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Abstract

Incomplete multi-view clustering (IMVC) optimally fuses
multiple pre-specified incomplete views to improve cluster-
ing performance. Among various excellent solutions, the re-
cently proposed multiple kernel k-means with incomplete
kernels (MKKM-IK) forms a benchmark, which redefines
IMVC as a joint optimization problem where the cluster-
ing and kernel matrix imputation tasks are alternately per-
formed until convergence. Though demonstrating promis-
ing performance in various applications, we observe that the
manner of kernel matrix imputation in MKKM-IK would in-
cur intensive computational and storage complexities, over-
complicated optimization and limitedly improved clustering
performance. In this paper, we propose an Efficient and Ef-
fective Incomplete Multi-view Clustering (EE-IMVC) algo-
rithm to address these issues. Instead of completing the in-
complete kernel matrices, EE-IMVC proposes to impute each
incomplete base matrix generated by incomplete views with
a learned consensus clustering matrix. We carefully develop a
three-step iterative algorithm to solve the resultant optimiza-
tion problem with linear computational complexity and the-
oretically prove its convergence. Further, we conduct com-
prehensive experiments to study the proposed EE-IMVC in
terms of clustering accuracy, running time, evolution of the
learned consensus clustering matrix and the convergence. As
indicated, our algorithm significantly and consistently outper-
forms some state-of-the-art algorithms with much less run-
ning time and memory.

Introduction
Multi-view clustering (MVC) optimally integrates features
from different views to improve clustering performance
(Bickel and Scheffer 2004). It has been intensively stud-
ied and widely applied into various applications during
the last few decade (Yu et al. 2012; Li, Jiang, and Zhou
2014; Du et al. 2015; Liu et al. 2016; Li et al. 2016;
Liu et al. 2017b; Li et al. 2015; Cai, Nie, and Huang 2013;
Tao, Liu, and Fu 2017; Liu et al. 2013; Zhang et al. 2015;
Tao et al. 2017). All these MVC algorithms assume that the
views of samples are observable. However, in some practi-
cal applications (Kumar et al. 2013; Xiang et al. 2013), this
assumption may not hold anymore due to the absence of par-
tial views among samples. The violation on this assumption
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makes the aforementioned MVC algorithms not applicable
to handle incomplete multi-view clustering (IMVC) tasks.

Many efforts have been devoted to addressing IMVC,
which can roughly be grouped into two categories. In the
first category, the incomplete views are firstly filled with
an imputation algorithm such as zero-filling, mean value
filling, k-nearest-neighbor filling, expectation-maximization
(EM) filling (Ghahramani and Jordan 1993) and other ad-
vanced ones (Trivedi et al. 2010; Xu, Tao, and Xu 2015;
Shao, He, and Yu 2015; Bhadra, Kaski, and Rousu 2016;
Yin, Wu, and Wang 2015). A standard MVC algorithm is
subsequently applied into these imputed views to perform
clustering tasks. This kind of algorithms are termed “two-
stage” ones, where the imputation and clustering processes
are separately carried out. By observing that the above-
mentioned “two-stage” algorithms disconnect the processes
of imputation and clustering, the other category, termed as
“one-stage”, puts forward to unify imputation and cluster-
ing into a single optimization procedure and instantiate a
clustering-oriented algorithm termed as multiple kernel k-
means with incomplete kernels (MKKM-IK) algorithm (Liu
et al. 2017a). Specifically, the clustering result at the last it-
eration guides the imputation of absent kernel elements, and
the latter is used in turn to conduct the subsequent clustering.
By this way, these two procedures are seamlessly connected,
with the aim to achieve better clustering performance.

