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Abstract

We present two architectures for multi-task learning with neu-
ral sequence models. Our approach allows the relationships
between different tasks to be learned dynamically, rather than
using an ad-hoc pre-defined structure as in previous work. We
adopt the idea from message-passing graph neural networks,
and propose a general graph multi-task learning framework
in which different tasks can communicate with each other in
an effective and interpretable way. We conduct extensive ex-
periments in text classification and sequence labelling to eval-
uate our approach on multi-task learning and transfer learn-
ing. The empirical results show that our models not only out-
perform competitive baselines, but also learn interpretable
and transferable patterns across tasks.

Introduction
Neural multi-task learning models have driven state-of-the-
art results to new levels in a number of language process-
ing tasks, ranging from part-of-speech (POS) tagging (Yang,
Salakhutdinov, and Cohen 2016, Søgaard and Goldberg
2016), parsing (Peng, Thomson, and Smith 2017, Guo et al.
2016), text classification (Liu, Qiu, and Huang 2016, Liu,
Qiu, and Huang 2017) to machine translation (Luong et al.
2015, Firat, Cho, and Bengio 2016).

Multi-task learning utilizes the correlation between re-
lated tasks to improve the performance of each task. In prac-
tice, existing work often models task relatedness by simply
defining shared common parameters over some pre-defined
task structures. Figure 1-(a,b) shows two typical pre-defined
topology structures which have been popular. A flat structure
(Collobert and Weston 2008) assumes that all tasks jointly
share a hidden space, while a hierarchical structure (Søgaard
and Goldberg 2016, Hashimoto et al. 2017) specifies a par-
tial order of the direction of information flow between tasks.

There are two major limitations to the above approaches.
First, static pre-defined structures represent a strong assump-
tion about the nature of the interaction between tasks, re-
stricting the model’s capacity to make use of shared infor-
mation. For example, the structure in 1(a) does not allow
the model to explicitly learn the strength of relatedness be-
tween tasks. This restriction prevents the model from fully
∗These two authors contributed equally
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Figure 1: Different topology structures for multi-task learn-
ing. Each blue circle represents a task (A, B, C, D), while the
red box denotes a virtual node, which stores shared infor-
mation and facilitates communication. The boldness of the
line indicates the strength of the relationships. The directed
edges define the direction of information flow. For example,
in sub-figure (b), task C receives information from task A,
but not vice versa.

utilizing and handling the complexity of the data (Li and
Tian 2015). Note that the strength of relatedness between
tasks is itself not static but subject to change, depending
on the data samples at hand. Second, these models are not
interpretable to researchers and system developers, mean-
ing that we learn little about what kinds of patterns have
been shared besides the parameters themselves. Previous
non-neural-network models (Bakker and Heskes 2003, Kim
and Xing 2010, Chen et al. 2010) have demonstrated the im-
portance of learning inter-task relationships for multi-task
learning. However, there is little work giving an in-depth
analysis in the neural setting.

The above issues motivate the following research ques-
tions: 1) How can we explicitly model complex relationships
between different tasks? 2) Can we design models that learn
interpretable shared structures?

To address these questions, we propose to model the rela-
tionships between language processing tasks using a graph
structure, in which each task is regarded as a node. We take
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inspiration from the idea of message passing (Berendsen,
van der Spoel, and van Drunen 1995, Serlet, Boynton, and
Tevanian 1996, Gilmer et al. 2017, Kipf and Welling 2016),
designing two methods for communication between tasks,
in which messages can be passed between any two nodes
in a direct or an indirect way (Figure 1-(c)). Importantly,
the strength of the relatedness is learned dynamically, rather
than being pre-specified, which allows tasks to selectively
share information when needed.

We evaluate our proposed models on two types of se-
quence learning tasks, text classification and sequence tag-
ging, both well-studied NLP tasks (Li and Zong 2008, Liu,
Qiu, and Huang 2017, Yang, Salakhutdinov, and Cohen
2016). Moreover, we conduct experiments in both the multi-
task setting and in the transfer learning setting to demon-
strate that the shared knowledge learned by our models can
be useful for new tasks. Our experimental results not only
show the effectiveness of our methods in terms of reduced
error rates, but also provide good interpretablility of the
shared knowledge.

