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Abstract
Factorization machine (FM) is a popular machine learning
model to capture the second order feature interactions. The
optimal learning guarantee of FM and its generalized ver-
sion is not yet developed. For a rank k generalized FM of d
dimensional input, the previous best known sampling com-
plexity is O[k3d · polylog(kd)] under Gaussian distribu-
tion. This bound is sub-optimal comparing to the informa-
tion theoretical lower bound O(kd). In this work, we aim to
tighten this bound towards optimal and generalize the anal-
ysis to sub-gaussian distribution. We prove that when the
input data satisfies the so-called τ -Moment Invertible Prop-
erty, the sampling complexity of generalized FM can be im-
proved to O[k2d · polylog(kd)/τ2]. When the second order
self-interaction terms are excluded in the generalized FM, the
bound can be improved to the optimal O[kd · polylog(kd)]
up to the logarithmic factors. Our analysis also suggests that
the positive semi-definite constraint in the conventional FM
is redundant as it does not improve the sampling complexity
while making the model difficult to optimize. We evaluate our
improved FM model in real-time high precision GPS signal
calibration task to validate its superiority.

1 Introduction
Factorization machine (FM) (Rendle 2010; Bayer et al.
2017; Juan, Lefortier, and Chapelle 2017; Juan et al. 2016;
Zhao et al. 2017; Yamada et al. 2017; Luo et al. 2018;
Lin et al. 2018) is a popular linear regression model to
capture the second order feature interactions. It has been
found effective in various applications, including recom-
mendation systems (Rendle 2010) , CTR prediction (Juan
et al. 2016), computational medicine (Lin et al. 2016) , so-
cial network (Hong, Doumith, and Davison 2013) and so
on. Intuitively speaking, the second order feature interac-
tions consider the factors jointly affecting the output. On
the theoretical side, FM is closely related to the symmet-
ric matrix sensing (Kueng, Rauhut, and Terstiege 2017;
Cai and Zhang 2015; Yurtsever et al. 2017) and phase re-
trieval (Candes et al. 2013). While the conventional FM only
considers the second order feature interactions, it is possible
to extend the conventional FM to the high order functional
space which leads to the Polynomial Network model (Blon-
del et al. 2016). FM is the cornerstone in modern machine
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learning research as it abridges the linear regression and high
order polynomial regression. It is therefore important to un-
derstand the theoretical foundation of FM.

Given an instance x ∈ Rd, the conventional FM assumes
that the label y ∈ R of x is generated by

y = x>w∗ + x>M∗x rank(M∗) ≤ k (1)

where {w∗,M∗} are the first order and the second order
coefficients respectively. In the original FM paper (Rendle
2010), the authors additionally assumed that M∗ is gener-
ated from a low-rank positive semi-definite (PSD) matrix
with all its diagonal elements subtracted. That is

M∗ = U∗U∗> − diag(U∗U∗>) . (2)

Eq. (2) consists of two parts. We call the first part U∗U∗>
as the PSD constraint and the second part −diag(·) as the
diagonal-zero constraint. Our key question in this work is
whether the FM model (1) can be learned by O[kd log(kd)]
observations and how the two additional constraints help the
generalization ability of FM.

Although the FM has been widely applied , there is lit-
tle research exploring the theoretical properties of the FM to
answer the above key question. A naive analysis directly fol-
lowing the sampling complexity of the linear model would
suggest O(d2) samples to recover {w∗,M∗} which is too
loose. When w∗ = 0 and M∗ is symmetric, Eq. (1) is equal
to the symmetric matrix sensing problem. (Cai and Zhang
2015) proved the sampling complexity of this special case
on well-bounded sub-gaussian distribution using trace norm
convex programming under the `2/`1-RIP condition. (Yurt-
sever et al. 2017) developed a conditional gradient descent
solver to recover M∗. However, when w∗ 6= 0 the above
methods and the theoretical results are no longer applica-
ble. (Blondel, Fujino, and Ueda 2015) considered a convex-
ified formulation of FM. Their FM model requires solving
a trace-norm regularized loss function which is computa-
tionally expensive. They did not provide statistical learning
guarantees for the convexified FM.

To the best of our knowledge, the most recent research
dealing with the theoretical properties of the FM is (Lin and
Ye 2016). In their study, the authors argued that the two
constraints proposed in (Rendle 2010) can be removed if x
is sampled from the standard Gaussian distribution. How-
ever, their analysis heavily relies on the rotation invariance
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of the Gaussian distribution therefore cannot be generalized
to non-Gaussian cases. Even limiting on the Gaussian dis-
tribution, the sampling complexity given by their analysis is
O[k3d · polylog(kd)] which is worse than the information-
theoretic lower bound O(kd). It is still an open question
whether the FM can be learned with O(kd) samples and
whether both constraints in the original formulation are nec-
essary to make the model learnable.

