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Abstract

The study of consumer psychology reveals two categories of
consumption decision procedures: compensatory rules and
non-compensatory rules. Existing recommendation models
which are based on latent factor models assume the con-
sumers follow the compensatory rules, i.e. they evaluate an
item over multiple aspects and compute a weighted or/and
summated score which is used to derive the rating or ranking
of the item. However, it has been shown in the literature of
consumer behavior that, consumers adopt non-compensatory
rules more often than compensatory rules. Our main contri-
bution in this paper is to study the unexplored area of utilizing
non-compensatory rules in recommendation models.
Our general assumptions are (1) there are K universal hid-
den aspects. In each evaluation session, only one aspect is
chosen as the prominent aspect according to user preference.
(2) Evaluations over prominent and non-prominent aspects
are non-compensatory. Evaluation is mainly based on item
performance on the prominent aspect. For non-prominent as-
pects the user sets a minimal acceptable threshold. We give
a conceptual model for these general assumptions. We show
how this conceptual model can be realized in both point-
wise rating prediction models and pair-wise ranking predic-
tion models. Experiments on real-world data sets validate that
adopting non-compensatory rules improves recommendation
performance for both rating and ranking models.

Introduction
The majority of state-of-the-art recommendation models are
based on latent factor models. Generally, latent factor mod-
els transform both user preferences and item features into the
same hidden feature spaces with K aspects. To recover the
observations (i.e. ratings or rankings) in any recommender
system, they adopt the inner products of the user preferences
and the item features. There are fruitful applications of latent
factor models in rating predictions (Koren, Bell, and Volin-
sky 2009; Koren 2010; Lee et al. 2014) and ranking recon-
structions (Rendle et al. 2009; Steck 2015; Zhao et al. 2018;
Shi, Larson, and Hanjalic 2010).

From the perspective of consumer decision making, all
existing latent factor models fall into the category of com-
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pensatory rules. Under compensatory rules a consumer eval-
uates an item over all relevant aspects. A good performance
on one aspect of an item compensates for poor performances
on other aspects. For example, there are concerns about three
aspects: battery life, price and storage space when Alice
wants to buy a cellphone. A compensatory rule to evaluate
a cellphone is to score its performance on each aspect sepa-
rately and compute a weighted summation over all aspects.

However, in the study of human choice behavior, it is well
regarded that consumers more frequently make consumption
related choices based on non-compensatory rules (Engel,
Blackwell, and Miniard 1986). For example, (Hauser, Ding,
and Gaskin 2009) reviews 132 empirical surveys in the liter-
ature and concludes that more than 70% of consumers adopt
non-compensatory rules when buying air-conditioners, au-
tomobiles, computers, cameras and so on.

Non-compensatory rules do not allow the shortcomings of
a product to be balanced out by its attractive features. The
literature has proposed different non-compensatory rules,
among which lexicographic rule and conjunctive rule are
the most commonly used. For example, in a survey inter-
viewing consumption decisions about beer brands and fast-
food outlets (Laroche, Kim, and Matsui 2003), conjunctive
rule has a success rate of 62.0% in predicting brand consid-
eration and lexicographic rule has a success rate of 34.6%
which is the second highest non-compensatory rule. We next
illustrate lexicographic rule and conjunctive rule by the cell-
phone example in Table 1.

Example. Lexicographic rule assumes that aspects of
products can be ordered in terms of importance and alterna-
tive brands are evaluated sequentially from the most promi-
nent to the least prominent aspects. If Alice’s priority is
long-lasting battery, then she will adopt lexicographic rule to
rank phones first based on battery life. In this case Honor and
iPhone will be ranked higher than Galaxy. The other benefits
offered by Galaxy do not outweigh her desire for a long-life
battery. Conjunctive rule establishes a minimally acceptable
threshold for each aspect. Evaluation is made on the basis
of whether or not the products satisfy the threshold. If Al-
ice wants the phone to be cheap and with plenty of storage
space, then she will adopt conjunctive rule to set thresholds
(e.g. 600$ and 64GB on the corresponding aspects). In this
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case, iPhone fails to meet the cut-off point, thus it will not
outrank Honor. In either case, adopting a compensatory rule
based recommendation model is problematic.

Table 1: A cellphone example to illustrate non-
compensatory rules.

Item Prominent aspect Non-prominent aspects
Battery life Price Memory

iPhone SE 13 hours 700$ 64GB
Galaxy S8 9 hours 500$ 128GB
Honor 10 24 hours 589$ 128GB

Current computer support for non-compensatory rules
is to manually control the rules in decision support sys-
tems (Lee 2009), e.g. consumers are asked to specify the
threshold for an aspect of interest. Such manual approaches
are labor costly and difficult to set up and maintain. On
the contrary, learning models such as latent factor mod-
els (Koren, Bell, and Volinsky 2009) have the advantage of
scalability, simplicity and flexibility. Unfortunately, to the
best of our knowledge, no previous effort has been devoted
to building learning to recommend models based on non-
compensatory rules.