Of the above-mentioned IMVC algorithms, the “one-
stage” methods form a benchmark, where the incomplete
views are optimized to best serve clustering. The main con-
tribution of these methods is the unification of imputation
and clustering, so that the imputation would be meaning-
ful and beneficial for clustering. It has been demonstrated
that the “one-stage” methods can achieve promissing clus-
tering performance in various applications (Liu et al. 2017a;
Zhu et al. 2018), but they also suffer from the following non-
ignorable drawbacks. i) High computational and storage
complexities. Its computational and storage complexities are
O(n3) and O(mn2) per iteration, respectively, where n and
m are the number of samples and views. It prevents them
from being applied to large-scale clustering tasks. ii) Over-
complicated imputation. Existing “one-stage” methods di-
rectly impute multiple incomplete similarity matrices, in
which the number of variables increases quadratically with
the number of samples for each view. This could make the
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whole optimization over-complicated and also considerably
increase the risk of falling into a low-quality local minimum.
iii) Limitedly improved clustering performance. Note that a
clustering result is determined by a whole similarity matrix
in (Liu et al. 2017a). As a result, the imputation to an in-
complete similarity matrix has impact to the clustering of
all samples, no matter whether a sample is complete or not.
When an imputation is not of high quality, it could adversely
affect the clustering performance of all samples, especially
for those with complete views.

All of the above issues signal that directly imputing the
incomplete similarity matrices seems to be problematic and
that a more efficient and effective approach shall be taken.
In this paper, we propose Efficient and Effective Incomplete
Multi-view Clustering (EE-IMVC) to address these issues.
EE-IMVC imputes each incomplete base clustering matrix
generated by performing clustering on each separated in-
complete similarity matrix, instead of itself. These imputed
base clustering matrices are then used to learn a consensus
clustering matrix, which is then employed to impute each
incomplete base clustering matrix. These two steps are al-
ternately performed until convergence. This idea is fulfilled
by maximizing the alignment between the consensus clus-
tering matrix and an adaptively weighted base clustering
matrices with an optimal permutation. We design a simple
and computationally efficient algorithm to solve the resul-
tant optimization problem by three singular value decom-
position (SVD) per iteration, and analyze its computational
and storage complexities and theoretically prove its conver-
gence. After that, we conduct comprehensive experiments
on four benchmark datasets to study the properties of the
proposed algorithm, including the clustering accuracy with
the various missing ratios, the running time with the various
number of samples, the evolution of the learned consensus
matrix with iterations and the objective value with iterations.
As demonstrated, EE-IMVC significantly and consistently
outperforms the state-of-the-art methods in terms of cluster-
ing accuracy with much less running time.

Related Work
Let {xi}ni=1 ⊆ X be a collection of n samples, and φp(·) :
x ∈ X 7→ Hp be the p-th feature mapping that maps x
onto a reproducing kernel Hilbert space Hp (1 ≤ p ≤ m).
In the multiple kernel setting, each sample is represented
as φβ(x) = [β1φ1(x)

>, · · · , βmφm(x)>]>, where β =
[β1, · · · , βm]> consists of the coefficients of them base ker-
nels {κp(·, ·)}mp=1. These coefficients will be optimized dur-
ing learning. Based on the definition of φβ(x), a kernel func-
tion can be expressed as κβ(xi,xj) = φβ(xi)

>φβ(xj) =∑m
p=1 β

2
pκp(xi,xj). A kernel matrix Kβ is then calculated

by applying the kernel function κβ(·, ·) into {xi}ni=1. Based
on the kernel matrix Kβ =

∑m
p=1 β

2
pKp, the objective of

MKKM can be written as

min H,β Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k, H>H = Ik,

β>1m = 1, βp ≥ 0,∀p,
(1)

where Ik is an identity matrix with size k and k is the num-
ber of clusters.

The optimization problem in Eq. (1) can be solved by al-
ternately updating H and β. Specifically, H is updated by
given β, and β is then optimized with updated H. These
two steps are alternately performed until convergence.