In this work, we answer the above questions affirma-
tively. We show that when the data is sampled from sub-
gaussian distribution and satisfies the so-called τ -Moment
Invertible Property (MIP), the generalized FM (without con-
straints) can be learned byO[k2d/τ2 ·polylog(kd)] samples.
The PSD constraint is not necessary to achieve this sharp
bound. Actually the PSD constraint is harmful as it intro-
duces asymmetric bias on the value y (see Experiment sec-
tion). The optimal sampling complexityO[kd ·polylog(kd)]
is achievable if we further constrain that the diagonal ele-
ments of M∗ are zero. This is not an artificial constraint but
there is information-theoretic limitation prevents us recov-
ering the diagonal elements of M∗ on sub-gaussian distri-
bution. Finally inspired by our theoretical results, we pro-
pose an improved version of FM, called iFM, which removes
the PSD constraint and inherits the diagonal-zero constraint
from the conventional modeling. Unlike the generalized FM,
the sampling complexity of the iFM does not depend on the
MIP constant of the data distribution.

The remainder of this paper is organized as follows. We
revisit the modeling of the FM in Section 2 and show that the
conventional modeling is sub-optimal when considered in a
more general framework. In Section 3 we present the learn-
ing guarantee of the generalized FM on sub-gaussian distri-
bution. We propose the high order moment elimination tech-
nique to overcome a difficulty in our convergence analysis.
Based on our theoretical results, we propose the improved
model iFM. Section 4 conducts numerical experiments on
synthetic and real-world datasets to validate the superiority
of iFM over the conventional FM . Section 5 encloses this
work.

2 A Revisit of Factorization Machine
In this section, we revisit the modeling design of the FM
and its variants. We briefly review the original formulation
of the conventional FM to raise several questions about its
optimality. We then highlight previous studies trying to es-
tablish the theoretical foundation of the FM modeling. Based
on the above survey, we motivate our study and present our
main results in the next section.

In their original paper, (Rendle 2010) assumes that the
feature interaction coefficients in the FM can be embedded
in a k-dimensional latent space. That is,

y =

d∑
i=1

wixi +

d∑
i=1

d∑
j=i+1

〈ui,uj〉xixj (3)

where ui is a k × 1 vector. The original formulation Eq.
(3) is equivalent to Eq. (1) with constraint Eq. (2). While
the low-rank assumption is standard in the matrix sensing
literature, the PSD and the diagonal-zero constraints are not.

A critical question is whether the two additional constraints
are necessary or removable. Indeed we have strong reasons
to remove both constraints.

The reasons to remove the diagonal-zero constraint are
straightforward. First there is no theoretical result so far to
motivate this constraint. Secondly subtracting the diagonal
elements will make the second order derivative w.r.t. U non-
PSD. This will raise many technical difficulties in optimiza-
tion and learning theory as many research works assume
convexity in their analysis.

The PSD constraint in the original FM modeling is the
second term we wish to remove. Let us temporally forget
about the diagonal-zero constraint and focus on the PSD
constraint only. Obviously relaxing UU> with UV > will
make the model more flexible. A more serious problem of
the PSD constraint is that it implicitly assumes that the label
y is more likely to be “positive”. This will introduce asym-
metric bias about the distribution of y. To see this, suppose
M̂ = U∗U∗> = ŪΣŪ> where Ū is the eigenvector ma-
trix of M̂ . We call Ū the second order feature mapping ma-
trix induced by M̂ since x>M̂x = (Ū>x)>Σ(Ū>x). The
eigenvalue matrix Σ is the weights for the mapped features
Ū>x. As M̂ is constrained to be PSD, the weights of Ū>x
cannot be negative. In other words, the PSD constraint pre-
vents the model learning patterns from negative class. Please
check the Experiment section for more concrete examples.