Our goal in this paper is to study this unexplored area
of how learning models can benefit from non-compensatory
rules. Two challenges need to be addressed. (1) How to em-
bed symbolic non-compensatory rules in a data-driven learn-
ing framework? (2) How to build a general framework based
on non-compensatory rules in a manner that complies with a
variety of existing recommendation models, including rating
prediction and ranking aware models?

Our primary contribution is to propose a conceptual
model of how users adopt non-compensatory rules in recom-
mender systems. Our assumptions are based on the lexico-
graphic and conjunction rules. We assume that, (1) there are
K− hidden aspects which user preferences and item features
are transformed into, (2) in each evaluation session, the user
picks a prominent aspect according to his/her preference, (3)
the user adopts different evaluation strategies on prominent
and non-prominent aspects. The evaluation is mainly based
on item performance on the prominent aspect. The evalua-
tion is less influenced by item performance with respect to
non-prominent aspects.

Our second contribution is to realize the conceptual model
in a wide range of recommendation frameworks, including
point-wise rating prediction models such as the conventional
Matrix Factorization (MF (Koren, Bell, and Volinsky 2009)),
Matrix Factorization with neighborhood collaborative filter-
ing (AMF (Koren 2008)), and local low-rank matrix approx-
imation (LLORMA (Lee et al. 2016)), and pairwise rank-
ing reconstruction models such as the Bradley-Terry model
(BT (Hu and Li 2016)) and Thurstone model (BPR (Rendle
et al. 2009)).

We conduct comprehensive experiments on a variety of
real world data sets. We experimentally show that the pro-
posed non-compensatory framework universally improves
recommendation performances of different existing models.

The paper is organized as follows. We start with sur-

veying the most commonly adopted latent factor models.
We show that previous research work is based on compen-
satory rules. Next, we present a conceptual model based
on non-compensatory rules and realize it in different exist-
ing models. Then, we experimentally show that the non-
compensatory modifications outperform the original ver-
sions of existing models on a variety of real-world data sets.
Finally we conclude our work.

Compensatory Recommendation Models
In this section, we show that existing latent factor mod-
els can be categorized based on the forms of rating predic-
tion formulas and loss functions. Table 2 summarizes typ-
ical related work. We restrict our discussions to latent fac-
tor models, i.e. models where a universe of K factors is
used to project user preferences and item features. Hereafter,
unless stated otherwise, we use lower-case letters for in-
dices, upper-case letters for universal constants, lower-case
bold-face letters for vectors and upper-case bold-face letters
for matrices. Specifically, X ∈ RM×N denotes the rating
matrix, X̂ ∈ RM×N denotes the predicted rating matrix,
p,q ∈ RK denotes the item features, which are rows of
item space V ∈ RN×K , u ∈ RK denotes the user prefer-
ences, which is a row of the user space U ∈ RM×K . U,V
are components of the model parameters Θ = {U,V}.

Rating Prediction Formulas
One goal of recommendation research is to recover the rat-
ing matrix X, by minimizing a rating aware loss function
L(Θ), which is usually defined as the regularized square loss
between the predicted rating X̂u,q and the observed rating
Xu,q for each user u who has rated item q.

L(Θ) =
∑
u,q

(Xu,q − X̂u,q)
2 + λU‖U‖22 + λV ‖V‖22 (1)

We list three most successful rating prediction formulas for
X̂.

Matrix Factorization. In conventional Matrix Factoriza-
tion (MF) (Koren, Bell, and Volinsky 2009), the predicted
rating can be computed as an inner product of user prefer-
ences and item features as follows.

X̂u,q =

K∑
k=1

qkuk (2)

For simplicity we ignore the user specific or item specific
bias (Koren, Bell, and Volinsky 2009). A massive amount
of techniques have been proposed based on Equ. 2. Most of
them modified the loss function, e.g. by incorporating prior
distributions over p,u (Salakhutdinov and Mnih 2008),
adding priors over unknown values (Devooght, Kourtellis,
and Mantrach 2015), weighing different samples (Pilászy,
Zibriczky, and Tikk 2010) and so on.

Neighborhood Factorization. In traditional memory
based collaborative filtering strategies, neighborhood infor-
mation has been proved to be useful. It is possible to incor-
porate such neighborhood information in latent factor mod-
els. Instead of directly modeling user preferences u, each

4305



Table 2: Existing latent factor models in literature can be classified based on the loss functions and rating prediction formulas.