The recently proposed MKKM-IK (Liu et al. 2017a) has
extended the existing MKKM in Eq. (1) to enable it to han-
dle multiple kernel clustering with incomplete kernels. It
unifies the imputation and clustering procedure into a sin-
gle optimization objective and alternately optimizes each of
them. That is, i) imputing the absent kernels under the guid-
ance of clustering; and ii) updating the clustering with the
imputed kernels. The above idea is mathematically fulfilled
as,

minH, β, {Kp}mp=1
Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k,H>H = Ik,

β>1m = 1, βp ≥ 0,

Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p,

(2)

where sp (1 ≤ p ≤ m) denote the sample indices for which
the p-th view is present and K

(cc)
p be used to denote the ker-

nel sub-matrix computed with these samples. The constraint
Kp(sp, sp) = K

(cc)
p is imposed to ensure that Kp maintains

the known entries during the course. Different from the opti-
mization in MKKM, (Liu et al. 2017a) incorporates an extra
step to impute the missing entries of base kernels, leading
to a three-step alternate optimization algorithm. Interested
readers are referred to (Liu et al. 2017a).

Although MKKM-IK demonstrates excellent clustering
performance in handling incomplete multi-view clustering
tasks (Liu et al. 2017a), it also suffers from the follow-
ing non-ignorable drawbacks. Firstly, from the above opti-
mization procedure, we observe that its computational com-
plexity is O(n3 +

∑m
p=1 n

3
p + m3) per iteration, where

n, np (np ≤ n) and m are the number of all samples, ob-
served samples of p-th view and views. During the learn-
ing procedure, it requires to store m base kernel matrices
with size n. Therefore, its storage complexity is O(mn2).
The relatively high computational and storage complexi-
ties preclude it from being applied to large-scale cluster-
ing tasks. Furthermore, as seen from Eq. (2), there are
1
2 (n− np)(n+ np + 1) elements to be imputed for the p-th
incomplete base kernel matrix Kp(1 ≤ p ≤ m). It unneces-
sarily increases the complexity of the optimization and the
risk of be trapped into a local minimum, adversely affecting
the clustering performance. In addition, note that a cluster-
ing result is determined by a whole similarity matrix in (Liu
et al. 2017a). As a result, the imputation to an incomplete
similarity matrix has impact to the clustering of all samples,
no matter whether a sample is complete or not. This improp-
erly increases the influence of imputation on all samples,
especially for those with complete views. As a result, in-
stead of imputing incomplete similarity matrices {Kp}mp=1,
we propose to impute the incomplete base clustering matri-
ces to address the aforementioned issues. Moreover, we ar-
gue that this imputation is more natural and reasonable since
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all of them reside in a common clustering partition space,
which would produce better imputation and finally improve
the clustering.

Efficient and Effective Incomplete Multi-view
Clustering (EE-IMVC)

In this section, we propose Efficient and Effective Incom-
plete Multi-view Clustering (EE-IMVC) which performs
clustering and imputes the incomplete base clustering matri-
ces simultaneously. We firstly define the p-th (1 ≤ p ≤ m)
base clustering matrix as

Hp = [H(o)
p

>
,H(u)

p

>
]> ∈ Rn×k, (3)

where H
(o)
p ∈ Rnp×k can be obtained by solving kernel k-

means in Eq. (2) with m incomplete base kernel matrices
{Kp(sp, sp)}mp=1, while H

(u)
p ∈ R(n−np)×k denote the in-

complete part of Hp that is required to be filled. Note that
other similarity based clustering algorithms such as spectral
clustering can also be used to generate {H(o)

p }mp=1.
According to the above discussion, EE-IMVC proposes

to simultaneously perform clustering and the imputation of
{H(u)

p }mp=1 while keeping {H(o)
p }mp=1 unchanged during the

learning course. Specifically, it firstly optimizes a consensus
clustering matrix H from imputed {Hp}mp=1, and then fill

the {H(u)
p }mp=1 with H. These two learning processes are

seamlessly integrated. By doing so, they are allowed to co-
ordinate with each other to achieve optimal clustering. The
above idea can be fulfilled as follows,

max
H,{Wp,H

(u)
p ,βp}mp=1

Tr

[
H>

∑m

p=1
βp

(
H

(o)
p

H
(u)
p

)
Wp

]
s.t. H ∈ Rn×k, H>H = Ik,

Wp ∈ Rk×k, W>
p Wp = Ik,

H(u)
p ∈ R(n−np)×k, H(u)

p

>
H(u)
p = Ik,

β ∈ Rm,
∑m

p=1
β2
p = 1, βp ≥ 0,

(4)
where H and H

(u)
p are the consensus clustering matrix and

the missing part of the p-th base clustering matrix, re-
spectively, Wp is the p-th permutation matrix to optimally
match Hp and H, and β = [β1, · · · , βm]> is the adaptive
weights of m base clustering matrices. Note that the orthog-
onal constraints are respectively imposed on H and H

(u)
p

since they are clustering matrices. We also put an orthogo-
nal constraint on Wp because it is a permutation matrix.