Another issue of the PSD constraint raised is the difficulty
in optimization. Suppose we choose least square as the loss
function in FM. By enforcing M̂ = UU>, the loss func-
tion is a fourth order polynomial of U . This makes the ini-
tialization of U difficult since the scale of the initial U (0)

will affect the convergence rate. Clearly we cannot initialize
U (0) = 0 since the gradient w.r.t. U will be zero. On the
other hand, we cannot initialize U (0) to have a large norm
otherwise the problem will be ill-conditioned. This is be-
cause the spectral norm of the second order derivative w.r.t.
U will be proportional to ‖U (0)‖22 therefore the (local) con-
dition number depends on ‖U (0)‖2. In practice, it is usually
difficult to figure out the optimal scale of ‖U (0)‖2 resulting
vanishing or explosion gradient norms. If we decouple the
U and V , we can initialize ‖U (0)‖2 = 1 and V (0) = 0. Then
by alternating gradient descent, the decoupled FM model is
easy to optimize.

In summary, the theoretical foundation of the FM is still
not well-developed. On one hand, it is unclear whether the
conventional FM modeling is optimal and on the other hand,
there is strong motivation to modify the conventional formu-
lation based on heuristic intuition. This inspires our study of
the optimal modeling of the FM driven by theoretical analy-
sis which is presented in the next section.

3 Main Results
In this section, we present our main results on the theoretical
guarantees of the FM and its improved version iFM. We first
give a sharp complexity bound for the generalized FM on
sub-gaussian distribution. We show that the recovery error of
the diagonal elements of M∗ depends on a so-called τ -MIP
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condition of the data distribution. The sampling complex-
ity bound can be improved to optimal by the diagonal-zero
constraint.

We introduce a few more notations needed in this sec-
tion. Suppose x is sampled from coordinate sub-gaussian
with zero mean and unit variance. The element-wise third
order moment of x is denoted as κ∗ , Ex3 and the fourth
order moment is φ∗ , Ex4. All training instances are sam-
pled identically and independently (i.i.d.). Denote the fea-
ture matrix X = [x(1), · · · ,x(n)] ∈ Rd×n and the label
vector y = [y1, · · · , yn]> ∈ Rn. D(·) denotes the diago-
nal function. For any two matrices A and B, we denote their
Hadamard product as A ◦B. The element-wise squared ma-
trix is defined by A2 , A ◦A. For a non-negative real num-
ber ξ ≥ 0, the symbol O(ξ) denotes some perturbation ma-
trix whose spectral norm is upper bounded by ξ . The i-th
largest singular value of matrix M is σi(M) . We abbreviate
σ∗i , σi(M

∗). To abbreviate our high probability bounds,
given a probability η, we use the symbol Cη and cη to de-
note some polynomial logarithmic factors in 1/η and any
other necessary variables that do not change the polynomial
order of the upper bounds.

3.1 Limitation of The Generalized FM
In order to derive the theoretical optimal FM models, we
begin with the most general formulation of FM, that is, with
no constraint except low-rank:

y = x>w∗ + x>M∗x s.t. M∗ = U∗V ∗> . (4)

Clearly M∗ must be symmetric but for now this does not
matter. Eq. (4) is called the generalized FM (Lin and Ye
2016). It is proved that when x is sampled from the Gaussian
distribution, Eq. (4) can be learned byO(k3d) training sam-
ples. Although this bound is not optimal, (Lin and Ye 2016)
showed the possibility to remove Eq. (2) on the Gaussian
distribution. However, their result no longer holds true on
non-Gaussian distributions. In the following, we will show
that the learning guarantee for the generalized FM on sub-
gaussian distribution is much more complex than the Gaus-
sian one.

Our first important observation is that model (4) is not
always learnable on all sub-gaussian distributions.

Proposition 1. When x ∈ {−1,+1}d, the generalized FM
is not learnable.

The above observation is easy to verify since x>M∗x =
tr(M∗) when x ∈ {−1,+1}d. Therefore at least the diag-
onal elements of M∗ cannot be recovered at all. Proposi-
tion 1 shows that there is information-theoretic limitation
to learn the generalized FM on sub-gaussian distribution.
In our analysis, we find that such limitation is related to a
property of the data distribution which we call the Moment
Invertible Property (MIP).

Definition 2 (Moment Invertible Property). A zero mean
unit variance sub-gaussian distribution P(x) is called τ -
Moment Invertible if |φ − 1 − κ2| ≥ τ for some constants
τ ≥ 0, φ , Ex4, κ , Ex3.