Loss Function Rating Prediction Formula
Matrix Factorization Neighborhood Factorization Local Low-rank Factorization

Square Loss MF (Koren, Bell, and Volinsky 2009) AMF (Koren 2008) LLORMA (Lee et al. 2016)
Thurstone Ranking BPR (Rendle et al. 2009) FSBPR (Zhao et al. 2018) LCR (Lee et al. 2014)

BT Ranking BT (Hu and Li 2016) - -

user is represented by items that he/she gives explicit or im-
plicit feedback. For example, if we consider explicit feed-
back only, then each item is associated with two types of
vectors p,q, where q is its own feature vector and p is an
auxiliary vector for each of its neighboring items. The rat-
ing prediction formula of Asymmetric Matrix Factorization
(AMF) in (Koren 2008) is:

X̂u,q =

K∑
k=1

qk(
∑

p∈R(u)

pk/
√
|R(u)|), (3)

where R(u) is the set of rated items for u. AMF has been
extended to SVD++ (Koren 2008) with implicit feedback.

Local Low-Rank Matrix Approximation. The third
type of rating prediction formula is Local Low-Rank Ma-
trix Approximation (LLORMA) (Lee et al. 2016). Instead
of assuming the entire rating matrix X is low-rank, the in-
tuition of LLORMA is that only a sub-matrix is low-rank.
The sub-matrix is restricted to a neighborhood. Therefore,
the predicted rating is aggregated over S sub-matrices:

X̂u,q =

S∑
t=1

K∑
k=1

ut,k
K((ut, it), (u,q))∑S
s=1K((us, is), (u,q))

qt,k, (4)

where ut,qt are the factorized user preferences and item
features in the t−th sub-matrix, is, it are anchor points in
the corresponding matrix to locate a neighborhood for low-
rank decomposition, K(·) is a smoothing kernel.

Ranking Models
Another goal of recommendation research is to reveal the
observed rankings. We here consider pair-wise rankings
p �u q, which indicates user u prefers item p over q. The
pair-wise rankings can be generated from pre-processing the
ratings, i.e. Xu,p ≥ µ,Xu,q < µ (Hu and Li 2017), or
from explicit and implicit feedback, i.e. Xu,p 6= 0 and Xu,q

doesn’t exist (Rendle et al. 2009).
Thurstone Model. The Thurstone model (Thurstone

1927) is widely used in recommendation systems. It uses a
non-linear transformation of the predicted ratings X̂ to com-
pute the probability of pair-wise rankings Pr(p �u q) .

Pr(p �u q) =
1

1 + exp[−(X̂u,p − X̂u,q)]
(5)

Thurstone models usually aim to reconstruct pair-wise
personalized ranking by minimizing a negative Bayesian
posterior function L(Θ) (Rendle et al. 2009).

L(Θ) = −
∑
u

∑
p,q I(p �u q) logPr(p �u q) (6)

+λU‖U‖22 + λV ‖V‖22,

where I(p �u q) is an indicator function of whether or not
the preference is observed.

Bradley-Terry Model. Another extensively studied
model for learning to rank is Bradley-Terry model (Hunter
2004), which generates ranking pairs by a division:

Pr(p �u q) =
X̂u,p

X̂u,p + X̂u,q

, (7)

where X̂u,p is the predicted rating by MF. The objective of
BT model is the negative log-likelihood logPr(p �u q) on
all observations:

L(Θ) = −
∑
u

∑
p,q

I(p �u q) logPr(p �u q). (8)

There are other variants of loss functions. For example,
penalty terms of the L2-norm of U,V, as well as the dif-
ferences between X̂ and X are added in an improved BT
model (Hu and Li 2016).

The list is by no means exclusive. However, we believe
that most of existing recommender systems are covered. It is
worthy to point out that (1) we do not restrict the form of loss
functions. For example, many ranking approaches consider
Bayesian maximum posterior, cross entropy and other forms
of loss functions. Nevertheless, the core ranking model is ei-
ther BT or Thurstone. (2) Although we only study pair-wise
ranking , the conclusion is insightful for other ranking-aware
systems, i.e. point-wise and list-wise approaches. The reason
is that, as shown in (Steck 2015), point-wise and list-wise
loss functions can be decomposed into components which
are directly based on each score X̂u,q and components that
are not related to X̂. Thus our proposed strategy in the next
section is also applicable to point-wise and list-wise ranking
models. (3) As the key component X̂u,q is based on compen-
satory rules, all existing latent factor models are essentially
compensatory.

Non-Compensatory Recommendation Models
We begin this section by reviewing the findings in consumer
psychology study. We proceed to present a general frame-
work for modeling the psychological assumptions about
non-compensatory rules. We show the universality of the
proposed framework by realizing it in different rating pre-
diction formulas and ranking models.

We can see that non-compensatory rules differ from com-
pensatory rules in two key points. (1) Distinguished fac-
tors. In compensatory rules, different factors are essentially
equivalent, while in non-compensatory rules factors are not
interchangeable. (2) Distinguished evaluation metrics on
each factor. In compensatory rules, the evaluations on each
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factor follow the same framework (i.e. a product of user pref-
erence and item feature on the specific factor), while in non-
compensatory rules, the evaluations on each factor are dis-
similar.