The contributions of this paper can be summarized as fol-
lows:

1. We explore the problem of learning the relationship be-
tween multiple tasks and formulate this problem as mes-
sage passing over a graph neural network.

2. We present a state-of-the-art approach that allows multi-
ple tasks to communicate dynamically rather than follow-
ing a pre-defined structure.

3. Different from traditional black-box learned models, this
paper makes a step towards learning transferable and in-
terpretable representations, which enables us to know
what types of patterns are shared.

Message Passing Framework for Multi-task
Communication

We propose to use graph neural networks with mes-
sage passing to deal with the problem of multi-task se-
quence learning. Two well-studied sequence learning tasks,
text classification and sequence tagging, are used in our
experiments. We denote the text sequence as X =
{x1, x2, . . . , xT } and the output as Y . In text classifica-
tion, Y is a single label; whereas in sequence labelling,
Y = {y1, y2, . . . , yT } is a sequence.

Assuming that there are K related tasks, we refer to Dk

as a dataset with Nk samples for task k. Specifically,

Dk = {(X(k)
i , Y

(k)
i )}Nk

i=1, (1)

where X(k)
i and Y (k)

i denote a sentence and a correspond-
ing label sequence for task k, respectively. The goal is to
learn a neural network to estimate the conditional probabil-
ity P (Y |X).

Generally, when combining multi-task learning with se-
quence learning, two kinds of interactions should be mod-
elled: the first is the interactions between different words
within a sentence, and the other is the interactions across
different tasks.

For the first type of interaction (interaction of words
within a sentence), many models have been proposed by
applying a composition function in order to obtain rep-
resentation of the sentence. Typical choices for defining
the composition function include recurrent neural networks
(Hochreiter and Schmidhuber 1997), convolutional neural
networks (Kalchbrenner, Grefenstette, and Blunsom 2014),
and tree-structured neural networks (Tai, Socher, and Man-
ning 2015). In this paper, we adopt the LSTM architecture
to learn the dependencies within a sentence, due to their im-
pressive performance on many NLP tasks (Cheng, Dong,
and Lapata 2016). Formally, we refer to ht as the hidden
state of the word at time t, wt. Then, ht can be computed as:

ht = LSTM(xt,ht−1, θ). (2)

Here, the θ represents all the parameters of LSTM.
For the second type of interaction (interaction across dif-

ferent tasks), we propose to conceptualize tasks and their
interactions as a graph, and utilize message passing mech-
anisms to allow them to communicate. Our framework is
inspired by the idea of message passing, which is used ubiq-
uitously in modern computer software (Berendsen, van der
Spoel, and van Drunen 1995) and programming languages
(Serlet, Boynton, and Tevanian 1996). The general idea of
this framework is that we provide a graph network that al-
lows different tasks to cooperate and interact with one an-
other. Below, we describe our conceptualization of the graph
construction process, then we describe the message passing
mechanism used for inter-task communication.

Formally, a graph G can be defined as an ordered pair
G = (V,E), where V is a set of nodes {V1, . . . , Vm} and
E is a set of edges. In this work, we use directed graphs
to model the communication flows between tasks and an
edge is therefore defined as an ordered set of two nodes
(Vi, Vj), i 6= j.

In our models, we represent each task as a node. In addi-
tion, we allow virtual nodes to be introduced. These virtual
nodes do not correspond to a task. Rather, their purpose is to
facilitate communication among different tasks. Intuitively,
the virtual node functions as a mailbox, storing messages
from other nodes and distributing them as needed.

Tasks and virtual nodes are connected by weighted edges,
which represent communication between different nodes.
Previous flat and hierarchical architectures for multi-task
learning can be considered as graphs with fixed edge con-
nections. Our models dynamically learn the weight of each
edge, which allows the models to adjust the strength of the
communication signals.