With the MIP condition, the following theorem shows that
the generalized FM is learnable via alternating gradient de-
scent.
Theorem 3. Suppose x is sampled from a τ -MIP sub-
gaussian distribution with y generated by Eq. (4). Then with
probability at least 1 − η, there is an alternating gradient
descent based method which can achieve the recovery error
after t iteration such that

‖w(t) −w∗‖2 + ‖M (t) −M∗‖2 ≤
[(2
√

5σ∗1/σ
∗
k + 2)δ]t(‖w∗‖2 + ‖M∗‖2) ,

provided

n ≥ Cη
δ2

(p+ 1)2 max{pτ−2, (
√
k + |tr(M)|/‖M‖2)2d}

p , max{1, ‖κ∗‖∞, ‖φ∗ − 3‖∞, ‖φ∗ − 1‖∞}

δ ≤ min{ 1

2
√

5σ∗1/σ
∗
k + 2

,
1

2
√

5
σ∗k[‖w∗‖2 + ‖M∗‖2]−1} .

Theorem 3 is our key result. In Theorem 3, we measure
the quality of our estimation by the recovery error

εt , ‖w(t) −w∗‖2 + ‖M (t) −M∗‖2 .

The recovery error decreases linearly along the steps of alter-
nating iteration with rate δ ≈ O(1/

√
n). The sampling com-

plexity is on order of max{O(k2d},O(1/τ2)}. This bound
delivers two messages. First when the distribution is close to
the Gaussian distribution, τ ≈ 2 and the bound is controlled
by O(k2d). This result improves the previous O(k3d) given
by (Lin and Ye 2016) for the Gaussian distribution. Secondly
when τ is small, the sampling complexity is proportional to
O(1/τ2). The sampling complexity will even trend to infi-
nite when the data follows the binary Bernoulli distribution
where τ = 0. Therefore the τ -MIP condition provides a suf-
ficient condition to make the generalized FM learnable.

We have not given any detail about the alternating gra-
dient descent algorithm mentioned in Theorem 3. We find
that it is difficult to prove the convergence rate following the
conventional alternating gradient descent framework. To ad-
dress this difficulty, we use a high order moment elimination
technique in the next subsection in the convergent analysis.

3.2 Alternating Gradient Descent with High
Order Moment Elimination

In this subsection, we will construct an alternating gradi-
ent descent algorithm which achieves the convergence rate
and the sampling complexity in Theorem 3. We first show
that the conventional alternating gradient descent cannot be
applied directly to prove Theorem 3. Then a high order mo-
ment elimination technique is proposed to overcome the dif-
ficulty.

The generalized FM defined in Eq. (4) can be written in
the matrix form

y = X>w∗ +A(M∗) (5)

where the operator A(·) : Rd×d → Rd is defined by
A(M) , [x(1)>Mx(1), · · · ,x(n)>Mx(n)]. The adjoint
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Algorithm 1 Alternating Gradient Descent with High Order
Moment Elimination
Require: The mini-batch size n; number of total update

T ; training instances X(t) , [x(t,1),x(t,2), · · · ,x(t,n)],
y(t) , [y(t,1), y(t,2), · · · , y(t,n)]>; rank k ≥ 1 .

Ensure: w(T ), U (T ), V (T ),M (t) , U (t)V (t)>.
1: Retrieve n training instances to estimate the third and

fourth order moments κ and φ .
2: Compute G and H in Eq. (8) and (9).
3: Initialize w(0) = 0, V (0) = 0. Ū (0) =

SVD(M(0)(y(0)), k), that is the top-k singular vectors.
4: for t = 1, 2, · · · , T do
5: Retrieve n training instances X(t),y(t) , compute

M(t) in Eq. (7) and update U (t) and V (t) as:

ŷ(t) = X(t)>w(t−1) +A(t)(U (t−1)V (t−1)>)

U (t) = V (t−1) −M(t)(ŷ(t) − y(t))Ū (t−1)

{Ū (t), R(t)} = QR(U (t))

V (t) = V (t−1)Ū (t−1)>Ū (t) −M(t)(ŷ(t) − y(t))Ū (t)

6: Compute W(t) in Eq. (10) and update w(t) =

w(t−1) −W(t)(ŷ(t) − y(t)) .
7: end for
8: Output: w(T ), Ū (T ), V (T ) .

operator of A is A′. To recover {w∗,M∗}, we minimize
the square loss function

min
w,U,V

L(w, U, V ) ,
1

2n
‖X>w +A(UV >)− y‖2 . (6)

A straightforward idea to prove Theorem 3 is to show that
the alternating gradient descent will converge. However, we
find that this is difficult in our problem. To see this, let us
compute the expected gradient of L(w(t), U (t), V (t)) with
respect to V (t) at step t.