Compared with MKKM-IK (Liu et al. 2017a), the objec-
tive function of EE-IMVC in Eq. (4) has the following nice
properties. (1) Less imputation variables: The number of el-
ements needs to be filled for the p-th view is (n− np)× k,
which is much less than 1

2 (n − np) × (n + np + 1) re-
quired by MKKM-IK. This could dramatically simplify the
model and enhance its robustness to optimization. (2) Less
vulnerable to low-quality imputation: In EE-IMVC, cluster-
ing on samples with complete views will not be affected by

the imputation they are kept unchanged during the learning
course. However, it is not the case for MKKM-IK because
it needs to fill all incomplete elements and conduct eign-
decomposition on the whole imputed similarity for cluster-
ing. This is helpful to make the proposed model be more
robust in the whole course of optimization. (3) More rea-
sonable imputation: EE-IMVC utilizes H to complete H

(u)
p

rather than the incomplete base kernels matrices as in (Liu et
al. 2017a), which is more reasonable since both H and H

(u)
p

reside in clustering partition space. Besides, our algorithm is
parameter-free once the number of clusters to form is spec-
ified. These advantages significantly boosts the clustering
performance, as demonstrated in the experimental part.

Alternate Optimization
Jointly optimizing H, {H(u)

p , Wp}mp=1 and β in Eq. (4) is
difficult. In the following, we design a simple and computa-
tionally efficient three-step algorithm to solve it alternately.

Solving H with fixed {Wp,H
(u)
p }mp=1 and β Given

{Wp, H
(u)
p }mp=1 and β, the optimization w.r.t H in Eq. (4)

is equivalent to

maxH Tr
(
H>T

)
s.t. H ∈ Rn×k, H>H = Ik, (5)

where T =
∑m
p=1 βpHpWp. It is a singular value decom-

position (SVD) problem and can be efficiently solved with
computational complexity O(nk2).

Solving {Wp}mp=1 with fixed H, {H(u)
p }mp=1 and β

Given H, {H(u)
p }mp=1 and β, the optimization w.r.t permu-

tation matrix Wp in Eq. (4) equivalently reduces to,

maxWpTr
(
W>

p Qp

)
s.t.Wp ∈ Rk×k, W>

p Wp = Ik,
(6)

where Qp = H>p H. Again, it is a SVD optimization prob-
lem with computational complexity O(k3).

Solving {H(u)
p }mp=1 with fixed {Wp}mp=1, H and β

Given H, {Wp}mp=1 and β, the optimization w.r.t H(u)
p in

Eq. (4) is equivalent to

max
H

(u)
p

Tr
(
H(u)
p

>
Up

)
s.t. H(u)

p ∈ R(n−np)×k, H(u)
p

>
H(u)
p = Ik,

(7)

where Up = H(ŝp, :)W
>
p and ŝp denotes the sample in-

dices for which the p-th view is missing. Once again, it is
a SVD problem and can be efficiently solved with computa-
tional complexity O((n− np)k2).

Solving β with fixed H and {Wp, H
(u)
p }mp=1 Given H

and {Wp, H
(u)
p }mp=1, the optimization w.r.t β in Eq. (4) is

equivalent to

maxβ ν>β s.t. β ∈ Rm,
∑m

p=1
β2
p = 1, βp ≥ 0,

(8)
where ν = [ν1, ν2, · · · , νm] with νp = Tr(H>HpWp).
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As seen, the optimization in Eq. (8) has an analytical so-
lution if νp ≥ 0 (1 ≤ p ≤ m). The following Theorem 1
tells that the optimal weights of each base clustering matrix
can be obtained analytically.