Message Passing
In our graph structures, we use directed edges to model the
communication between tasks. In other words, nodes com-
municate with each other by sending and receiving mes-
sages over edges. Given a sentence with a sequence of words
(wk

1 , ..., w
k
T ) from task k, we use rkt to represent the aggre-

gated messages that the word of task k at time step t can
get, and we use hk

t to denote the task-dependent hidden rep-
resentation of the word wk

t .
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(a) DC-MTL (b) IC-MTL

Figure 2: Two frameworks for multi-task communication. (a) shows how task A and B send information to task C. Here, we
only present the information flow relating to task C and omit some edges for easy understanding. (b) shows how the mailbox
(shared layer) sends information to task C. The α and β values correspond to the edge weights. α controls the strength of the
association from a word in a source task to a word in the target task while β controls the amount of information we should
take from the shared layer. For example, βC

32 can be understood as: to compute the hidden state h3 of task C, the amount of
information should be taken from the second hidden state of shared layers is βC

32.

Below, we propose two basic communication architec-
tures for message passing, which differ according to whether
they allow direct communication between any pair of tasks
(DC-MTL), or whether the communication is mediated by
an intermediate virtual node (IC-MTL).

1. Direct Communication for Multi-Task Learning
(DC-MTL): in this model, each node can directly send (or
receive) messages to (or from) any other nodes. Specifi-
cally, as shown in Fig.2-(a), we first assign each task a
task-dependent LSTM layer. Each sentence in task k can be
passed to all the other task-dependent LSTMs1 to get corre-
sponding representations h(i)

t , i = 1...K, i 6= k. Then, these
messages will be aggregated as:

r
(k)
t =

∑
i=1...Ks.t.i 6=k

α
(i→k)
t h

(i)
t (3)

Here, α(ki)
t is a scalar, which controls the relatedness be-

tween two tasks k and i, and can be dynamically computed
as:

s
(i→k)
t = f(x

(k)
t ,h

(k)
t−1,h

(i)
t ) (4)

= u(s) tanh(W(s)[xt,h
(k)
t−1,h

(i)
t ]) (5)

where u(s) and W(s) are learnable parameters. And the re-
latedness scores will be normalized into a probability distri-
bution:

αt = softmax(st) (6)

2. Indirect Communciation for Multi-Task Learning
(IC-MTL): the potential limitation of our proposed DC-
MTL model lies in its computational cost, because the num-
ber of pairwise interactions grows quadratically with the
number of tasks. Inspired by the mailbox idea used in the
traditional message passing paradigm (Netzer and Miller
1995), we introduce an extra virtual node into our graph to
address this problem. In this setting, messages are not sent

1At training time, the loss is only calculated and used to com-
pute the gradient for the task from which the sentence is drawn.

directly from one node to another, but are bridged by the vir-
tual node. Intuitively, the virtual node stores the shared mes-
sages across all the tasks; different tasks can put messages
into this global space, then other tasks can take out the use-
ful messages for themselves from the same space. Fig.2-(b)
shows how one task collects information from the mailbox
(shared layer).

In details, we introduce an extra LSTM to act as the vir-
tual node, whose parameters are shared across tasks. Given
a sentence from task k, its information can be written into
the shared LSTM by the following operation:

h
(s)
t = LSTM(x

(k)
t ,h

(s)
t−1, θ

(s)), (7)

where θ(s) denotes the parameters are shared across all the
tasks.

Then, the aggregated messages at time t can be read from
the shared LSTM:

r
(k)
t =

T∑
i=1

β
(k)
t→ih

(s)
i , (8)

where T denotes the length of the sentence and β(k)
t→i is used

to retrieval useful messages from the shared LSTM, which
can be computed in a similar fashion to Equations 5 and 6.

Once the graphs and message passing between the nodes
are defined, the next question to ask is how to update the
task-dependent representation h

(k)
t for node k using the cur-

rent input information xt and the aggregated messages r(k)t .
We employ a gating unit that allows the model to decide
how many aggregated messages should be used for the target
tasks, which avoids unnecessary information redundancy.
Formally, the h

(k)
t can be computed as:

h
(k)
t = LSTM†(xt,h

(k)
t−1, r

(k)
t , θ(k), θ(s)). (9)

The function LSTM† is the same as Eq.2 except that we
replace the memory update step of the inner function in Eq.2
with the following equation:

ht = ot � tanh(ct + gt � (W
(s)
f rt)), (10)
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where W
(s)
f is a parameter matrix, and gt is a fusion gate

that selects the aggregated messages. gt is computed as fol-
lows:

gt = σ(W(s)
r r

(k)
t +W(s)

c ct), (11)

where W
(s)
r and W

(s)
c are parameter matrices.

