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Abstract

Magnetic Resonance Imaging (MRI) is one of the most dy-
namic and safe imaging techniques available for clinical ap-
plications. However, the rather slow speed of MRI acqui-
sitions limits the patient throughput and potential indica-
tions. Compressive Sensing (CS) has proven to be an effi-
cient technique for accelerating MRI acquisition. The most
widely used CS-MRI model, founded on the premise of re-
constructing an image from an incompletely filled k-space,
leads to an ill-posed inverse problem. In the past years, lots
of efforts have been made to efficiently optimize the CS-MRI
model. Inspired by deep learning techniques, some prelimi-
nary works have tried to incorporate deep architectures into
CS-MRI process. Unfortunately, the convergence issues (due
to the experience-based networks) and the robustness (i.e.,
lack real-world noise modeling) of these deeply trained opti-
mization methods are still missing. In this work, we develop
a new paradigm to integrate designed numerical solvers and
the data-driven architectures for CS-MRI. By introducing an
optimal condition checking mechanism, we can successfully
prove the convergence of our established deep CS-MRI op-
timization scheme. Furthermore, we explicitly formulate the
Rician noise distributions within our framework and obtain
an extended CS-MRI network to handle the real-world nosies
in the MRI process. Extensive experimental results verify that
the proposed paradigm outperforms the existing state-of-the-
art techniques both in reconstruction accuracy and efficiency
as well as robustness to noises in real scene.

Introduction
Magnetic Resonance Imaging (MRI) is widely utilized in
clinical applications because of its none-invasive property
and excellent capability in revealing both functional and
anatomical information. However, one of the main draw-
backs is the inherently slow acquisition speed of MRI in k-
space (i.e., Fourier space), due to the limitation of hardwares
(Lustig et al. 2008). Compressive sensing MRI (CS-MRI) is
a commonly used technique allowing fast acquisition at data
sampling rate much lower than Nyquist rate without deteri-
orating the image quality.

In the process of MR data acquisition, the sparse k-space
data y can be approximated as the following discretized lin-
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ear system (Eksioglu 2016):

y = PFx + n, (1)

where x ∈ RN is the desired MR image to be reconstructed
from observation y ∈ CM (M < N), F is the Fourier trans-
form, P ∈ RM×N denotes the under-sampling operation,
and n ∈ CM represents the acquisition noises. It is easy to
find that estimating x from Eq. (1) is actually ill-posed, due
to the singularity of PF. Thus the main challenge for CS-
MRI lies in defining proper regularizations and proposing
corresponding nonlinear optimization or iterative algorithm
for the inverse problem. According to CS theory, the most
typical CS-MRI reconstruction techniques attempt to opti-
mize the following nonsmooth regularized model:

α ∈ arg min
α

1

2
‖PFAα−y‖22+λ‖α‖p, (2)

where α denotes the sparse code of x, corresponding to the
wavelet basis (denoted as A, so we actually have x = Aα)
of a given inverse wavelet transform (usually implemented
by DCT or DWT) and λ indicates the trade-off parame-
ter. In this work, we consider the `p regularization with
p ∈ (0, 1), thus actually need to address a challenging non-
convex sparse optimization task.

Related Works
In a conventional way, some effects are in exploring the
sparse regularization in specific transform domain (Qu et al.
2012; Lustig, Donoho, and Pauly 2007; Gho et al. 2010).
In addition, algorithms based on the nonlocal processing
paradigm aim to construct a better sparsity transform, (Qu
et al. 2014; Eksioglu 2016). Some dictionary learning based
methods focus on training a dictionary from reference im-
ages in the related subspace (Ravishankar and Bresler 2011;
Babacan et al. 2011; Zhan et al. 2016). These model-
based CS-MRI methods give satisfying performances in de-
tails restoration benefiting from the model based data prior.
While most of them are based on a sparsity introducing `1
norm or `0 norm, which have weaker abilities to describe the
sparsity in real sense and the insufficient sparse regulariza-
tion may introduce artifacts. What’s more, lacking of data
dependent prior, such methods have limitation in handling
particular structure of the problem or specific data distribu-
tion in real scene.
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Recently, some preliminary studies on deep learning
based CS-MRI have attracted great attentions (Wang et al.
2016; Lee, Yoo, and Ye 2017; Schlemper et al. 2018). At
the expense of sacrificing principled information, such tech-
niques benefit an extremely fast feed-forward process with
the aid of deep architecture, but are not as flexible as the
model based ones to handle various distributions of data.