For computational convenience, inspired by the psycho-
logical findings, we present the conceptual model in Fig. 1
based on lexicographic and conjunction rules. We assume
that in each evaluation session (i.e. either a true user interac-
tion session with multiple actions, or a pseudo session with
one rating action), there is a prominent aspect. The choice
of the prominent aspect is dependent on the user prefer-
ences. Two types of evaluation strategies are adopted, one
for the prominent aspect and the other for non-prominent
aspects. Evaluation on the prominent aspect is enhanced by
strength coefficient θ. Evaluations on non-prominent aspects
are based on item performance, compared with the user-
specific aspect-specific threshold bu. The overall evaluation,
which could be either a rating or a ranking, aggregates over
prominent and non-prominent aspects.

User

Prominent Aspect

Evaluation on
Non-prominent Aspects

Evaluation on
Prominent Aspect

Overall Evaluation

Preference u
Strength θ User-defined Threshold bu

Figure 1: Conceptual model for the user evaluation process

Non-Compensatory Rating Prediction Formulas
Given user preference vector u, in each evaluation session,
the hidden prominent aspect is sampled by k ∼ expuk∑

k′ expuk′
.

Evaluation on the prominent aspect is magnified by exp θ.
Evaluation on a non-prominent aspect is denoted as qk −
bu,k. Thus, when the aspect k is chosen, the evaluation of
user u on q is qk exp θ+

∑
k′ 6=k(qk′−bu,k′). The prediction

is generated across all possible hidden prominent aspects.
This gives us the following non-compensatory versions of
rating prediction formulas.

Non-compensatory Matrix Factorization: MF-N

X̂u,q =

K∑
k=1

expuk∑
k′ expuk′

[qk exp θ +
∑
k′ 6=k

(qk′ − bu,k′)]

(9)
Non-compensatory Neighborhood Factorization:

AMF-N implements a similar scheme by setting
uk =

∑
p∈R(u) pk/

√
|R(u)|,

X̂u,q =
∑K
k=1

exp(
∑

p∈R(u) pk)∑
k′ exp(

∑
p∈R(u) pk′ )

(10)

[qk exp θ +
∑
k′ 6=k(qk′ − bu,k′)].

Non-compensatory Local Low Rank Matrix Approx-
imation: LLORMA-N uses the same decomposition for
each sub-matrix.

X̂u,q =
∑S
t=1

∑
k

expuk∑
k′ expuk′

K((ut,it),(u,q))∑S
s=1K((us,is),(u,q))

(11)

[qt,k exp θ +
∑
k′ 6=k(qt,k′ − bu,k′)]

We can see that all these non-compensatory versions are
combinations of lexicographic and conjunction rules, where
exp θ → ∞ indicates that the user adopts lexicographical
rules only. The threshold for a user on an aspect is static
in the sense that bu,k does not change by the nature of the
items.

The model parameters, including U,V, θ,b are learnt
during the training process. To infer the parameters, we em-
ploy the standard gradient descent framework.

Non-Compensatory Ranking Models
Non-compensatory Thurston Model. The modification of
Thurston model is straightforward, as the ranking probabil-
ity involves a subtraction component of X̂u,q which can be
replaced by any non-compensatory version of rating pre-
diction formulas. Note that the user-specific aspect-specific
threshold bu,k cancels between X̂u,p and X̂u,q . Thus the
model parameters consist only Θ = {U,V, θ}.

The inference of BPR-N is straightforward. As the loss
function L(Θ) consists of a term for the log-likelihood
which is denoted by L′, and a penalty term λU‖U‖22 +
λV ‖V‖22, the stochastic gradient descent (SGD) in inference
can also be expressed by two terms ∂L′

∂Θ and λUU + λVV.

Furthermore, ∂L
′

∂Θ =
∑
u

∑
p�uq

∂L′

∂∆X̂u,p,q

∂∆X̂u,p,q

∂Θ , where

∆X̂u,p,q = X̂u,p − X̂u,q . The same procedure is applied
to infer parameters in the non-compensatory versions of FS-
BPR (Zhao et al. 2018) and LCR (Lee et al. 2014).

Non-compensatory Bradley-Terry Model. Finally we
propose BT-N, the non-compensatory version of BT (Hu
and Li 2016). In order to treat prominent and non-prominent
aspects differently, we define the probability of preference
p �u q as the product of factor-wise comparisons. Intu-
itively p outranking q suggests that p is significantly better
on the prominent aspect, and not too bad on non-prominent
aspects. Inspired by a variant of BT model with ties (Hunter
2004), given a hidden prominent aspect k sampled for the
evaluation session, we define the factor-wise ranking prob-
ability on prominent aspect k as pk

pk+θqk
, and ranking prob-

ability on non-prominent aspect k′ as θpk′
qk′+θpk′

. The overall
prediction is aggregated over all possible hidden prominent
aspect k:

Pr(p �u q) =

K∑
k=1

uk[
pk

pk + θqk

∏
k′ 6=k

θpk′

qk′ + θpk′
], (12)

where uk > 0,
∑
k uk = 1,p,q > 0 and θ > 1.