Task-dependent Layers
Given a sentence X from task k with its label Y (note Y is
either a classification label or sequential labels) and its fea-
ture vector h(k) emitted by the two communication methods
above, we can adapt our models to different tasks by using
different task-specific layers. We call the task-specific layer
as the OUTPUT-LAYER. For text classification tasks, the
commonly used OUTPUT-LAYER is a softmax layer, while
for sequence labelling tasks, it can be a conditional random
field (CRF) layer. Finally, the output probability P (Y |X)
can be computed as:

P (Y |X) = OUTPUT-LAYER(X,h
(k)
T , θ(k)). (12)

Then, we can maximize the above probability to optimize
the parameters of each task:

Lk(X,Y, θ
(k), θ(s)) = −P (Y |X). (13)

Once the loss function for a specific task is defined, we
could compute the overall loss for our multi-task models as
the following:

L =

K∑
k=1

λkLk(X,Y, θ
(k), θ(s)) (14)

where λk is the weight for task k. The parameters of the
whole network are trained over all datasets and the overall
training procedure is presented in Algorithm 1.

Experiments and Results
In this section, we describe our hyperparameter settings and
present the empirical performance of our proposed models
on two types of multi-task learning datasets, first on text
classification, then on sequence tagging. Each dataset con-
tains several related tasks.

Hyperparameters
The word embeddings for all of the models are initialized
with the 200-dimensional GloVe vectors (840B token ver-
sion (Pennington, Socher, and Manning 2014)). The other
parameters are initialized by randomly sampling from the
uniform distribution of [−0.1, 0.1]. The mini-batch size is
set to 8.

For each task, we take the hyperparameters which achieve
the best performance on the development set via a grid
search over combinations of the hidden size [100, 200, 300]
and l2 regularization [0.0, 5E − 5, 1E − 5]. Additionally,
for text classification tasks, we set an equal lambda for each
task; while for tagging tasks, we run a grid search of lambda
in the range of [1, 0.8, 0.5] and take the hyperparameters
which achieve the best performance on the development set.

Algorithm 1 Training Process for Multi-task Learning over
Graph Structures

Require: A set of training tasks {DTi}Ki=1, where Ti is drawn
from p(T )

1: Initialize Θ := {θ(s), θ(k)}
2: while not done do
3: for Tk ∼ p(T ) do
4: Sample a batch of samples BTk = {X,Y } ∈ DTk
5: // Message Passing
6: if Direct-Communication then
7: for Tj ∼ p(T ) do . Tk 6= Tj
8: h

(j→k)
t = LSTM(BTk ,ht−1, θ

(k))
9: end for

10: r
(k)
t =

∑
j α

(j→k)
t h

(j)
t . Aggregating

11: else if Indirect-Communication then
12: h

(s)
t = LSTM(BTk ,h(s)

t−1, θ
(s))

13: r
(k)
t =

∑T
i=1 β

(k)
i→th

(s)
i . Aggregating

14: end if
15: // Node Updating
16: h

(k)
t = LSTM†(xt,h

(k)
t−1, r

(k)
t , θ(k), θ(s))

17: // Task-dependent Output
18: P (Y |X) = OUTPUT-LAYER(X,h

(k)
T , θ(k))

19: end for
20: end while

Based on the validation performance, we choose the size of
hidden state as 200 and l2 as 0.0. We apply stochastic gradi-
ent descent with the diagonal variant of AdaDelta for opti-
mization (Zeiler 2012).

Text Classification
To investigate the effectiveness of multi-task learning, we
experimented with 16 different text classification tasks in-
volving different popular review corpora, such as books, ap-
parel and movie (Liu, Qiu, and Huang 2017). Each sub-task
aims at predicting a correct sentiment label (positive or neg-
ative) for a given sentence. All the datasets in each task are
partitioned into training, validating, and testing with the pro-
portions of 1400, 200 and 400 samples respectively.