To absorb the advantages of principled knowledge and
data-driven prior, techniques are proposed integrating the
deep architecture into an iterative optimization process (Liu
et al. 2017; 2018a; 2018c; 2018b). By introducing learnable
architectures into the Alternating Direction Method of Mul-
tipliers (ADMM) iterations, they proposed an ADMM-Net
to address the CS-MRI problem. In (Diamond et al. 2017)
unrolled Optimization with Deep Priors (ODP) is proposed
to integrate CNN priors into optimization process. It has
been demonstrated that these deep priors can significantly
improve the reconstruction accuracy. But unfortunately, due
to their naive unrolling schemes (i.e., directly replace iter-
ations by architectures), the convergence of these deep op-
timization based CS-MRI methods cannot be theoretically
guaranteed. Even worse, no mechanism is proposed to con-
trol the errors generated by nested structures. Thus these
methods may completely failed if improper architectures are
utilized during iterations.

Except for the aforementioned problems, one concern but
yet remain unsolved issue is the noise in MR images under
real scene. During the practical acquisition of MR data, both
real and imaginary parts of the complex data in k-space may
be corrupted with uncorrelated zero-mean Gaussian noise
with equal variance (Rajan et al. 2012). Thus the actual ac-
quired magnitude MR image xn is given as follows:

xn =
√

(xc + n1)2 + n2
2, (3)

where xc denotes the noise-free signal intensity, and
n1,n2 ∼ N (0, σ2) represent the uncorrelated real and
imaginary components of Gaussian noise, respectively. No-
tice that the noise in magnitude MR image xn no longer
follows the Gaussian distribution, but a Rician one.

Respectable effects for removing Rician noise from MR
data have been made in several ways (Wiest-Daesslé et al.
2008; Manjón et al. 2010; Chen and Zeng 2015; Liu and
Zhao 2016), but rather few studies on CS-MRI take into
account the presence of actual noise in MR images. Ei-
ther these CS-MRI methods consider only noiseless MR im-
ages or treat the noise as a Gaussian one (Sun et al. 2016;
Yang et al. 2018a). To the best of our knowledge, to date
this matter has not been well solved in real sense.

Contributions
As discussed above, one of the most important limitations
of existing deep optimization based CS-MRI methods (e.g.,
(Sun et al. 2016) and (Diamond et al. 2017)) is the lack
of theoretical investigations. To address the aforementioned
issues, in this paper, we propose a new deep algorithmic
framework to optimize the CS-MRI problem in Eq. (2).
Specifically, by integrating domain knowledge of the task
and learning-based architectures, as well as checking the op-
timal conditions, we can strictly prove the convergence of

our generated deep propagations. Moreover, due to the com-
plex noise distributions (i.e., Rician), it is still challenging
to directly apply existing CS-MRI methods to tasks in real-
world scenarios. Thanks to the flexibility of our paradigm,
we further extend the propagation framework to adaptively
and iteratively remove Rician noise to guarantee the robust-
ness of the MRI process. Our contributions can be summa-
rized as follows:
• To our best knowledge, this is the first work that could

establish theoretically convergent deep optimization algo-
rithms to efficiently solve the nonconvex and nonsmooth
CS-MRI model in Eq. (2). Thanks to the automatic check-
ing and feedback mechanism (based on first-order opti-
mality conditions), we can successfully reject improper
nested architectures, thus will always propagate toward
our desired solutions.

• To address the robustness issues in existing CS-MRI ap-
proaches, we also develop an extended deep propagation
scheme to simultaneously recover the latent MR images
and remove the Rician nosies for real-world MRI process.

• Extensive experimental results on real-world benchmarks
demonstrate the superiority of the proposed paradigm
against state-of-the-art techniques in both reconstruction
accuracy and efficiency, as well as the robustness to com-
plex noise pollution.