Theorem 1 The optimal solution for Eq. (8) is β? =
ν/‖ν‖.

Proof 1 Let (H(t), {H(t)
p ,W

(t)
p }mp=1) be the solution at the

t-th iteration. We have ν
(t)
p = Tr((H(t))>H

(t)
p W

(t)
p ) =

max
H

(u)
p

Tr
(
(H(t))>[H

(o)
p

>
,H

(u)
p

>
]>W

(t)
p

)
≥ maxWp Tr

(
(H(t))>[H

(o)
p

>
,
(
H

(u)
p

(t−1))>
]>Wp

)
> 0, ∀p. The proof is

completed by taking the derivative of the Lagrangian function of
Eq. (8) on βp and letting it vanish.

Algorithm 1 The Proposed EE-IMVC

1: Input: {H(o)
p , sp}mp=1, k and ε0.

2: Output: H.

3: Initialize W
(0)
p = Ik, H

(u)
p

(0)
= 0, β(0) = 1/

√
m and

t = 1.
4: repeat
5: Update H(t) by solving Eq. (5) with

{W(t−1)
p , H

(u)
p

(t−1)
}mp=1 and β(t−1).

6: Update {W(t)
p }mp=1 with H(t), {H(u)

p

(t−1)
}mp=1 and

β(t−1) by Eq. (6).

7: Update {H(u)
p

(t)
}mp=1 with H(t), {W(t)

p }mp=1 and
β(t−1) by Eq. (7).

8: Update β(t) with H(t), {W(t)
p }mp=1 and

{H(u)
p

(t)
}mp=1 by Eq. (8).

9: t = t+ 1.
10: until

(
obj(t) − obj(t−1)

)
/obj(t−1) ≤ ε0

In sum, our algorithm for solving Eq. (4) is outlined in
Algorithm 1, where obj(t) denotes the objective value at the
t-th iteration. The following Theorem 2 shows that Algo-
rithm 1 is guaranteed to converge to a local maximum.

Theorem 2 Algorithm 1 is guaranteed to converge to a lo-
cal optimum.

Proof 2 Note that for ∀p,Tr(H>[H(o)
p

>
,H

(u)
p

>
]>Wp)≤

1
2 [Tr(H

>H) + Tr(W>
p [H

(o)
p

>
,H

(u)
p

>
][H

(o)
p

>
,H

(u)
p

>
]>

Wp)] = 1
2 [2k + Tr(W>

p H
(o)
p

>
H

(o)
p Wp)]. Note

that the maximum of Tr(W>
p H

(o)
p

>
H

(o)
p Wp) with

constraint W>
p Wp = Ik is

∑k
j=1 λ

j
p, where

{λjp}kj=1 are the k eigenvalue of H
(o)
p

>
H

(o)
p . We have

Tr
(
H>[H

(o)
p

>
,H

(u)
p

>
]>Wp

)
≤ 1

2 [2k +
∑k
j=1 λ

j
p] , ap.

Correspondingly,
∑m
p=1 βpTr(H

>[H
(o)
p

>
,H

(u)
p

>
]>Wp)≤∑m

p=1 βpap, which is upper-bounded by
∑m
p=1 ‖ap‖ due to

the `2-norm constraint on β. Meanwhile, the objective of
Algorithm 1 is guaranteed to be monotonically increased
when optimizing one variable with others fixed at each
iteration. As a result, our algorithm is guaranteed to
converge to a local minimum.

Discussion and Extension
We end up this section by analyzing the computational and
storage complexities, the initialization of {H(u)

p , Wp}mp=1
and potential extensions.

Computational complexity: As seen from Algorithm 1, the
computational complexity of EE-IMVC isO(nk2+m(k3+
(n−np)k2)) per iteration, where n, m and k are the number
of samples, views and clusters, respectively. Therefore, EE-
IMVC has a linear computational complexity with number
of samples, which enables it more efficiently to handle large
scale clustering tasks when compared with MKKM-IK (Liu
et al. 2017a).