E∇V L(w(t), U (t), V (t)) =2(M (t) −M∗)U (t) + F (t)U (t)

where

F (t) , tr(M (t) −M∗)I +D(φ− 3)D(M (t) −M∗)
+D(κ)D(w(t) −w∗) .

In previous studies, one expects E∇L ≈ I . However, this is
no longer the case in our problem. Clearly ‖ 12E∇L − I‖2
is dominated by ‖κ‖∞ and ‖φ − 3‖∞ . For non-Gaussian
distributions, these two perturbation terms could dominate
the gradient norm. Similarly the gradient of w is biased by
O(‖κ‖∞).

The difficulty to follow the conventional gradient descent
analysis inspires us to look for a new convergence analysis
technique. The perturbation term F (t) consists of high order
moments of the sub-gaussian variable x. It might be possi-
ble to construct a sequence of another high order moments
to eliminate these perturbation terms. We call this idea the
high order moment elimination method. The next question

is whether the desired moments exist and how to construct
them efficiently. Unfortunately, this is impossible in general.
A sufficient condition to ensure the existence of the elimina-
tion sequence is that the data distribution satisfies the τ -MIP
condition.

To construction an elimination sequence, for any z ∈ Rn
and M ∈ Rd×d, define functions

P(t,0)(z) , 1>z/n, P(t,1)(z) , X(t)z/n

P(t,2)(z) , (X(t))2z/n− P(t,0)(z)

A(t)(M) , D(X(t)>MX(t))

H(t)(z) , A(t)′A(t)(z)/(2n) .

Notice when n→∞,

P(t,0)(ŷ(t) − y(t)) ≈tr(M (t) −M∗)

P(t,1)(ŷ(t) − y(t)) ≈D(M (t) −M∗)κ+w(t) −w∗

P(t,2)(ŷ(t) − y(t)) ≈D(M (t) −M∗)(φ− 1)

+D(κ)(w(t) −w∗) .

This inspires us to find a linear combination ofP(t,·) to elim-
inate F (t). The solution for this linear combination equation
is

M(t)(ŷ(t) − y(t)) ,H(t)(ŷ(t) − y(t)) (7)

− 1

2
D
(
G1 ◦ P(t,1)(ŷ(t) − y(t))

)
− 1

2
D
(
G2 ◦ P(t,2)(ŷ(t) − y(t))

)
where

Gj,:
> =

[
1 κj
κj φj − 1

]−1 [
κj

φj − 3

]
(8)

Hj,:
> =

[
1 κj
κj φj − 1

]−1 [
1
0

]
. (9)

Similarly to eliminate the high order moments in the gradi-
ent of w(t) , we construct

W(t)(ŷ(t) − y(t)) , H1 ◦ P(t,1)(ŷ(t) − y(t)) (10)

+H2 ◦ P(t,2)(ŷ(t) − y(t)) .

The overall construction is given in Algorithm 1.
We briefly prove that the construction in Algorithm 1

will eliminate the high order moments in F (t) by which
a global linear convergence rate is immediately followed.
Please check appendix for details. We will omit the super-
script (t) in X(t) and P(t,·) when not raising confusion.

First we show that 1
nA
′A is conditionally independent re-

strict isometric after shifting its expectation (Shift CI-RIP).
The proof can be found in appendix.
Theorem 4 (Shift CI-RIP). Suppose d ≥ (2+‖φ∗−3‖∞)2.
Fixed a rank-k matrix M , with probability at least 1− η,

1

n
A′A(M) =2M + tr(M)I +D(φ∗ − 3)D(M)

+O(δ‖M‖2)

provided n ≥ cη(
√
k + |tr(M)|)2d/δ2.
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Theorem 4 is the main theorem in our analysis. The
key ingredient of our proof is to apply the matrix Bern-
stein’s inequality with an improved version of sub-gaussian
Hanson-Wright inequality proved by (Rudelson and Ver-
shynin 2013). Please check appendix for more details.

Based on the shifted CI-RIP condition of operator A, we
prove the following perturbation bounds.

Lemma 5. For n ≥ Cη(
√
k + |tr(M)|)2d/δ2 , with proba-

bility at least 1− η ,

1

n
A′(X>w) = D(κ∗)w +O(δ‖w‖2)

P(0)(y) ,
1

n
1>y = tr(M) +O[δ(‖w‖2 + ‖M‖2)]

P(1)(y) ,
1

n
Xy=D(M)κ∗ +w +O[δ(‖w‖2 + ‖M‖2)]

P(2)(y) ,
1

n
X2y − P(0)(y) = D(M)(φ∗ − 1)

+D(κ∗)w +O[δ(‖w‖2 + ‖M‖2)] .