Our Paradigm for CS-MRI
In this section, we design a theoretically converged deep
model to unify various of fundamental factors which affect
the performance of CS-MRI. Different from most existing
deep approaches, all of the fidelity knowledge, data-driven
architecture, manual prior and optimality condition are com-
prehensively taken into consideration in our deep frame-
work. Meanwhile, the theoretical convergence is guaran-
teed by our optimal checking mechanism. Inspired by recent
studies (Liu et al. 2017; 2018a; Yang et al. 2018b), proximal
gradient algorithm is utilized in this work to achieve an effi-
cient optimization.
Fidelity Module: Fidelity plays an important role in reveal-
ing the intrinsic genesis of problem, which is commonly
adopted in traditional hand-crafted approaches. Actually,
by given a reason manner to solve the fidelity term (i.e.,
1
2‖PFAα−y‖22 in Eq. (2)), we can generate a rough recon-
struction. Rather than introducing additional complex con-
strains, here we just integrate the current restoration αk with
the fidelity and consider the following subproblem:

uk+1 = arg min
u

1

2
‖PFAu−y‖22+

ρ

2
‖u−αk‖22, (4)

where ρ denotes the weight parameter and A contains a
wavelet basis corresponding to an inverse wavelet transform.
Eq. (4) provides a balance of αk and fidelity term, thus
an additional benefit is that the restoration αk can be cor-
rected by the fidelity while αk is out of the desired descent
direction. Benefiting from the continuity of the function in
Eq. (4), a closed solution can be derived through Eq. (5):

uk+1=F
(
αk;ρ

)
=ATFT

(
PTP+ρI

)−1(
PTy+ρFAαk

)
.
(5)
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Data-driven Module: Inspired by the deep methods which
can effectively simulate the data distribution by training nu-
merous paired input and output. A learning based module
with deep architecture is taken into account to utilize the
implicit data based distribution. Notice that previous work
has demonstrated an insufficient sparsity representation in
the pre-defined sparse transform will introduce artifacts dur-
ing the process (Knoll et al. 2011; Liang et al. 2011). Fur-
thermore, the previous fidelity based optimization may also
bring in artifacts. Thus a residual learning network with
shortcut is adopted as a denoiser. We define this module as

vk+1 = N
(
uk+1;ϑk+1

)
, (6)

where ϑk+1 is the parameter of network in the k-th stage.
Notice that here both the input and output are in image do-
main. Thus the transformation between image and sparse
code is incorporated into the network. In the experiments
section, we will give a concrete example of the choice for
such CNN denoiser.
Optimal Condition Module: Two major arguments aris-
ing with data-driven module are: 1) whether the direction
generated by deep architecture can satisfy the convergence
analysis (i.e., updating along a descent direction); 2) losing
the empirical prior, whether the output of network trends to
search a desired optimality solution.

To clarify above doubts, a checking mechanism based on
first-order optimal condition is proposed to indicate whether
the updating by deep architecture is satisfied and which vari-
able should be adopted in the next iterations. First, we intro-
duce a proximal gradient with momentum term to connect
the output of data-driven network with the first-order opti-
mal condition of a constructed minimization energy. Here,
we define the momentum proximal gradient1 as

βk+1∈proxη1λ‖·‖p
(
vk+1−η1

(
∇f
(
vk+1

)
+ρ
(
vk+1−αk

)))
,

(7)
where η1 is the step-size and f denotes the fidelity term in
Eq. (2). Then we establish feedback mechanism by consid-
ering the first-order optimal condition of Eq. (7) as

‖vk+1 − βk+1‖ ≤ εk‖αk − βk+1‖. (8)

Here, εk is a positive constant to reveal the tolerance scale of
the distance between current solution βk+1 and the last up-
dating αk at the k-th stage. Finally, αk is also re-considered
when Eq. (8) is not satisfied. Thus, our checking module can
be simplified as

wk+1 = C(vk+1,αk) =

{
βk+1 Eq. (8)
αk otherwise. (9)

Prior Module: Manual sparse prior is a widely used com-
ponent to constrain the desired solution in traditional opti-
mization. It also naturally describes the distribution of MRI.
Thus, it makes sense to introduce the sparsity for a better
CS-MRI restoration. We append a prior module after check-
ing mechanism to pick the penalty term λ‖v‖p in Eq. (2) up
again. Considering the nonconvexity of `p-norm regulariza-
tion, we solve it by a step of proximal gradient as following:

1proxηλ‖·‖p(v) = argminx λ‖x‖p + 1
2
‖x− v‖2.

Algorithm 1 The proposed framework
Require: x0,P,F,y, and some necessary parameters.
Ensure: Reconstructed MR image x.

1: while not converged do
2: uk+1 = F

(
αk; ρ

)
,

3: vk+1 = N
(
uk+1;ϑk+1

)
,

4: wk+1 = C
(
vk+1,αk

)
,

5: αk+1 = P
(
wk+1; η2

)
,

6: end while
7: x = Aα∗.