Storage complexity: During the learning procedure, EE-
IMVC needs to store H and {Hp, Wp}mp=1. Its storage
complexity isO(nk+mnk+mk2), which is much less than
that of MKKM-IK with O(mn2) since n� k in practice.

Initialization of {H(u)
p , Wp}mp=1: In our current imple-

mentation, we simply initialize {H(u)
p }mp=1 as zeros, and

{Wp}mp=1 as identity matrix. This initialization has well
demonstrated superior clustering performance of EE-IMVC
in our experiments. Further exploring other initializations
and studying their influence on the clustering performance
will be an interesting future work.

Extensions: EE-IMVC can be extended from the follow-
ing aspects. Firstly, EE-IMVC could be further improved
by sufficiently considering the correlation among {Hp}mp=1.
For example, we may build this correlation by criteria
such as Kullback-Leibler (KL) divergence (Kato and Rivero
2017) and Hilbert-Schmidt independence criteria (HSIC),
to name just a few. This prior knowledge could provide a
good regularization on mutual base clustering matrix com-
pletion, and would be helpful to improve the clustering per-
formance. Secondly, the way in generating {H(o)

p }mp=1 could
be readily extendable to other similarity based clustering al-
gorithms, such us spectral clustering (von Luxburg 2007).
This could further improve the clustering performance. Last
but not least, the idea of joint imputation and clustering is so
natural that can be generalized to other learning task such as
feature missing.

Experiments
Experimental settings
The proposed algorithm is experimentally evaluated on four
widely used multiple kernel benchmarkdata sets shown in
Table 2. They are Oxford Flower17 and Flower1021, Cal-
tech1022 and Columbia Consumer Video (CCV)3. For these
datasets, all kernel matrices are pre-computed and can be

1http://www.robots.ox.ac.uk/˜vgg/data/flowers/
2http://files.is.tue.mpg.de/pgehler/projects/iccv09/
3http://www.ee.columbia.edu/ln/dvmm/CCV/
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Figure 1: ACC, NMI, Purity and Rand Index comparison with the variation of missing ratios on four benchmark datasets.

Table 1: Aggregated ACC, NMI, purity and rand index comparison (mean±std) of different clustering algorithms on benchmark
datasets.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK LI-MKKM EE-IMVC
(Trivedi et al. 2010) (Liu et al. 2017a) (Zhu et al. 2018) Proposed

ACC
Flower17 37.0± 0.7 36.8± 0.6 37.8± 0.3 40.8± 0.3 44.7± 0.3 47.9± 0.3 52.9± 0.7

Flower102 18.0± 0.2 18.0± 0.2 18.3± 0.1 18.5± 0.1 21.5± 0.2 23.1± 0.2 36.4± 0.2
CCV 16.2± 0.1 16.4± 0.1 16.6± 0.2 17.4± 0.1 18.1± 0.2 18.7± 0.3 23.4± 0.4

Caltech102 14.0± 0.1 14.0± 0.1 15.4± 0.2 15.8± 0.1 17.3± 0.2 22.1± 0.2 31.9± 0.2

NMI

Flower17 37.3± 0.5 37.3± 0.4 38.4± 0.2 40.3± 0.3 43.7± 0.3 46.3± 0.2 51.4± 0.6
Flower102 37.4± 0.1 37.4± 0.1 37.8± 0.1 37.7± 0.1 39.6± 0.1 41.7± 0.1 50.8± 0.1

CCV 12.5± 0.1 12.7± 0.1 12.9± 0.1 13.3± 0.1 13.8± 0.2 15.1± 0.2 18.2± 0.2
Caltech102 37.7± 0.1 37.7± 0.1 39.1± 0.1 38.9± 0.1 40.4± 0.2 45.6± 0.1 52.9± 0.1

Purity

Flower17 38.4± 0.6 38.2± 0.5 39.3± 0.3 42.2± 0.3 45.9± 0.7 48.8± 0.3 54.7± 0.7
Flower102 22.5± 0.1 22.4± 0.1 22.9± 0.1 22.9± 0.2 26.0± 0.2 28.0± 0.2 41.8± 0.2

CCV 20.4± 0.1 20.7± 0.1 20.8± 0.1 21.2± 0.1 21.9± 0.2 22.0± 0.2 26.5± 0.4
Caltech102 15.3± 0.1 15.3± 0.1 16.9± 0.1 17.0± 0.1 18.6± 0.2 23.9± 0.1 34.3± 0.2

publicly downloaded from the above websites. Their num-
ber of samples varies from one thousand to over eight thou-
sands, and views from four to 48.