We choose several relevant and representative models as
baselines.
• MT-CNN: This model is proposed by (Collobert and We-

ston 2008) with a convolutional layer, in which lookup-
tables are shared partially while other layers are task-
specific.

• FS-MTL: Fully shared multi-task learning framework.
Different tasks fully share a neural layer (LSTM).

• SP-MTL: Shared-private multi-task learning framework
with adversarial learning (Liu, Qiu, and Huang 2017).
Different tasks not only have common layers to share in-
formation, but have their own private layers.
Results on Multi-task Learning: The experimental re-

sults show that our proposed models outperform all single-
task baselines by a large margin, and here we show the av-
eraged error due to the following reasons: 1) it is easier to
show the performance gain of multi-task learning models
over single task models. 2) BiLSTM and stacked LSTM are
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Task Single Task Multiple Tasks Transfer

Avg. MT-CNN FS-MTL SP-MTL DC-MTL* IC-MTL* SP-MTL IC-MTL*

Books 19.2 15.5(−3.7) 17.5(−1.7) 16.0(−3.2) 13.3(−5.9) 13.8(−5.4) 16.3(−2.9) 14.5(−4.7)

Electronics 21.4 16.8(−4.6) 14.3(−7.1) 13.2(−8.2) 11.5(−9.9) 11.5(−9.9) 16.8(−4.6) 13.8(−7.6)

DVD 19.9 16.0(−3.9) 16.5(−3.4) 14.5(−5.4) 13.5(−6.4) 12.0(−7.9) 14.3(−5.6) 14.0(−5.9)

Kitchen 20.1 16.8(−3.3) 14.0(−6.1) 13.8(−6.3) 12.3(−7.8) 11.8(−8.3) 15.0(−5.1) 12.8(−7.3)

Apparel 15.7 16.3(+0.6) 15.5(−0.2) 13.0(−2.7) 13.0(−2.7) 12.5(−3.2) 13.8(−1.9) 13.5(−2.2)

Camera 14.6 14.0(−0.6) 13.5(−1.1) 10.8(−3.8) 10.5(−4.1) 11.0(−3.6) 10.3(−4.3) 11.0(−3.6)

Health 17.8 12.8(−5.0) 12.0(−5.8) 11.8(−6.0) 10.5(−7.3) 10.5(−7.3) 13.5(−4.3) 11.0(−6.8)

Music 23.0 16.3(−6.7) 18.8(−4.2) 17.5(−5.5) 14.8(−8.2) 14.3(−8.7) 18.3(−4.7) 14.8(−8.2)

Toys 16.3 10.8(−5.5) 15.5(−0.8) 12.0(−4.3) 11.0(−5.3) 10.8(−5.5) 11.8(−4.5) 10.8(−5.5)

Video 17.0 18.5(+1.5) 16.3(−0.7) 15.5(−1.5) 13.0(−4.0) 14.0(−3.0) 14.8(−2.2) 13.5(−3.5)

Baby 15.9 12.3(−3.6) 12.0(−3.9) 11.8(−4.1) 10.8(−5.1) 11.3(−4.6) 12.0(−3.9) 11.5(−4.4)

Magazines 10.5 12.3(+1.8) 7.5(−3.0) 7.8(−2.7) 8.0(−2.5) 7.8(−2.7) 9.5(−1.0) 8.8(−1.7)

Software 14.7 13.5(−1.2) 13.8(−0.9) 12.8(−1.9) 10.3(−4.4) 12.8(−1.9) 11.8(−2.9) 11.0(−3.7)

Sports 17.3 16.0(−1.3) 14.5(−2.8) 14.3(−3.0) 12.3(−5.0) 13.3(−4.0) 13.5(−3.8) 12.8(−4.5)

IMDB 17.3 13.8(−3.5) 17.5(+0.2) 14.5(−2.8) 13.0(−4.3) 13.5(−3.8) 13.3(−4.0) 13.3(−4.0)