BT-N is also a combination of lexicographic rules and
conjunction rules. (1) θ controls the strength of evaluation
on the prominent aspect. Consider only the prominent as-
pect, the evaluation requires pk > θqk, θ > 1 to generate
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a positive ranking p � q. Thus a larger value θ indicates
that the user is more strict on the prominent aspect. When
θ → ∞, the probability from non-prominent aspects ap-
proaches to 1, the users adopt lexicographic rules only. (2)
The model sets the threshold in a dynamic manner. p is con-
sidered to be as good as q on a non-prominent aspect k′,
as long as θpk′ > qk′ , θ > 1. An interpretation is that the
user sets a minimal acceptance threshold for pk′ based on
the compared alternative qk′ , where the threshold is qk′/θ.

To infer the parameters U,V, θ of BT-N, we implement
a stochastic expectation maximization (SEM) algorithm. In
each E-step, we first draw the value of prominent aspect k
for each evaluation session by

k ∼ utk
ptk

ptk + θtqtk

∏
k′ 6=k

[
θtptk′

qtk′ + θtptk′
]. (13)

where t indicates the value obtained from the t−th round
of SEM algorithm. In each M-step, we incorporate the MM
bound proposed in (Hunter 2004) and maximize the log-
likelihood of complete data.

Experiments
We conduct experiments to evaluate the performance of non-
compensatory rules in recommendation models. We conduct
three sets of experiments on real world datasets to exam-
ine whether the non-compensatory versions outperform the
original models on (1) rating data sets, (2) rankings gener-
ated from explicit rating feedback, and (3) rankings gener-
ated from graded implicit feedback. We also analyze the in-
ferred parameters θ,b in non-compensatory rules for further
insights. The source codes are publicly available1.

Comparative Results for Rating Prediction Models
Data Sets. We use the standard benchmarks with user-item
ratings. (1) Movielens2; (2) Filmtrust (Guo, Zhang, and
Yorke-Smith 2013); and (3) CiaoDVD (Guo et al. 2014).
Statistics of the datasets are described in Table 3.

For each dataset, we reserve users with at least 5 ratings
and randomly split 80% of the ratings as training set and
20% as test set. We avoid cold-start users and items. We
consider each rating as an individual evaluation session. The
reported results are averaged using 5-fold cross validation.

Table 3: Statistics of Datasets with ratings
Dataset #users #items #ratings #pairs

Movielens 942 1,650 80,000 1,072,237
Filmtrust 1,235 2,062 35,497 623,516
CiaoDVD 2,665 14,280 72,665 2,478,836

Comparative Methods. We compare the non-
compensatory versions (with suffix “-N”) with the original
versions on three widely adopted rating prediction methods.
(1) MF (Koren, Bell, and Volinsky 2009) in Equ. 2 v.s.
MF-N in Equ. 9; (2) AMF (Koren 2008) in Equ. 3 v.s.

1https://github.com/XMUDM/Non-Compensatory
2https://grouplens.org/datasets/movielens/

AMF in Equ. 10, both without regularization terms; (3)
LLORMA (Lee et al. 2016) in Equ. 4 v.s. LLORMA-N in
Equ. 11. The model parameters to be learnt are U,V for
compensatory models, and U,V, θ for non-compensatory
models. In this section, we do not activate parameters b
for computational efficiency, which is equivalent as setting
bu,k = 0 for every u, k. We pose a non-negative constraint
on θ > 0 in the inference, because we want the prominent
aspect to be more important than non-prominent aspects.
We stop the learning process either when the convergence
is achieved (i.e. ‖Ut+1 − Ut‖ ≤ 0.0001) or when the
algorithm reaches MaxIter iterations. The same values
of hyper-parameters are set for compensatory and non-
compensatory models: for MF and MF-N K = 10, λU =
λV = 0.01,MaxIter = 1000, for AMF and AMF-N
K = 5,MaxIter = 100, for LLORMA and LLORMA-N
K = 5, S = 50, λU = λV = 0.001,MaxIter = 100.

Evaluation Metrics. We evaluate different approaches
based on the following metrics. (1) AUC: computes the area
under precision-recall curve for a binary classification task.
The ground truth is: a rating above 3 is labeled positive and
otherwise negative. (2) NDCG: measures the accuracy of
item ranking per user by the predicted ratings v.s. the actual
ranking; (3) MRR: computes the reciprocal of the position
of the item with the largest observed rating in the predicted
ranking for each user. Results are averaged over all users.