We compare the proposed EE-IMVC with several com-
monly used imputation methods, including zero filling (ZF),

mean filling (MF), k-nearest-neighbor filling (KNN) and the
alignment-maximization filling (AF) proposed in (Trivedi et
al. 2010). The widely used MKKM (Gönen and Margolin
2014) is applied with these imputed base kernels. These
two-stage methods are termed MKKM+ZF, MKKM+MF,
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Table 2: Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

Flower17 1360 7 17
Flower102 8189 4 102
CCV 6773 6 20
Caltech102 3060 48 102

MKKM+KNN and MKKM+AF, respectively. In addition,
we compare with the recently proposed MKKM-IK (Liu et
al. 2017a), which jointly optimizes the imputation and clus-
tering.

For all data sets, it is assumed that the true number
of clusters k is known and it is set as the true number
of classes. We follow the approach in (Liu et al. 2017a;
Zhu et al. 2018) to generate the missing vectors {sp}mp=1.
The parameter ε, termed missing ratio in this experiment,
controls the percentage of samples that have absent views,
and it affects the performance of the algorithms in compar-
ison. To show this point in depth, we compare these algo-
rithms with respect to ε. Specifically, ε on all the datasets is
set as [0.1 : 0.1 : 0.9].

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evalu-
ate the clustering performance. For all algorithms, we repeat
each experiment for 50 times with random initialization to
reduce the effect of randomness caused by k-means, and re-
port the best result. Meanwhile, we randomly generate the
“incomplete” patterns for 30 times in the above-mentioned
way and report the statistical results. The aggregated ACC,
NMI, purity and rand index are used to evaluate the good-
ness of the algorithms in comparison. Taking the aggregated
ACC for example, it is obtained by averaging the averaged
ACC achieved by an algorithm over different ε.

In the following parts, we conduct comprehensive exper-
iments to study the properties of EE-IMVC from the fol-
lowing four aspects: clustering performance, running time,
the evolution of the learned consensus clustering matrix and
convergence.

Clustering Performance
Figure 1 presents the ACC and NMI comparison
of the above algorithms with different missing ra-
tios on all datasets. We have the following obser-
vations: 1) The recently proposed MKKM-IK (Liu
et al. 2017a) (in green) outperforms existing two-
stage imputation methods. For example, it exceeds the
best two-stage imputation method (MKKM+AF) by
0.1%, 1.2%, 1.7%, 2.7%, 2.8%, 4.4%, 4.7%, 6.9%
and 6.9% in terms of NMI, with the variation of
missing ratios in [0.1, · · · , 0.9] on Flower17. These
results verify the effectiveness of its joint optimiza-
tion on imputation and clustering. 2) The proposed
EE-IMVC significantly and consistently outperforms
MKKM-IK. For example, it improves the latter by
10.7%, 9.7%, 8.7%, 8.2%, 8.0%, 6.5%, 5.9%, 5.5% and
5.6% with the variation of missing ratios in [0.1, · · · , 0.9]

on Flower17. These results verify the effectiveness of im-
puting base clustering matrices rather than kernel matrices.
3) The superiority of EE-IMVC is more significant when
the missing ratio is relatively small. For example, EE-IMVC
improves the second best algorithm (MKKM-IK) by 10.7%
on Flower17 in terms of NMI when the missing ratio is
0.1 (see Figure 1(c)). The curves in terms of purity and
rand index are provided in the supplemental material due to
space limit.