Lemma 5 shows thatA′X> andP(t,·) are all concentrated
around their expectations with no more thanO(Cηk

2d) sam-
ples. To finish our construction, we need to bound the devi-
ation of G and H from their expectation G∗ and H∗ . This
is done in the following lemma.

Lemma 6. Suppose the distribution of x is τ -MIP with τ >
0. Then in Algorithm 1,

‖G−G∗‖∞ ≤δ, ‖H −H∗‖∞ ≤ δ ,

provided

n ≥ Cη(1 + τ−1
√
‖κ∗‖2∞ + ‖φ∗ − 3‖2∞)/(τδ2) .

Lemma 6 shows that G ≈ G∗ as long as n ≥ O(1/τ2).
The matrix inversion in the definition of G requires that the
τ -MIP condition must be satisfied with τ > 0.

We are now ready to show thatM(t) andW(t) are almost
isometric.

Lemma 7. Under the same settings of Theorem 3, with
probability at least 1− η ,

M(t)(ŷ(t) − y(t)) = M (t−1) −M∗ +O(δεt−1)

W(t)(ŷ(t) − y(t)) = w(t−1) −w∗ +O(δεt−1)

provided

n ≥ Cη(p+ 1)2/δ2 max{p/τ2, (
√
k+ |tr(M)|/‖M‖2)2d}

where p , max{1, ‖κ∗‖∞, ‖φ∗ − 3‖∞, ‖φ∗ − 1‖∞} .

Lemma 7 shows that M(t) and W(t) are almost isomet-
ric when the number of samples is larger than O(k2d) and
O(1/τ2). The proof of Lemma 7 consists of two steps. First
we replace each operator or matrix with its expectation plus
a small perturbation given in Lemma 5 and Lemma 6. Then
Lemma 7 follows after simplification. Theorem 3 is obtained
by combining Lemma 7 with alternating gradient descent
analysis. Please check appendix for the complete proof.

3.3 Improved Factorization Machine
Theorem 3 shows that learning the generalized FM is hard
on non-gaussian distribution. Especially, when the data dis-
tribution has a very small τ -MIP constant, the sampling
complexity to recover M∗ in Eq. (4) will be as large as
O(1/τ2). The recovery is even impossible on τ = 0 dis-
tributions such as the Bernoulli distribution. Clearly, a well-
defined learnable model should not depend on the τ -MIP
condition.

Indeed the bound given by Theorem 3 is quite sharp. It
explains well why we cannot recover M∗ on the Bernoulli
distribution. Therefore it is unlikely to remove the τ depen-
dency by designing a better elimination sequence in Algo-
rithm 1. After examining the proof of Theorem 1 carefully,
we find that the only reason our bound contains τ is that the
diagonal elements of M∗ are allowed to be non-zero. If we
constrain D(M∗) = 0 and D(M (t)) = 0, the F (t) in the
expected gradient E∇V L(w(t), U (t), V (t)) will be zero and
then we do not need to eliminate it during the alternating it-
eration. This greatly simplifies our convergence analysis as
we only need Theorem 4 which now becomes

1

n
A′A(M) =2M +O(δ‖M‖2) . (11)

Eq. (4) already shows that 1
nA
′A is almost isometric that

immediately implies the linear convergence rate of alternat-
ing gradient descent. As a direct corollary of Theorem 4, the
sampling complexity could be improved to O(cηkd) which
is optimal up to some logarithmic constants cη . Inspired by
these observations, we propose to learn the following FM
model

y = x>w∗ + x>M∗x (12)

s.t. M∗ = U∗V ∗> −D(U∗V ∗>) .

We called the above model the Improved Factorization Ma-
chine (iFM). The iFM model is a trade-off between the con-
ventional FM model and the generalized FM model. It de-
couples the PSD constraint with U 6= V in the generalized
FM model but keeps the diagonal-zero constraint as the con-
ventional FM model. Unlike the conventional FM model, the
iFM model is proposed in a theoretical-driven way. The de-
coupling of {U, V } makes the iFM easy to optimize while
the diagonal-zero constraint makes it learnable with the opti-
malO(kd) sampling complexity. In the next section, we will
verify the above discussion with numerical experiments.

4 Experiments
We first use synthetic data in subsection 4.1 to show the
modeling power of iFM and the PSD bias of the conven-
tional FM. In subsection 4.2 we apply iFM in a real-word
problem, the vTEC estimation task, to demonstrate its supe-
riority over baseline methods.

