster than EBSGA does on unimodal, multi-modal,
and hybrid functions in MaTPS, MaTPM, and MaTPL.
These results validate the nice convergence of the proposed
SBO framework.

4.3 Effect on Transfers
In this study, we use survival rates to examine the utility
of information transfer. Figure 3 compares the variation of
survival rates of transferred and non-transferred individuals
during evolution in MFEA, SBGA, and SBCMAES on the
four MaTP benchmarks. The SBGA and SBCMAES both
have higher survival rates of transferred individuals than
MFEA does. The survival rate of transferred individuals in
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Table 3: The numbers of functions that the former is superior / equal / inferior to the latter with significance

SBGA SBGA SBGA SBCMAES SBCMAES SBCMAES
GA MFEA EBSGA CMAES MFEA EBSCMAES

MaTPZ 30 / 0 / 0 29 / 1 / 0 0 / 1 / 29 27 / 3 / 0 30 / 0 / 0 11 / 19 / 0
MaTPS 22 / 8 / 0 21 / 7 / 2 15 / 12 / 3 24 / 0 / 6 30 / 0 / 0 25 / 5 / 0
MaTPM 17 / 10 / 3 15 / 14 / 1 16 / 7 / 7 19 / 10 / 1 30 / 0 / 0 20 / 10 / 0
MaTPL 8 / 21 / 1 11 / 16 / 3 16 / 11 / 3 12 / 16 / 2 30 / 0 / 0 17 / 11 / 2
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Figure 2: Variation of fitness values in the course of evolution for GA, CMAES, MFEA, SBGA, and SBCMAES on the four
MaTP benchmarks

SBCMAES is higher than that of non-transferred individu-
als during most of the evolution on MaTPZ, MaTPS, and
MaTPM. On MaTPL, the survival rate of transferred indi-
viduals in SBCMAES is lower than that of non-transferred
individuals. Such phenomenon is caused by the adaptation

mechanism of transfer rates (cf. Sec. 4.4). By contrast, the
survival rate of transferred individuals in MFEA is smaller
than that of non-transferred individuals on the four MaTP
benchmarks.

Furthermore, Figs. 4 and 5 plot the variation of positive
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Figure 3: Variation of survival rates of transferred and non-
transferred individuals during evolution

and negative transfer rates for transferees in MFEA, SBGA,
and SBCMAES, respectively. SBCMAES achieves highest
positive transfer rate and lowest negative transfer rate. SBC-
MAES and SBGA both gain higher positive transfer rates
and lower negative transfer rates than MFEA does on the
four MaTPs. These results validate that SBO framework has
better mechanism for transfer than MFEA.

4.4 Adaptation of Transfers
Figure 6 further shows the variation of total transfer rate,
i.e., the sum of positive, negative, and neutral transfer rates,
in the course of evolution. The total transfer rate in SBGA
decreases during evolution owing to the decrease of positive
transfer. Similar trend can be found in SBCMAES; more-
over, SBCMAES endures the total transfer rate in a high
level in the MaTPZ due to its high rate of positive trans-
fer in high similarity many-tasking problem. On the other
hand, the total transfer rate in MFEA stays at relatively high
level in the course of evolution on the four MaTPs, reflect-
ing that MFEA fails to respond to environmental changes for
different problems.

5 Conclusions
Evolutionary multitasking is an emerging topic. Previous
research concentrated on resolving problems with a small
number of tasks concurrently. Enlarging the number of tasks
intensifies the importance and need for appropriately trans-
ferring information among tasks. This study proposes a
novel framework SBO for evolutionary many-tasking. From
the inspiration of symbiosis in the biocoenosis, SBO con-
siders the interaction of multiple populations. In SBO, each
EA is responsible for a task, and the transfer of informa-
tion among tasks brings about symbiosis. SBO has three
main components: transferring information through inter-
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Figure 4: Variation of positive transfer rates for transferees
during evolution
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Figure 5: Variation of negative transfer rates for transferees
during evolution

task individual replacement, measuring symbiosis through
inter-task paired evaluations, and coordinating the transfer
frequency and quantity based on symbiosis in biocoenosis.

The efficacy of the proposed SBO is validated on a set of
many-tasking problems (MaTPs) with four different shifts of
optima, i.e., the MaTPZ, MaTPS, MaTPM, and MaTPL.
The results have shown that the proposed SBO achieves the
best solution quality and convergence speed, in compari-
son with conventional single-task optimization methods and
state-of-the-art multitask optimization methods. Analysis on
the effect of transfer demonstrates the advantages of SBO
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Figure 6: Variation of total transfer rate during evolution.
The square, circle, triangle, and diamond symbols represent
the rates on MaTPZ, MaTPS, MaTPM, and MaTPL, re-
spectively.

framework over MFEA. More specifically, the SBO can ap-
propriately manipulate the transfer frequency and quantity.

Some directions remain for future work. For example,
concurrent optimization of homogeneous and even hetero-
geneous problems can be considered. Incorporating different
EAs into SBO is also promising.
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