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Abstract

Open-set classification is a common problem in many real
world tasks, where data is collected for known classes, and
some novel classes occur at the test stage. In this paper, we
focus on a more challenging case where the data examples
collected for known classes are all unlabeled. Due to the
high cost of label annotation, it is rather important to train
a model with least labeled data for both accurate classifica-
tion on known classes and effective detection of novel classes.
Firstly, we propose an active learning method by incorporat-
ing structured sparsity with diversity to select representative
examples for annotation. Then a latent low-rank representa-
tion is employed to simultaneously perform classification and
novel class detection. Also, the method along with a fast opti-
mization solution is extended to a multi-stage scenario, where
classes occur and disappear in batches at each stage. Exper-
imental results on multiple datasets validate the superiority
of the proposed method with regard to different performance
measures.

Introduction
In traditional supervised learning tasks, it is commonly as-
sumed that the class labels are identical in the training phase
and test phase. However, in many real applications, the la-
bel set expands as more novel classes occur during the test
phase. For example, in face recognition problem, the model
is trained with data collected for a prefixed set of people, and
then is applied to real environment with many new persons
(Zhang and Patel 2017); in automated genre identification
of web pages, web page genres evolve, and the predefined
genre palette may not cover all the genres existing in a large
corpus during the test phase (Guru et al. 2016).

Such problems are formalized as a learning framework
called open-set classification (Scheirer et al. 2013). In this
framework, training examples are all collected from known
classes, while test examples are from both the known classes
and some other novel classes. The target of open-set classi-
fication is to train a model that on one hand can accurately
classify examples of known classes, and on the other hand
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can successfully detect those from novel classes. Obviously,
this is a much more challenging task than close-set classifi-
cation.

There are some studies trying to solve this problem in
different ways. For example, (Yu et al. 2017; Júnior et
al. 2016) detects novel data by the distance difference be-
tween known data and novel class data, (Masud et al. 2010;
Guru et al. 2016) uses clustering to filter novel class data.
Most of these methods require a large set of annotated ex-
amples from known classes to train the classification model,
which however, is usually unavailable in real cases. Actu-
ally, in real tasks, label annotation is usually expensive and
time costly. Thus a more practical scenario is that we have
a dataset collected from known classes, but all examples are
unlabeled. For example, face images may automatically col-
lected by detecting faces from a video of a known set of
people, but not precisely annotated with person ID; and web
pages of predefined genre set may be collected in batch by
a spider, yet it is not annotated for each page. This situa-
tion leads to a more challenging task of learning with least
labeled data.

Active learning is a primary approach for learning from
limited labeled data with high annotation cost. It actively se-
lect the most important examples to query their labels, and
try to train an effective model with least labeled data. In this
paper, we propose an Active Sampling algorithm for Open-
set Classification without Initial Annotation, and ASOCIA
for short. Specifically, given no initial labeled data, it is not
applicable to select the most important instances based on
the model prediction. Instead, active sampling of represen-
tative examples with no need of label information is a better
choice.

We extend the experimental design method in (Nie et al.
2013) to simultaneously consider the representativeness, ro-
bustness and diversity. After querying the labels of selected
examples, a model is trained based on these representative
examples, and is expected to simultaneously achieve accu-
rate classification on known class and successful detection of
novel classes in the test phase. To distinguish novel classes
from known ones, and also to distinguish each other of the
known classes, we employ a low-rank representation learn-
ing method (Liu and Yan 2011) to obtain discriminative fea-
tures. Further, to speed up the method for potential large
scale data from both known and unknown classes in the test
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phase, we introduce a fast solution based on incremental
SVD (Berry, Dumais, and O’Brien 1995). We also extend
the method to a more dynamic environment with multiple
test stages, and at each stage some novel classes occur while
some known classes disappear.

Experiments are performed on multiple datasets to vali-
date the effectiveness of the proposed method on open-set
classification. Results with regard to accuracy and F-1 mea-
sure show that our method achieves better performance on
both the classification of known classes and detection of
novel classes.

Our main contributions are summarized as follows:
• The ASOCIA framework is proposed for a novel and chal-

lenging setting of open-set classification without initial
annotation.

• A new strategy incorporating structure sparsity and diver-
sity is proposed for active selection of representative ex-
amples. Also, the discriminative low-rank representation
with a fast solution is introduced for classifying known
classes and detecting novel classes.