4.1 Synthetic Data
In this subsection, we construct numerical examples to sup-
port our theoretical results. To this end, we choose d = 100,
k = 5. {w∗, U∗, V ∗,x} are all sampled from the Gaussian
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Figure 1: RMSE Curve of iFM v.s. FM

distribution with variance 1/d. We randomly sample 30kd
instances as training set and 10000 instances as testing set.
In Figure 1, we report the convergence curve of iFM and
FM on the testing set averaged over 10 trials. The x-axis is
the iteration step and the y-axis is the Root Mean Square
Error (RMSE) of y. In Figure (a), we generate label y fol-
lowing the conventional FM assumption. Both iFM and FM
converge well. In Figure (b), we flip the sign of the label in
(a). While iFM still converges well, FM cannot model the
sign flip. This example shows why we should avoid to use
the conventional FM both in theory and in practice: even a
simple flipping operation can make the model under-fit the
data. In Figure (c), we generate y from M∗ with both pos-
itive eigenvalues and negative eigenvalues. Again the con-
ventional FM cannot fit this data as the distribution of y is
now symmetric in both direction.

4.2 vTEC Estimation
In this subsection, we demonstrate the superiority of iFM
in a real-world application, the vertical Total Electron Con-
tent (vTEC) estimation. The vTEC is an important descrip-
tive parameter of the ionosphere of the Earth. It integrates
the total number of electrons integrated when traveling from
space to earth with a perpendicular path. One important ap-
plication is the real-time high precision GPS signal calibra-
tion. The accuracy of the GPS system heavily depends on
the pseudo-range measurement between the satellite and the
receiver. The major error in the pseudo-range measurement
is caused by the vTEC which is dynamic.

In order to estimate the vTEC, we build a triangle mesh
grid system in an anonymous region. Each node in the grid
is a ground stations equipped with dual-frequency high pre-
cision GPS receiver. The distance between two nodes is
around 75 kilometers. The station sends out resolved GPS
data every second. Formally, our system solves an online
regression problem. Our system receives Nt data points at
every time step t measured in seconds. Each data point
x(t,i) ∈ R4 presents an ionospheric pierce point of a
satellite-receiver pair. The first two dimensions are the lat-
itude α(t,i) and the longitude β(t,i) of the pierce point. The
third dimension and the fourth dimension are the zenith an-
gle θ(t,i) and the azimuth angle γ(t,i) respectively. We will
omit the superscript t below as we always stay within the

same time window t. In order to build a localized predic-
tion model, we encode {α(i), β(i)} into a high dimensional
vector. Suppose we have m satellites in total. First we col-
lect data points for 60 seconds. Then we cluster the collected
{α(i), β(i)} into m clusters via K-means algorithm. Denote
the cluster center of K-means as {c(1), c(2), · · · , c(m)} and
the i-th data point belongs to the gi-th cluster. The first two
dimensions of the i-th data point {α(i), β(i)} are then en-
coded as v(i) ∈ R2m where

v
(i)
j =

{
{α(i), β(i)} − c(gi) j = gi
0 otherwise

Finally, each data point x(i) is encoded into an R2m+8 vec-
tor:

Enc(x(i)) ,[v(i), sin(θ(i)), cos(θ(i)), θ(i), (θ(i))2,

sin(γ(i)), cos(γ(i)), γ(i), (γ(i))2] .

Evaluation It is important to note that our problem does
not fit the conventional machine learning framework. We
only have validation set for model selection and evaluation
set to evaluate the model performance. We introduce the
training station and the testing station that correspond to the
“training set” and “testing set” in the conventional machine
learning framework. However please be advised that they
are not exactly the same concepts.

To evaluate the performance of our models, we randomly
select one ground station as the testing station. Around the
testing station, we choose 16 ground stations as training sta-
tions to learn the online prediction model. Suppose the on-
line prediction model is F which maps Enc(x(i)) to the cor-
responding vTEC value

F : Enc(x(i))→ vTEC(x(i)) ∈ R .