Table 4: Comparative rating prediction performances, ‘Imp.’
is the percentage of improvements of non-compensatory
versions relative to the original models. Non-compensatory
rules universally improve rating models.

Method AUC Imp. NDCG Imp. MRR Imp.
Movielens (%) (%) (%)

MF 0.6729 0.6925 0.8300
MF-N 0.7108 5.62 0.7166 3.48 0.8633 4.01
AMF 0.6901 0.7107 0.8747

AMF-N 0.7027 1.83 0.7138 0.44 0.8790 0.49
LLORMA 0.7265 0.8734 0.7015

LLORMA-N 0.7299 0.47 0.8999 3.03 0.7187 2.45
Filmtrust (%) (%) (%)

MF 0.6507 0.5229 0.7011
MF-N 0.6710 3.12 0.5241 0.23 0.7071 0.86
AMF 0.5971 0.5137 0.7411

AMF-N 0.6133 2.71 0.5253 2.25 0.7619 2.80
LLORMA 0.6240 0.8596 0.7857

LLORMA-N 0.6345 1.68 0.8684 1.02 0.8068 2.69
CiaoDVD (%) (%) (%)

MF 0.7431 0.7949 0.8910
MF-N 0.7903 6.34 0.8127 2.25 0.9154 2.74
AMF 0.6489 0.6612 0.8741

AMF-N 0.6993 7.77 0.6878 4.02 0.8967 2.58
LLORMA 0.6752 0.7827 0.8267

LLORMA-N 0.6845 1.38 0.7984 2.00 0.8384 1.42

We can see from Table 4 that overall adopting non-
compensatory rules can improve model performance. We
observe that for “simpler” models, i.e. MF and AMF, the
improvement is in general more significant. For complicated
models such as LLORMA, the improvement is less signifi-
cant. The reason is that LLORMA approximates the obser-
vations by several low-rank factorizations in different local
neighborhoods. Thus LLORMA implements several layers
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of compensatory rules. While compensatory rule in its na-
ture is addictive and can be calculated in a layered computa-
tion, non-compensatory rules may not fit perfectly in the lay-
ered framework. However, increasing the model complex-
ity also leads to increased computation time and poor inter-
pretability. Thus utilizing non-compensatory rules in simpler
models, such as MF and AMF, generates recommendations
with higher accuracy, efficiency and interpretability.

Comparative Results for Ranking Models: Explicit
Feedback
Data Sets. Next we evaluate the performance of models
that target to ranking reconstruction. The datasets used are
again Movielens, Filmtrust and CiaoDVD. For Movielens
we use pre-processing steps in (Hu and Li 2017), i.e. Xu,p ≥
4&&Xu,q ≤ 2 → p �u q. For Filmtrust and CiaoDVD, as
these data sets are more sparse, we construct pair-wise order-
ing for each user between any higher rated item and lower
rated item, i.e. Xu,p > Xu,q → p �u q. The number of
ranking pairs on each dataset is shown in Table 3.

Comparative Methods. We compare the non-
compensatory versions with the original versions on
four widely adopted ranking methods. (1) BT (Hu and
Li 2016) which minimizes Equ 8 v.s. BT-N in Equ. 12,
(2) BPR (Rendle et al. 2009) which optimizes Equ. 6
with X̂ predicted by Equ. 2 v.s. BPR-N which optimizes
Equ. 6 with X̂ predicted by Equ. 9, (3) FSBPR (Zhao et
al. 2018) which optimizes Equ. 6 with X̂ predicted by
Equ. 3 v.s. FSBPR-N which minimizes Equ. 6 with X̂
predicted by Equ. 10, (4) LCR (Lee et al. 2014) which
optimizes Equ. 6 with X̂ predicted by Equ. 4 v.s. LCR-N
which optimizes Equ. 6 with X̂ predicted by Equ. 11. The
hyper-parameters are, K = 5,MaxIter = 100 for all
models, for BPR and BPR-N λU = λV = 0.3, for FSBPR
and FSBPR-N λU = λV = 0.01, for LCR and LCR-N
S = 50, λU = λV = 10−8.

Evaluation Metrics. The same set of measurements are
used, including AUC, NDCG and MRR.

A general observation from Table 5 is that non-
compensatory rules significantly improve ranking models.
In terms of AUC, NDCG and MRR, the non-compensatory
models outperform the compensatory models on all datasets.
The results validate the adequacy of non-compensatory rules
in ranking models. Furthermore, by comparing Table 5 and
Table 4, we observe that the non-compensatory rules gener-
ally make bigger improvements on ranking models than on
rating models. This observation indicates that it is possible
that consumers adopt non-compensatory rules more often in
ranking alternative products.

Comparative Results for Ranking Models: Implicit
Feedback
In most recommender systems, users give not only explicit
ratings but also implicit feedback that can be graded. For
example, a purchase and a click are both implicit feedback
that indicates user preference. A reasonable grading is that a
purchase is “higher” than a click, as a purchase is a stronger

Table 5: Non-compensatory rules generally improve ranking
models on explicit feedback.