• Experimental study is performed to validate the effective-
ness of the proposed method on both the active sampling
and model performance.
The rest of the paper is organized as follows. In the next

section, related studies from different aspects are summa-
rized and discussed. Then we propose the ASOCIA frame-
work with detailed introduction on active sampling and low-
rank representation learning. After that, experimental results
are presented, followed by the conclusion.

Related work
Open-Set Classfication
Semi-supervised methods make use of both the labeled data
and unlabeled test data which contain novel class data to
train the model. In LACU (Da, Yu, and Zhou 2014), the
augment risk is introduced to adjust the separator closer to
the labeled region. While in (Guru et al. 2016; Masud et al.
2010), clustering technique is used to construct the boundary
for filtering examples of novel class.

Open-set classification has attracted many research inter-
ests. In (Scheirer et al. 2013), a open risk is introduced into
the supervised classification model. After that, probability
models (Scheirer, Jain, and Boult 2014; Zhang and Patel
2017) are proposed based on the open risk concept. The EVT
approach (Scheirer et al. 2011) is adopted to split the score
list of test data and divide them into novel or known data.
The methods in (Júnior et al. 2016) and (Bouguelia, Belaid,
and Belaid 2014) detect novel class by the distance of test
data to labeled training data. In (Yu et al. 2017), authors
adopt adversarial learning to generate pseudo negative data
which are close to each known class.

Outlier detection techniques are also used for open-set
classification by treating the examples from novel classes
as outliers. The method in (Mu, Ting, and Zhou 2017)
uses iForest (Liu, Ting, and Zhou 2008) to detect anomaly
data which contain novel class data. The method in (Mu
et al. 2017) uses matrix sketch technique to store main

known class information and compute inner products be-
tween sketch matrix rows and test data to recognize novel
class. Due to the use of matrix sketch technique, this method
may need lots of labeled data.

In addition, other problems such as zero-shot learning
(Xian et al. 2016), the attribute-incremental learning (Vap-
nik, Vashist, and Pavlovitch 2009), the class incremental
learning (Kuzborskij, Orabona, and Caputo 2013) are also
related to the open-set classification problem. While most
methods mentioned above utilize many labeled data with-
out considering limited annotation cost, and in real world, a
new item often starts with data collection and annotation, no
plenty of data available.

Active Learning

Active learning is a primary approach to deal with limited
labeled data. It selects the most important examples to query
their labels from the oracle. Different criteria have been pro-
posed to estimate how important an example is for improv-
ing the classification model (Huang, Jin, and Zhou 2010;
Huang and Zhou 2013).

In our problem setting, we need to select a batch of exam-
ples from the unlabeled dataset for once. And experimental
design methods fit the data selection situation. In (Yu, Bi and
Tresp 2006), authors propose the TED method for transduc-
tive experimental design, which tends to select data repre-
sentative to those yet unexplored data. Based on the idea of
data construction, (Yu et al. 2008; Shi and Shen 2016) trans-
forms the TED as a convex problem and can get a global
optimal solution. Another method ANLR (Hu et al. 2013)
further improves the result by local reconstruction with only
neighbors. (Nie et al. 2013) proposes the RRSS where the
L2,1 norm is adopted to constrain the data construction loss
and the relationship matrix of training data.

Low-Rank Representation

In many studies (Narayanan and Mitter 2010; Donoho
and Grimes 2003), a common assumption is that high-
dimensional data lies in a low-dimensional subspace and
it is reasonable in reality to structural data such as images,
texts and digital audio files. So the data could be compressed
from high dimension to low dimension. LRR (Liu, Lin, and
Yu 2010) can be seen as a compressed sensing technique,
which tries to minimize the rank of the relationship matrix.
(Liu, Lin, and Yu 2010) solves the problem with a strong as-
sumptions that the training data of each class are sufficient
and the noises of data are at low level. (Liu and Yan 2011)
ease the problem by introducing the effects of hidden data.