In our system, we are only given the double difference of
the vTEC values due to the signal resolving process. Sup-
pose two satellites a, b and two ground stations c, d are con-
nected in the data-link graph, x(a,c) denotes the ionospheric
pierce point between a and c. The observed double differ-
ence y(a,b,c,d) is given by

y(a,b,c,d) ,vTEC(x(a,c))− vTEC(x(a,d))− vTEC(x(b,c))

+ vTEC(x(b,d)) .
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Table 1: RMSE & RTK of iFM v.s. Baseline Methods

Ridge LASSO ElasticNet Kernel FM iFM
TestDay1 0.02161 0.02260 0.02222 0.02570 0.02178 0.02164
TestDay2 0.01430 0.01461 0.01454 0.01683 0.01439 0.01404
TestDay3 0.01508 0.01524 0.01496 0.01875 0.01484 0.01484
TestDay4 0.01449 0.01487 0.01460 0.01564 0.01432 0.01423
TestDay5 0.01610 0.01579 0.01612 0.01744 0.01606 0.01567
TestDay6 0.01487 0.01491 0.01483 0.01684 0.01470 0.01459
TestDay7 0.01828 0.01849 0.01827 0.02209 0.01830 0.01805
TestDay8 0.01461 0.01552 0.01519 0.01629 0.01466 0.01453
TestDay9 0.01657 0.01646 0.01639 0.02096 0.01646 0.01636
Average 0.01621 0.01650 0.01635 0.01895 0.01617 0.01599

RTK 62.67% 62.18% 63.07% 52.09% 63.10% 64.44%

Since vTEC(·) is an unknown function, we need to approx-
imate it by F . Once F is learned from training stations, we
can apply it to predict the double difference y(a,b,c,d) where
either c or d is the testing station.

Once we get the vTEC estimation, we use it to calibrate
the GPS signal and finally compute the geometric coordi-
nate of the user. The RTK ratio measures the quality of the
positioning service. It is a real number presenting the prob-
ability of successful positioning with accuracy at least one
centimeter. The RTK ratio is computed from a commercial
system that is much slower than the computation of RMSE.

Dataset and Results We select a ground station at the re-
gion center as testing station. Around the testing station 16
stations are selected as training stations. We collect 5 con-
secutive days’ data as validation set for parameter tuning.
The following 9 days’ data are used as evaluation set. We up-
date the prediction model per 60 seconds. The learned model
is then used to predict the double differences relating to the
testing station. We compare the predicted double differences
to the true values detected by the testing station. The number
of valid satellites in our experiment is around 10 to 20.

In Table 1, we report the root-mean-square error (RMSE)
over 9 days period. The dates are denoted as TestDay1 to
TestDay9 for anonymity. Five baseline methods are evalu-
ated: Ridge Regression, LASSO, ElasticNet, Kernel Ridge
Regression (Kernel) with RBF kernel and the conventional
Factorization Machine (FM). More computational expensive
models such as deep neural network are not feasible for our
online system. For Ridge, LASSO, Kernel and ElasticNet,
their parameters are tuned from 1×10−6 to 1×106. The reg-
ularizer parameters of FM and iFM are tuned from 1×10−6

to 1×106. The rank of M is tuned in set {1, 2, · · · , 10}. We
use Scikit-learn (Pedregosa et al. 2011) and fastFM (Bayer
2016) to implement the baseline methods.

In Table 1, we observe that iFM is uniformly better than
the baseline methods. We average the root squared error over
9×24×60 = 12960 minutes in the last second row. The 95%
confidence interval is within 1× 10−5 in our experiment. In
our experiment, the optimal rank of FM is 2 and the optimal
rank of iFM is 6. We note that FM is better than the first order
linear models since it captures the second order information.

This indicates that the second order information is indeed
helpful.

In the last row of Table 1, we report the RTK ratio aver-
aged over the 9 days. We find that the RTK ratio will improve
a lot even with small improvement of vTEC estimation. This
is because the error of vTEC estimation will be broadcasted
and magnified in the RTK computation pipeline. The RTK
ratio of iFM is about 1.77% better than that of Ridge regres-
sion and is more than 12% better than Kernel regression.
Comparing to FM, it is 1.34% better. We conclude that iFM
achieves overall better performance and the improvement is
statistically significant.

5 Conclusion
We study the learning guarantees of the FM solved by al-
ternating gradient descent on sub-gaussian distributions. We
find that the conventional modeling of the factorization ma-
chine might be sub-optimal in capturing negative second or-
der patterns. We prove that the constraints in the conven-
tional FM can be removed resulting a generalized FM model
learnable by max{O(k2d},O(1/τ2)} samples. The sam-
pling complexity can be improved to the optimalO(kd) with
diagonal-zero constraint. Our theoretical analysis shows that
the optimal modeling of high order linear model does not al-
ways agree with the heuristic intuition. We hope this work
could inspire future researches of non-convex high order
machines with solid theoretical foundation.
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