αk+1 =P
(
wk+1;η2

)
∈proxη2λ‖·‖p

(
wk+1−η2∇f

(
wk+1

))
,

(10)
where η2 is the step-size. In this way, we can enhance the
effect of original model and naturally correct over-smooth
and preserve more details.

Considering all the aforementioned settlements, we can
reconstruct the fully-sampled MR data by iteratively solving
corresponding subproblems as showed in Alg. 1. We restore
the clear MRI by the final estimation α∗.

Theoretical Investigations
Different from existing deep optimization strategies (Sun et
al. 2016; Diamond et al. 2017), which discard the conver-
gence guarantee in iterations and almost rely on the distribu-
tion of training data. Our scheme not only merges the tradi-
tional designed model optimization about fidelity and sparse
prior, but also introduces the learnable network architecture
into our deep optimization framework. Furthermore, we also
provide an effective mechanism to discriminate whether the
output of network in current iteration is a desired descent
direction. In the following, we will analyze the strict conver-
gence behavior of our method.

To simplify the following derivations, we first rewrite the
function in Eq. (2) as

Φ(α) = 1
2‖PFAα− y‖22 + λ‖α‖p.

Furthermore, we also state some properties about Φ which
are helpful for the convergence analysis as following2:

(1) 1
2‖PFAα− y‖22 is proper and Lipschitz smooth;

(2) λ‖α‖p is proper and lower semi-continuous;
(3) Φ(α) satisfies KŁ property and is coercive.

Then some important Propositions are given to illustrate the
convergence performance of our approach.

Proposition 1 Let
{
αk
}
k∈N and

{
βk
}
k∈N be the se-

quences generated by Alg. 1. Suppose that the error con-
dition ‖vk+1 − αk‖ ≤ εk‖βk+1 − αk‖ in our icheck is
satisfied. Then there exists a sequence {Ck}k∈N such that

Φ(βk+1) ≤ Φ(αk)− Ck‖βk+1 −αk‖2, (11)

where Ck = 1/2η1−Lf/2− (Lf + |ρ− 1/η1|)εk > 0 and
Lf is the Lipschitz coefficient of∇f .

2All the proofs in this paper are presented in (Liu et al. 2018d)
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Proposition 2 If η2 < 1/Lf , let
{
αk
}
k∈N and

{
wk
}
k∈N

be the sequences generated by a proximal operator in Alg. 1.
Then we have

Φ(αk+1) ≤ Φ(wk+1)−(1/(2η2)−Lf/2)‖αk+1−wk+1‖2.
(12)

Remark 1 Actually, the inequality in Propositions 1 and 2
provide a descent sequence Φ(αk) by illustrating the rela-
tionship of Φ(αk) and Φ(wk) as

−∞ < Φ(αk+1) ≤ Φ(wk) ≤ Φ(αk) ≤ Φ(α0).

Thus, the operator C is a key criterion to check whether the
output of our designed network propagates along a descent
direction. Moreover, it also ingeniously builds a bridge to
connect the adjacent iteration Φ(αk) and Φ(αk+1).

Theorem 1 Suppose that
{
αk
}
k∈N be a sequence gener-

ated by Alg. 1. The following assertions hold.
• The square summable of sequence

{
αk+1 −wk+1

}
k∈N

is bounded, i.e.,
∑∞
k=1 ‖αk+1 −wk+1‖2 <∞.

• The sequence
{
αk
}
k∈N converges to a critical point α∗

of Φ.

Remark 2 The second assertion in Theorem 1 implies that{
αk
}
k∈N is a Cauchy sequence, thus it globally converges

to the critical point of Φ.

Real-world CS-MRI with Rician Noises
It is worth noting that robustness is important in CS-MRI.
Unfortunately, most strategies only consider the scenario
without noise thus they usually fail on real-world cases. To
enable our method handle the task of CS-MRI with Rician
noise, we extend our CS-MRI model in Eq. (2) as:

min
x

1
2‖PFz− y‖22 + λ1‖A>1 x‖p + λ2‖A>2 z‖p

s.t. z =
√

(x + n1)2 + n2
2,

(13)

where x, y, n1, and n2 denotes the fully sampled clear MR
image, sparse k-space data, the uncorrelated Gaussian noise
in real and imaginary component respectively. A>1 and A>2
are inverse of the wavelet transform A1 and A2 respectively.
Optimization Strategy: We can rewrite Eq. (13) by splitting
it as the following subproblems:

zk+1 =arg min
z

1
2‖PFz− y‖22 + λ1‖A>1 z‖p

+ρ1
2 ‖z−

√
(xk + n1)2 + n2

2‖22,
(14a)

xk+1 =arg min
x

1
2‖
√

(x+n1)2 + n2
2 − zk+1‖22

+λ2‖A>2 x‖p,
(14b)

where ρ1 is the penalty parameter. Thus, we can subse-
quently tackle each of them with the iterations in Alg. 1 to
solve zk+1 and xk+1 respectively.