In (Liu and Yan 2011) the data matrix is decomposed to
principal feature and salient feature which are further used
to perform sub-space segmentation and classification. While
here we are interested in the affiliation matrix in principal
feature and need to calculate the affiliation matrix for each
test instance, so the computation cost is large. In (Zhang,
Lin, and Zhang 2013), complete solutions are provided,
based on the idea, we propose a fast solution by introduc-
ing the incremental SVD decomposition.
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The ASOCIA Framework
Problem Formulation
In traditional supervised learning, model is trained on a la-
beled set {(xi, yi)}ni=1 with n examples, where yi ∈ Y is
the class label of the i-th instance, and Y = {1, 2, · · · ,K}
is the close-set of K class labels. At the test phase, each in-
stance belongs to one of the K classes in Y . The task is to
learn a model f(x) : X → Y to classify test instances into
one of the K classes.

In a classical open-set classification task, the training
data X = {(xi, yi)}ni=1 consists of n examples from K
known classes Y = {1, 2, · · · ,K}. While in the test phase,
the test set consists of instances from the open-set classes
Y = {1, 2, · · · ,K,K + 1, · · · ,K + M}, where the M
novel classes K + 1, · · · ,K + M are unseen during the
training phase. The task is to learn a model f(x) : X →
{1, 2, · · · ,K, novel}, where the novel represents all novel
classes.

In this paper, we consider a special case of open-set clas-
sification with no initial annotation. At the beginning of
the training phase, we are given a dataset X = {xi}ni=1
with n instances. Each instance belongs to one of the K
classes in Y = {1, 2, · · · ,K}. However, the ground-truth
annotation yi is not available for all instances xi ∈ X .
We need to actively sample a batch of important instances
from X , query their class labels, and then train a model
f(x) : X → {1, 2, · · · ,K, novel} to perform classification
of known classes as well as detection of novel classes.

Active Selection of Representative Examples
In the ASOCIA framework, we have no initially labeled
data even for the known classes, and need to actively se-
lect a batch of most important examples from the unla-
beled pool to annotate. Without a classification model to
estimate the uncertainty or informativeness of an unla-
beled instance, it is more practical to perform active sam-
pling based on representativeness. Among the active learn-
ing methods, experimental design (Yu, Bi, and Tresp 2006;
Nie et al. 2013) has shown effective performance for repre-
sentative sampling.

In (Yu, Bi, and Tresp 2006), a transductive experimental
design (TED) method is proposed to select the examples that
can best represent the whole data using a linear represen-
tation. Formally, given a dataset X = [x1,x2, · · · ,xn] ∈
Rd×n with n instances of d-dimensional feature vectors,
TED tries to select a set B of m examples from X with the
following objective function.

min
B,W

n∑
i=1

(
‖xi −Bwi‖22 + γ‖wi‖22

)
(1)

s.t. B ⊂ X, |B| = m,W = [w1, · · · ,wn] ∈ Rm×n.

Here wi is the linear weight vector reflecting the relations
between the selected examples and the instance xi.

The problem in Eq. 1 is NP-hard, and is solved with greed
optimization (Yu, Bi, and Tresp 2006). Later, a more robust
method is proposed in (Nie et al. 2013) by introducing struc-
tured sparsity. Specifically, this method dose not directly se-
lect a subset B from X . Instead, all examples are used to

represent each instance xi with the weight vector wi of n
dimensions. The objective functions is as follows.

min
W
‖(X −XW )>‖2,1 + γ‖W‖2,1, (2)

where the second term with `2,1-norm onW aims to achieve
structured sparsity. On one hand, the loss function will be
less sensitive to outliers compared to that in Eq. 1; and on
the other hand, the `2,1-norm leads to a row-sparse solution
of W . After the optimization of the above problem, the rep-
resentative examples are selected according to the row-sum
values of absolute W . A larger sum value of |wi| implies
that xi contributes more to represent other examples, thus is
more representative and should be selected to annotate.

When we sort the examples by the row-sum values of the
absolute W , there could be some similar examples among
the top ranked examples, which may contain redundant in-
formation. Annotating such redundant examples will con-
tribute less to the model training, and thus leads to waste of
annotation cost. To solve this problem, we propose to incor-
porate diversity into the objective function when optimizing
the weight vectors. Specifically, we have:

min
W
‖
(
X −XW

)>‖2,1 + γ‖W‖2,1 + λ‖WW>‖2F , (3)

where γ and λ are two trade-off parameters. The third term
minimizes the correlations among different rows of W , and
thus is expected to enhance the diversity of selected exam-
ples. In summary, the objective of Eq. 3 is to select examples
that can well represent the whole dataset via linear combi-
nation, have structured sparsity and high diversity. Such se-
lected examples are expected to be most helpful to train an
effective model.