Method AUC Imp. NDCG Imp. MRR Imp.
Movielens (%) (%) (%)

BT 0.6453 0.5329 0.8227
BT-N 0.8511 31.89 0.5795 8.74 0.9256 12.51
BPR 0.7976 0.5674 0.8988

BPR-N 0.8361 4.82 0.5761 1.53 0.9180 2.14
FSBPR 0.5048 0.5011 0.7524

FSBPR-N 0.8272 63.86 0.5740 14.56 0.9136 21.42
LCR 0.7191 0.8555 0.9461

LCR-N 0.7360 2.35 0.8605 0.58 0.9515 0.57
FIlmtrust (%) (%) (%)

BT 0.5405 0.5092 0.7702
BT-N 0.6969 28.94 0.5446 6.95 0.8485 10.15
BPR 0.6412 0.5319 0.8206

BPR-N 0.6729 4.94 0.5391 1.35 0.8364 1.93
FSBPR 0.4857 0.4968 0.7428

FSBPR-N 0.6717 38.29 0.5388 8.47 0.8358 12.52
LCR 0.5977 0.9034 0.7511

LCR-N 0.6144 2.79 0.9063 0.32 0.7635 1.65
CiaoDVD (%) (%) (%)

BT 0.6063 0.5240 0.8031
BT-N 0.9334 53.95 0.5981 14.1 0.9666 20.36
BPR 0.6344 0.5304 0.8172

BPR-N 0.8987 41.66 0.5902 11.28 0.9493 16.17
FSBPR 0.7537 0.5574 0.8769

FSBPR-N 0.8992 19.30 0.5903 5.91 0.9496 8.30
LCR 0.6260 0.9408 0.7889

LCR-N 0.6349 1.42 0.9451 0.46 0.7988 1.25

indicator of user preference. Therefore, we conduct experi-
ments on datasets with graded implicit feedback.

Table 6: Statistics of Datasets with graded implicit feedback
Dataset #users #items #pairs #sessions

Tmall-single 33,815 176,231 5,682,833 364,844
Tmall-hybrid 62,101 198,344 6,072,061 475,503
Yoochoose 341,396 30,852 3,044,572 341,396

Data Sets. We use three real world datasets, as shown in
Table 6. Tmall3 is a collection of user shopping sessions,
where in each session the user has four types of activities:
click, add to cart, add to favorite and purchase. We build
two data sets based on Tmall. (1) Tmall-single: a set of pair-
wise rankings where an item p purchased in u’s session is
considered to be superior than an item q clicked in the same
session. (2) Tmall-hybrid: the pairwise rankings are built by
extracting purchased items in each session and all remaining
items which are not purchased in the same session. Thus if
an item p is purchased in the session, and an item q is either
clicked, added to cart or added to favorite, we build p �u q.
(3) Yoochoose4: a collection of user shopping sessions with
clicked and purchased items. In this data set, user informa-
tion is not provided. In the experiments, we assume that each
session is from a new user.

Comparative Methods. We compare the non-
compensatory versions with the original versions on

3https://ijcai-15.org/index.php/repeat-buyers-prediction-
competition

4http://2015.recsyschallenge.com
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Table 7: Non-compensatory rules generally improve ranking performance on implicit feedback.
Method AUC Imp.(%) NDCG Imp.(%) MRR Imp.(%) MAP Imp.(%) Prec Imp.(%)

Tmall-single
BT 0.5304 0.2804 0.4870 0.4327 0.2778

BT-N 0.5400 1.82 0.2840 1.28 0.4948 1.61 0.4386 1.34 0.2801 0.84
BPR 0.5181 0.2794 0.4854 0.4297 0.2767

BPR-N 0.5349 3.24 0.2848 1.92 0.4960 2.18 0.4401 2.41 0.2806 1.41
FSBPR 0.5265 0.2824 0.4913 0.4350 0.2794

FSBPR-N 0.5389 2.35 0.2863 1.39 0.4988 1.53 0.4432 1.90 0.2818 0.87
LCR 0.5200 0.8190 0.4277 0.3568 0.2534

LCR-N 0.5290 1.73 0.8213 0.28 0.4360 1.94 0.3648 2.24 0.2586 2.05
Tmall-hybrid

BT 0.5867 0.3015 0.5373 0.4929 0.2904
BT-N 0.6568 11.94 0.3279 8.75 0.5990 11.48 0.5527 12.13 0.3036 4.53
BPR 0.6183 0.3183 0.5792 0.5318 0.2973