We also report the aggregated ACC, NMI, purity
and rand index, and the standard deviation in Table 1,
where the one with the highest performance is shown
in bold. Again, we observe that the proposed algo-
rithm significantly outperforms MKKM+ZF, MKKM+MF,
MKKM+KNN, MKKM+AF and MKKM-IK. For example,
EE-IMVC exceeds the second best one (MKKM-IK) by
8.3%, 14.9%, 5.3% and 14.7% in terms of clustering accu-
racy on Flower17, Flower102, CCV and Caltech102, respec-
tively. These results are consistent with our observations in
Figure 1.

The above experimental results on these datasets have
well demonstrated that EE-IMVC is superior to some state-
of-the-art in terms of clustering accuracy, NMI, purity and
rand index. We attribute the superiority of EE-IMVC as two
aspects: i) Completing the incomplete base clustering ma-
trices with the consensus one. Different from MKKM-IK
where the consensus clustering matrix H is utilized to fill in-
complete base kernels, EE-IMVC imputes each incomplete
base clustering matrix with H. The latter is more natural and
reasonable since both H and incomplete base clustering ma-
trices reside in the same clustering space, leading to more
suitable imputation. ii) The joint optimization on imputation
and clustering. On one hand, the imputation is guided by the
clustering results, which makes the imputation more directly
targeted at the ultimate goal. On the other hand, this mean-
ingful imputation is beneficial to refine the clustering results.
These factors bring forth the significant improvements on
clustering performance.

Running Time
To compare the computational efficiency of the above-
mentioned algorithms, we design another experiment to
study the relationship between running time and the number
of samples. To see this point in depth, we randomly select
samples from the four benchmark datasets, run the afore-
mentioned algorithms, record their running time, and plot
them in Figure 4. We have the following observations from
these figures: 1) The running time of EE-IMVC is nearly lin-
ear with the number of samples. 2) The superiority of EE-
IMVC is more significant with the increase of samples, in-
dicating its computational efficiency in handling large-scale
clustering tasks. In sum, the experimental results in Figure
4 have well demonstrated the computational advantage of
EE-IMVC.

Effectiveness of the Learned Consensus Matrix
We conduct extra experiments to show the evolution of the
learned consensus clustering matrix H during the learning
procedure. Specifically, we evaluate the NMI of EE-IMVC
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Figure 2: The evolution of the learned consensus clustering matrix H with missing ratio 0.1 on all datasets. The curves with
other missing ratios are similar and we omit them due to space limit.
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Figure 3: The objective value of EE-IMVC with iterations with missing ratio 0.1 on all datasets. The curves with other missing
ratios are similar and we omit them due to space limit.
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Figure 4: Running time comparison of different algorithms with various number of samples with missing ratio 0.1 on all
datasets. The curves with other missing ratios are similar and omitted due to space limit.

based on the H learned at each iteration on Flower102 and
CCV and plot the curves in Figure 2. From these figures,
we observe that the NMI of EE-IMVC gradually increases
to a maximum and generally maintains it up to slight varia-
tion. These experiments have clearly demonstrated the effec-
tiveness of learned consensus clustering matrix, indicating
the advantage of imputing incomplete base clustering matri-
ces, instead of imputing incomplete kernel matrices. Other
curves in terms of ACC and purity have similar trend and
are omitted due to space limit.

Convergence
Our algorithm is theoretically guaranteed to converge ac-
cording to Theorem 2. We record the objective values of EE-
IMVC with iterations on all datasets and plot them in Fig-
ure 3. As observed, the objective value of EE-IMVC does
monotonically increase at each iteration and that it usually
converges in less than 50 iterations.

Conclusion
While the recently proposed MKKM-IK (Liu et al. 2017a)
is able to handle incomplete multi-view clustering, the rela-
tively high computational and space complexities prevent it
from large scale clustering tasks. This paper proposes a late
fusion approach to simultaneously clustering and imputing
the incomplete base clustering matrices. The proposed al-
gorithm effectively and efficiently solves the resultant opti-
mization problem, and demonstrates well improved cluster-
ing performance via extensive experiments on benchmark
datasets. In the future, we plan to explore the correlation
among base clustering matrices and use it to further improve
the imputation.
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