MR 26.9 25.5(−1.4) 25.3(−1.6) 23.3(−3.6) 21.5(−5.4) 22.0(−4.9) 23.5(−3.4) 22.8(−4.1)

AVG 18.0 15.5(−2.5) 15.3(−2.7) 13.9(−4.1) 12.5(−5.5) 12.7(−5.3) 14.3(−3.7) 13.1(−4.9)

Table 1: Text classification error rates of our models on 16 datasets against typical baselines. The smaller values indicate
better performances. The column of Single Task (Avg.) gives the average error rates of vanilla LSTM, bidirectional LSTM,
and stacked LSTM while the column of Multiple Tasks shows the results achieved by corresponding multi-task models. The
Transfer column lists the results of different models on transfer learning. “*” indicates our proposed models. The numbers in
brackets represent the improvements relative to the average performance (Avg.) of three single task baselines.

also the necessary baselines for IC-MTL, since the combi-
nation of shared and private layers in IC-MTL is similar to
two-layer LSTM.

Table 1 shows the overall results on the 16 different tasks
under three settings: single task, multiple task, and transfer
learning. Generally, we can see that almost all tasks benefit
from multi-task learning, which boosts the performance by
a large margin. Specifically, DC-MTL achieves the best per-
formance, surpassing SP-MTL by 1.4%, which suggests that
explicit communication makes it easier to shared informa-
tion. Although the improvement of IC-MTL is not as large
as DC-MTL, IC-MTL is efficient to train. Additionally, the
comparison between IC-MTL and SP-MTL shows the effec-
tiveness of selectively sharing schema. Moreover, we may
further improve our models by incorporating the adversar-
ial training mechanism introduced in SP-MTL, as it is an
orthogonal innovation to our methods.

Evaluation on Transfer Learning: We next present the
potential of our methods on transfer learning, as we expect
that the shared knowledge learned by our model architec-
tures can be useful for new tasks. In particular, the virtual
node in the IC-MTL model can condense shared informa-
tion into a common space after multi-task learning, which
allows us to transfer this knowledge to new tasks. In order
to test the transferability of the shared knowledge learned
by IC-MTL, we design an experiment following the super-
vised pre-training paradigm. Specifically, we adopt a 16-fold
“leave-one-task-out” paradigm; we take turns choosing 15
tasks to train our model via multi-task learning, then the
learned shared layer is transferred to a second network that is
used to test on the remaining target task k. The parameters
of the transferred layer are kept frozen, and the remaining

parameters of the new network are randomly initialized.
Table 1 shows these results in the “Transfer” column,

in which the task in each row is regarded as the target task.
We observe that our model achieves a 4.9% average im-
provement in terms of the error rate over the single tasking
setting (13.1 vs. 18.0), surpassing SP-MTL by 1.2% in av-
erage (13.1 vs. 14.3). This improvement suggests that our
retrieval method with the selective mechanism (the attention
layer in eq. 8) is more efficient in finding the relevant infor-
mation from the shared space compared to SP-MTL, which
reads the shared information without any selective mecha-
nism and ignores the relationship between tasks.

Sequence Tagging
In this section, we present the results of our models on
the second task of sequence tagging. We conducted exper-
iments by following the same settings as (Yang, Salakhut-
dinov, and Cohen 2016). We use the following benchmark
datasets in our experiments: Penn Treebank (PTB) POS tag-
ging, CoNLL 2000 chunking, CoNLL 2003 English NER.
The statistics of the datasets are described in Table 3.

Results and Analysis: Table 4 shows the performance
of the models on the sequence tagging tasks. DC-MTL and
IC-MTL significantly outperform the three strong multi-task
learning baselines, Specifically, IC-MTL achieves a perfor-
mance gain of 0.53% in terms of F1 score over the best
competitor FS-MTL on the CoNLL2003 dataset, indicating
that our models are able to make use of the shared informa-
tion by modelling the relationship between different tasks.
Our models also achieve slightly better F1 scores on the
CoNLL2000 and PTB datasets when compared to the best
baseline model FS-MTL.
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It  is  not  a  very  flexible  plastic  and  breaks  easily  ,  I  think  the  full  ads  on  website  give  an  wrong  imply

camera toys electronics magazine imdb book

The  strength  of  this  movie  lies  primarily  in  its  aesthetic  quality  ,  not  the  name-brand  director 

music MR imdb sports kitchen apparel

(a) Kitchen Task

(b) Video Task

Figure 3: Illustrations of the most relevant tasks (top 3) for each word in “Kitchen” and “Video” tasks. Here we choose
some typical words to visualize in blue. And the orange words represent the relevant tasks.