BPR-N 0.6460 4.48 0.3276 2.92 0.5990 3.41 0.5524 3.87 0.3030 1.94
FSBPR 0.6334 0.3246 0.5916 0.5442 0.3026

FSBPR-N 0.6544 3.31 0.3309 1.94 0.6062 2.48 0.5603 2.95 0.3047 0.69
LCR 0.5398 0.6644 0.4519 0.3745 0.2597

LCR-N 0.5649 4.65 0.6790 2.20 0.4809 6.42 0.3988 6.49 0.2720 4.74
Yoochoose

BT 0.6027 0.4734 0.7151 0.6361 0.4560
BT-N 0.7000 16.15 0.5160 8.99 0.7869 10.04 0.7084 11.37 0.4785 4.92
BPR 0.6700 0.5065 0.7713 0.6895 0.4737

BPR-N 0.6920 3.28 0.5131 1.31 0.7812 1.29 0.7027 1.91 0.4771 0.74
FSBPR 0.3272 0.3658 0.5062 0.4599 0.4006

FSBPR-N 0.6198 89.45 0.4822 31.83 0.7169 41.62 0.6448 40.22 0.4650 16.08
LCR 0.5842 0.9725 0.8009 0.7934 0.7677

LCR-N 0.6315 8.10 0.9754 0.30 0.8231 2.77 0.8161 2.86 0.7881 2.66

the same four ranking models. It is worthy to note that
implementation of BT-N is different from previous sections.
Unlike previous experiments, here the user interaction
session information is available. Thus in BT-N, we sample
the prominent aspect for each session instead of a pair of
actions. The hyper-parameters are,K = 5,MaxIter = 100
for all models, for BPR and BPR-N λU = λV = 0.05, for
FSBPR and FSBPR-N λU = λV = 0.01, for LCR and
LCR-N S = 5, λU = λV = 10−8.

Evaluation Metrics. In addition to the aforementioned
ranking evaluation metrics, i.e. AUC, NDCG and MRR, in
order to evaluate the sessional ranking performance, we also
adopt MAP and Precision. MAP first computes the mean
precision at each position of the predicted ranking per ses-
sion, then averages it over all sessions. Precision first com-
putes the fraction of correctly ordered test pairs in each ses-
sion, then averages it over all sessions.

As shown in Table 7, the non-compensatory models out-
perform the original models in terms of all evaluation met-
rics on all data sets. Thus it is safe to conclude that con-
sumers also conduct non-compensatory rules in the process
of giving implicit feedback. For BT model, the improve-
ment is more notable on less sparse data sets, such as Tmall-
hybrid and Yoochoose. This is because a session of multiple
ranking pairs is more informative, thus fixing the prominent
aspect in a whole session is beneficial.

Analysis of Inferred Parameters
Finally, we analyze the values of inferred parameters θ,b in
non-compensatory models to gain some insights about the
non-compensatory rules.

As the user-specific aspect-specific threshold bu,k does

not affect ranking models, we implement the non-
compensatory matrix factorization (MF-N) model on
three rating datasets, including Movielens, Filmtrust and
CiaoDVD. The parameters bu,k are activated, i.e. θ,bu,k to
be automatically learnt from the training data. We run 5-fold
validations for 10 times, where each time we randomly split
the data sets to 5 folds. The hyper-parameters are also set to
be K = 10, λU = λV = 0.01, as in previous sections.

Effect of User-specific Aspect-specific Threshold. The
first column of Table 8 reports the AUC improvement of
MF-N with bu,k activated over MF-N without bu,k. The
second column is computed as follows. We first compute the

standard deviation of σ(bu) =
√

[
∑K
k=1(bu,k − b̄u)2/K]

for each user, where b̄u =
∑K
k=1 bu,k/K is the average

threshold for user u over all aspects. Then we report the
mean and standard deviation of σ(bu) over all users. We
can see that σ(bu) is significant larger than zero. Note that
conventional matrix factorization links the same user-bias to
all aspects. Our experimental result demonstrates that it is
necessary to employ different threshold for each aspect.

Strength of Non-compensatory Rules. We also present
in Table 8 the mean and standard deviation of θ inferred on
each dataset. We can see that the optimal value of θ is moder-
ate, indicating the users adopt a combination of lexicograph-
ical rules and conjunctive rules.

Conclusion
Psychology study has shown that consumers adopt com-
pensatory and non-compensatory rules in the decision mak-
ing process. However, all existing latent factor models in
recommendation systems are essentially based on compen-
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Table 8: AUC improvements with b activated, scale of pa-
rameters bu,k and θ.

Dataset Imp.(%) σ(bu) θ
Movielens 5.37 0.0095± 0.0024 0.608± 0.105
FilmTrust 2.21 0.0095± 0.0023 0.667± 0.016
CiaoDVD 28.97 0.0093± 0.0022 0.773± 0.051

satory rules. In this contribution, we present for the first
time in the literature of recommendation systems how non-
compensatory rules can be embedded in latent factor mod-
els. We show that applying non-compensatory rules univer-
sally boosts recommendation performance for a variety of
rating prediction and ranking models.
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