For the subproblem Eq. (14a), which aims to reconstruct
the fully sampled noisy MR image from k-space observa-
tion y, we can optimize it similarly with the aforementioned
CS-MRI problem by assuming the fidelity including both
CS and noise (i.,e., two square term), respectively. In terms
of the second subproblem Eq. (14b), the solution is a clear
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Figure 1: Quantitative results of four optimization models.
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Figure 2: Qualitative results of four optimization models.
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Figure 3: Comparisons using various sampling patterns.
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Figure 4: Comparisons under different sampling ratios.

image. We cannot straightly obtain the closed-form solution
due to the quadratic term (x+n1)2. Thus, a learnable strat-
egy is adopted to restore a rough MRI in fidelity module.
Learnable Architecture for Rician Noise Removal: It is
tricky to learn the fidelity module by a residual network for
Rician noise is not additive. To address this trouble, we de-
sign two stage networks based on the relationship of x and
z (i.e., xc and xn in Eq. (3)). First, we design a residual net-
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Table 1: Comparison of time consuming using Radial mask with two different sampling ratios (s).
Sampling Rate Zero-filling TV SIDWT PBDW PANO FDLCP ADMM-Net BM3D-MRI Ours

10% 0.0035 2.0098 14.8269 45.2639 27.9626 84.8494 1.2332 10.8877 0.3167
50% 0.0032 0.7631 5.57611 26.1274 11.1466 83.0681 1.2499 11.5394 0.5633

Zero-filling TV SIDWT PBDW PANO FDLCP ADMM-Net BM3D-MRI Ours

Figure 5: Visualization of the reconstruction error using Cartesian mask with 30% sampling rate.

Ground Truth (PSNR) Zero-filling (22.33) TV (25.22) SIDWT (25.10) PBDW (27.39)

PANO (28.77) FDLCP (29.78) ADMM-Net (27.91) BM3D-MRI (29.35) Ours (30.48)

Figure 6: Qualitative comparison on T1-weighted brain MRI data using Gaussian mask with 10% sample rate.

work to learn (xc+n1)2 from x2
n (i.e., (xc+n1)2 +n2

2). To
release the square operator under xc, we train the other one
by feeding

√
(xc + n1)2 and xc as input and output.

Experimental Results
In this section, we first explore the roles of each module and
theoretical results in our paradigm. To demonstrate the supe-
riority of our method, we then compare it with some state-
of-the-art techniques on both traditional and real-world CS-
MRI. All experiments are executed on a PC with Intel(R)
Gold 6154 CPU @ 3.00GHz 256 GB RAM and a NVIDIA
TITAN Xp. Notice that we perform p = 0.8 in experiments.

CS-MRI Reconstruction
We first analyze the effects of modules and verify the theo-
retical convergence by ablation experiments. Then we per-
form comparisons on traditional CS-MRI in perspective of
reconstruction accuracy, time consuming and robustness.
Ablation Analysis: First we compare four different com-
binations of modules in our framework. The first one is to
reconstruct directly with the prior module to figure out the
role of a manual prior, the second one is to integrate the data-
driven module with the fidelity module to explore the effect
of data based distribution, and the third choice is combina-
tion of these three modules. Adding the optimal condition

module, we get the entire paradigm as the last choice. For
convenience, we refer them as P , F→N , F→N→P and
Ours respectively. We apply these strategies on T1-weighted
data using Ridial sampling pattern with 20% sampling rate.
The stopping criteria is set as ‖xk+1−xk‖/‖xk‖ ≤ 1e− 4.