Interpretable Sub-Structures Explanations

Short-term Interpretable phrases to be
shared across tasks

Long-term
Interpretable sentence patterns,
they usually determine the
sentence meanings.

Table 2: Multiple interpretable sub-structures learned by shared layers. “senti-words” refers to “boring,
interesting, amazing” etc. “adv-words” refers to “easily, fine, great” etc. “adj-words” refers to
“stable, great, fantastic” etc. These structures show that short-term and long-term dependencies between different
words can be learned, which usually control the sentiment of corresponding sentences.

Dataset Task Training Dev. Test

CoNLL 2000 Chunking 211,727 - 47,377

CoNLL 2003 NER 204,567 51,578 46,666

PTB POS 912,344 131,768 129,654

Table 3: The sizes of the sequence labelling datasets in our
experiments, in terms of the number of tokens.

Model CoNLL2000 CoNLL2003 PTB

LSTM + CRF 94.46 90.10 97.55
MT-CNN 94.32 89.59 97.29
FS-MTL 95.41 90.94 97.55
SP-MTL∗ 95.27 90.90 97.49

DC-MTL 95.49 91.25 97.61
IC-MTL 95.61 91.47 97.69

Table 4: Performance of different models on Chunking,
NER, and POS respectively. All the results without marks
are reported in the corresponding paper. LSTM+ CRF: Pro-
posed by (Huang, Xu, and Yu 2015). MT-CNN: Proposed by
(Collobert and Weston 2008). FS-MTL: Proposed by (Yang,
Salakhutdinov, and Cohen 2016).

Discussion and Qualitative Analysis
In order to obtain more insights and detailed interpretability
of how messages are passed between tasks in our proposed
models, we design a series of experiments targeting the fol-
lowing aspects:

1. Can the relationship between different tasks be learned
by DC-MTL?

2. Are there interpretable structures that the shared layer in
IC-MTL can learn? Are these shared patterns similar to
linguistic structures, and can they be transferred for other
tasks?

Explicit Relationship Learning To answer the first ques-
tion, we visualize the weight αt of DC-MTL in equation 3.
As each task can receive messages from any other task in
DC-MTL, αt directly indicates the relevance of other tasks
to the current task at time step t. As shown in Figure 3,
we analyze the relationships learned by our models on ran-
domly sampled sentences from different tasks. We find that
the relationship between tasks cannot be modelled by a static
score. Rather, it depends on the specific sample and context.
Consider the example sentence in Figure 3-(a), drawn from
the KITCHEN task. Here, the words “easily” and “ads”
are influenced by different sets of external tasks, in which
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those words express sentiment. For example, in the CAM-
ERA and TOYS tasks, “breaks easily” is usually used
to express negative sentiment, while the word “ads” often
appears in the MAGAZINE task to express negative senti-
ment. Figure 3-(b) shows a similar case on “quality” and
“name-brand”.

Interpretable Structure Learning To answer the second
question, we visualize β in equation 8 inside the IC-MTL
model. As different tasks can read information from shared
layers in IC-MTL, visualizing β allows us to analyze what
kinds of sentence structures are shared. Specifically, each
wordw(k)

t can receive shared messages:w(s)
1 ...w(s)

T and the
amount of messages is controlled by the scores β. To illus-
trate the interpretable structures learned by the shared layer
in IC-MTL, we randomly sample several examples from dif-
ferent tasks and visualize their shared structures. Three ran-
dom sampled cases are described as in Figure 4.

From the experiments we conducted in visulizing β in IC-
MTL, we observed the following:
• The proposed model can not only utilize the shared

information across different tasks, but can tell us
what kinds of features are shared. As shown in Ta-
ble 2, the short-term and long-term dependencies be-
tween different words can be captured. For example,
the word “movie” is prone to connecting to emotional
words, such as “boring, amazing, exciting”
while “products” is more likely to make friends with
“stable, great, fantastic”.

• Comparing Figure 4-(b) and (c), we can see how
task SOFTWARE borrows useful information from
task KITCHEN. Concretely, the sentence “I would
have to buy the software again” in the task
“Software” has negative emotion. In this sentence, the
key pattern is “would have”, which does not appear
too much in the training set of SOFTWARE. Fortunately,
the training samples in the task KITCHEN provide more
hints about this pattern.

• As shown in Figure 4-(a) and (b), the shared layer has
learned an informative sentence pattern “would have
to ...” from the training set of task KITCHEN. This
pattern is useful for the sentiment prediction of another
task SOFTWARE, which suggests that we can analyze the
sharabla patterns in an interpretable way for IC-MTL
model.

Related Work
Neural network-based multi-task frameworks have achieved
success on many NLP tasks, such as POS tagging (Yang,
Salakhutdinov, and Cohen 2016, Søgaard and Goldberg
2016), parsing (Peng, Thomson, and Smith 2017, Guo et
al. 2016), machine translation (Dong et al. 2015, Luong et
al. 2015, Firat, Cho, and Bengio 2016), and text classifi-
cation (Liu, Qiu, and Huang 2016, Liu, Qiu, and Huang
2017). However, previous work does not focus on explicitly
modelling the relationships between different tasks. These
models are often trained with an opaque neural component,

I would have to buy the software again

Shared layer

Private layer

We would have to ship the machine to

Shared layer

Private layer

...

...

(a) Shared patterns in “Software”task

(b) Shared patterns in “Kitchen”task

Figure 4: Illustrations of the learned patterns captured by the
shared layer under different tasks. The boldness of the line
indicates the strength β of the relationship. The first sentence
comes from the development set of task SOFTWARE while
the second one belongs to the training set of task KITCHEN.
We choose three typical words “buy”, “software” and
“machine” to visualize in these sampled sentences.

which makes it hard to understand what kind of knowledge
is shared. By contrast, in this paper, we propose to explicitly
learn the communication between different tasks, and learn
some interpretable shared structures.

Before the bloom of neural-based models, non-neural
multi-task learning methods have also been proposed
to model the relationships between tasks. For example,
(Bakker and Heskes 2003) learn to cluster tasks by using
Bayesian approaches. (Kim and Xing 2010) utilizes a given
tree structure to design a regularizer, while (Chen et al.
2010) learns a structured multi-task problem over a given
graph. These models adopt complex learning strategies and
introduce a priori information between different tasks, which
are usually not suitable for sequence modelling. In this pa-
per, we provide a new perspective on how to model the rela-
tionships using distributed graph models and message pass-
ing, which can be learned dynamically rather than following
a pre-defined structure.

The technique of message passing is used ubiquitously
in computer software (Berendsen, van der Spoel, and van
Drunen 1995) and programming languages (Serlet, Boyn-
ton, and Tevanian 1996). Recently, there has also been
growing interest in developing graph neural networks (Kipf
and Welling 2016) or neural message passing algorithms
(Gilmer et al. 2017) for learning representations of irregular
graph-structured data. In this paper, we formulate multi-task
learning as a communication problem over graph structures,
allowing different tasks to communicate via message pass-
ing.

More recently, (Liu and Huang 2018) propose to learn
multi-task communication by explicitly passing gradients.
Both our work try to incorporate inductive bias to multi-
task learning. However, the difference is that we focus on
the structural bias while (Liu and Huang 2018) introduced
an additional loss function.
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Conclusion and Outlook
We have explored the problem of learning the relationships
between multiple tasks, formulating the problem as message
passing over a graph neural network. Our proposed methods
explicitly model the relationships between different tasks
and achieve improved performance in several multi-task and
transfer learning settings. We also show that we can extract
interpretable shared patterns from the outputs of our models.
From our experiments, we believe that learning interpretable
shared structures is a promising direction, which is also very
useful for knowledge transfer.
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