As shows in Fig. 1, at the first several iterations, the loss
of P is slightly larger than that of F→N . Because the in-
put is corrupted with severe artifacts, thus the role of data-
driven module is significant at the first several steps. But as
process goes on, repeated denoising operation in turn causes
over-smoothing. While module P can make up for it by in-
corporating model based knowledge. Though F→N →P
can improve the performance, it cannot ideally converge to
a desired solution. The solid line indicates the superiority
of Ours over other choices in both convergence rate and re-
construction accuracy. The execution time of P , F→N ,
F → N → P and Ours is 4.4762s, 3.3240s, 6.2760s and
2.5225s, respectively. As expect, the proposed method pro-
vides a much faster reconstruction process. Thus we can ver-
ify that our framework has higher efficiency both in terms
of theoretical convergence and practical execution time. The
visualized results in Fig. 2 also verify that Ours has better
performance than others.
Comparisons with Existing Methods: In this section, we
compare with three traditional CS-MRI approaches includ-
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Table 2: Comparison on different testing data using Cartesian mask at a sampling rate of 30%
MRI Data Zero-filling TV SIDWT PBDW PANO FDLCP ADMM-Net BM3D-MRI Ours

Chest 22.95 24.43 24.17 25.91 27.73 26.84 25.38 26.27 28.22
Cardiac 23.40 29.17 27.49 31.34 33.14 33.84 31.42 31.44 35.69
Renal 24.32 28.77 27.66 31.05 32.21 33.74 31.13 31.01 34.79

Ground Truth (PSNR) PANO (27.73) FDLCP (26.84) BM3D-MRI (26.27) Ours (28.22)

Figure 7: Qualitative comparisons on chest data using Cartesian mask with 30% sampling rate.
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Figure 8: Comparison of robustness. Left and right subfig-
ures represent the results of T1-weighted and T2-weighted
data, respectively.

Noisy BM3D-MRI RiceOptVST Our Denoiser

Figure 9: Comparison between our denoiser (PSNR:31.72)
and RiceOptVST (PSNR:30.34) for denoising.

ing Zero-filling (Bernstein, Fain, and Riederer 2001), TV
(Lustig, Donoho, and Pauly 2007) and SIDWT (Baraniuk
2007), and five state-of-the-art like PBDW (Qu et al. 2012),
PANO (Qu et al. 2014), FDLCP (Zhan et al. 2016), ADMM-
Net (Sun et al. 2016) and BM3D-MRI (Eksioglu 2016). 25
T1-weighted MRI data and 25 T2-weighted MRI data are
randomly chosen from 50 subjects in IXI datasets3 as the
testing data. In the experiment process, the parameter ρ in
module F is set as 5 and the noise level of network in mod-
ule N ranges from 3.0 to 50.0. Parameter L (η = 2/L), λ
and p in modules C and P are set as 1.1, 0.00001 and 0.8,
respectively. The number of total iterations is 50. As for the

3http://brain-development.org/ixi-dataset/

parameters of comparative approaches, we adopt the most
proper settings as suggested in their papers for fairness.

First, we test on 25 T1-weighted MRI data using three
different undersampling patterns with a fixed 10% sam-
pling rate. Fig. 3 shows the quantitative results (PSNR). Our
method performs best for all three cases and has stronger sta-
bility compared with the second best method on variance. As
for the effect of sampling ratios variation, we use radial mask
under 10%, 30% and 50% sampling rates with evaluation of
RLNE and MSE. Fig. 4 shows that our method has the low-
est reconstruction error for all sampling rates. For more in-
tuitive comparison, we illustrate the reconstruction error in
term of pixels in Fig. 5. We also offer the qualitative com-
parison in Fig. 6. Visualized results demonstrate our method
has better performance in both artifacts removing and details
restoration. Time consuming is also considered. We com-
pare our method with others on the 25 T1-weighted data us-
ing Radial mask with 10% and 50% sampling rate. Notice
that ADMM-Net and ours are tested on GPU for the incor-
poration of deep architecture. Tab. 1 shows that our method
provides an efficient reconstruction process and comes to the
fastest method among the state-of-the-art competitors.

To demonstrate the robustness of our approach, we first
apply it on various MRI data including the chest, cardiac and
renal (Yazdanpanah and Regentova 2017). In Tab. 2, Our
proposed framework gives the highest PSNR for all of the
tree types of MR images. Fig. 7 visualizes the correspond-
ing results for chest data. we can see that our approach pre-
vails over others in detail restoration at the junction of blood
vessels as well as noise removal in the background. Actu-
ally, our method has a stronger ability to handle slight noise
because of the subprocess of learning based optimization
with deep prior. To demonstrate that, we add Rician noise
at level of 20 to 25 T1-weighted MRI and 25 T2-weighted
MRI to generate the noisy data. As what is shown in Fig. 8,
our method over leads all the competitors by a large margin
when the input is corrupted with Rician noise.
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Table 3: Comparison between our framework and traditional CS-MRI methods followed by a denoiser.
MRI Data Denoiser Zero-filling TV SIDWT PBDW PANO FDLCP ADMM-Net BM3D-MRI Ours

T1-weighted RiceOptVST 24.11 25.51 25.78 26.65 27.08 25.66 26.36 27.36 28.05Our Denoiser 24.62 25.71 25.94 26.83 27.30 25.59 26.49 27.64

T2-weighted RiceOptVST 25.40 27.83 28.37 29.13 29.22 27.55 29.14 29.67 30.77Our Denoiser 26.36 28.20 28.68 29.46 29.64 27.44 29.45 30.34

Ground Truth (PSNR) FDLCP (25.72) ADMM-Net (26.29) BM3D-MRI (27.41) Ours (28.42)

Figure 10: Qualitative comparison between our framework and traditional CS-MRI methods.

Table 4: Comparison between four types of CNN denoiser.
Denoiser1Denoiser2Denoiser3Our Denoiser

Denoising 35.15 27.69 29.78 35.06
Reconstruction 17.44 19.25 24.41 28.71

Real-world CS-MRI
We further explore the performance of our approach on real-
world CS-MRI with Rician noise and the parameters ρ1, λ1
and λ2 in Eq. (13a) and Eq. (13b) are set as 0.01, 1.0 and
1.0, respectively.
Rician Network Behavior: In the learnable architecture, the
first stage is to get (xc +n1)2 and the second stage is to ob-
tain the desired noise-free data xc in Eq. (3). At the training
stage, we generate Rician noisy input data with σ = 20 us-
ing 500 T1-weighted MR images randomly picked from the
MICCAI 2013 grand challenge dataset4.

To verify the effectiveness of our learnable Rician net-
work, we offer some other possible ways to obtain the xc
from xn through deep learning. Denoiser1 directly learns the
difference between xn and xc. Denoiser2 learns the Gaus-
sian noise existing in the real and imaginary parts separately.
Denoiser3 treats the Rician noise as a Gaussian one. For all
the four types of denoisers, we use the same network ar-
chitecture as IRCNN (Zhang et al. 2017). Tab. 4 shows that
Denoiser1 gives comparable performance in denoising, but
performs the worst for real-world CS-MRI. On the contrary,
our learnable architecture gives a much better result than
other methods. It is because the Rician noise is not additive
noise. Directly estimation from the difference of xc and xn
may cause error especially when the noise in the background
is large. We also compare with the classical Rician denoising
technique RicieOptVST5 (Foi 2011) to evaluate our learn-

4http://masiweb.vuse.vanderbilt.edu/workshop2013/index.php
/Segmentation Challenge Details

5http://www.cs.tut.fi/ foi/RiceOptVST/#ref software

able architecture. Fig. 9 shows our learnable architecture has
a better performance in removing the noise on background,
indicating that we can also take the learnable architecture to
address pure Rician denoising issues.
Benchmark: We then compare our method with other CS-
MRI techniques on the task of CS-MRI with noise. The
T1-weighted and T2-weighted MRI data in IXI dataset are
adopted as test benchmark. Since the compared methods
don’t have mechanism to handle Rician noise, we separately
assign a classical Rician noise remover RicieOptVST and
our learnable architecture for them to execute the denois-
ing after CS reconstruction. As shows in Tab. 3, our CS-
MRI framework has superiority against others based on both
RicieOptVST and our network. Furthermore, the choice of
taking our learnable architecture as the denoiser performs
better than that of taking RiceOptVST and the last column
shows that the proposed framework surpasses all the com-
binations. In Fig. 10, we can have a more intuitive under-
standing to the reconstruction comparison. More details are
preserved in our framework than competitive approaches.

Conclusions
We propose a theoretically converged deep optimization
framework to efficiently solve the nonconvex and nons-
mooth CS-MRI model. Our framework can take advantage
of fidelity, prior, data-driven architecture and optimal con-
dition to guarantee the iterative variables converge to criti-
cal point of the specific model. For real-world CS-MRI with
Rician noise, a learning based architecture is proposed for
Rician noise removal. Experiments demonstrate that the our
framework is robust and superior than others.
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