Next we will discuss the optimization of Eq. 3. We adopt
an approach similar in (Nie et al. 2013) to solve this convex
problem. By setting the derivative of Eq. 3 to zero, we have:

X>XWU −X>XU + γVW + 4λWW>W = 0. (4)

BothU and V are diagonal matrix, whose elements are com-
puted according to (Nie et al. 2010):

Ui,i =
1

‖xi −Xwi‖
; Vi,i =

1

‖wi‖
.

where wi and wi represent i-th column and i-th row respec-
tively. By further denoting M = WW>, after calculated U
and V , fix M = WWT , then we can update W and M al-
ternately, repeat the procedure until convergence condition
satisfied.

The algorithm for active sampling is summarized in Al-
gorithm 1. Note in the experiments of multiple test phases,
we also use this algorithm to select additional examples for
annotation at each stage.

Low-Rank Representation Learning
In open-set classification, we need to simultaneously per-
form classification on known classes and detection of novel
classes. A discriminative feature representation of the data
examples is crucial for achieve good performance on this
task. Recently, low-rank representation (LRR) based feature
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Algorithm 1 Active Sampling

Input: The data X ∈ Rd×n; parameters γ and λ
Output: The selected m representative examples;

1: Initialize W ∈ Rn×n, and U, V as diagonal matrices;
2: repeat
3: Calculate diagonal elements: Ui,i = 1

‖xi−Xwi‖ ;
4: Calculate diagonal elements: Vi,i = 1

‖wi‖ ;
5: Calculate M = WW>;
6: for i = 1 to n do
7: Calculate each column of W as
8: wi = Ui,i

(
Ui,iX

>X + γV + 4λM
)−1

X>xi;
9: Update M by M = WW>;

10: end for
11: until (satisfy the convergence condition)
12: Calculate the row-sum values of |W |;
13: Return the m examples with largest row-sum values.

learning has achieved great success in various applications
(Liu and Yan 2011; Zhou, Lin, and Zhang 2016). The basic
assumption of LRR is that data from the same class should
be distributed in the same low-dimensional subspace. While
the dimension of the subspace corresponds to the rank of the
representation matrix, LRR tries to find the lowest-rank rep-
resentation that can represent the data examples with linear
combinations of given dictionary.

Given the data matrix X ∈ Rd×n , the original LRR min-
imizes the following objective:

min
Z

Rank(Z) s.t. X = AZ, (5)

where A is the dictionary. To efficiently solve this problem,
some alternative approaches with nuclear norm are proposed
(Cai, Candes, and Shen 2010).

In our setting, very limited labeled data is available, and
thus favors the methods that are more robust and require less
examples. Latent LRR (Liu and Yan 2011) is a representa-
tive approach applicable to less data. It tries to exploit hid-
den data, and decomposes the data matrix X into two parts:
a low-rank part XZ for principle features and a low-rank
part LX for salient features, as formalized in the following
equation.

min
Z,L
‖Z‖∗ + ‖L‖∗ (6)

s.t. X = AZ + LX.

The Algorithm
After solving the optimization problem in Eq. 6, the matrix
Z captures the affiliation between data examples. Figure 1
visualizes the affiliation matrix of ExtendedYaleB dataset
with 6 known classes. It can be observed that data from the
same class have strong correlations. This affiliation matrix
thus could be utilized for classification as well as novel class
detection. Specifically, denote by Xl ∈ Rd×n the set of rep-
resentative examples selected via active sampling, and we
have known their labels yl. The corresponding affiliation
matrix is denoted by Zl. In the test phase, a new instance

Figure 1: Visualization of the affiliation matrix Z with 6
known classes on ExtendedYaleB dataset
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Figure 2: true score(class mass value) distribution of test
data

xo from open set is to be classified into one of the known
classes or a novel class. If we add a test instance xo into Xl,
then we can have a new affiliation matrix (Zhang, Lin, and
Zhang 2013):

Ẑ∗ = V̂ ŜV̂ >,

where Ŝ is a block diagonal matrix and V̂ > comes from
SV D(Xl+o) = Û Σ̂V̂ >, Ẑ∗ has one more row and one more
column than Zl. We then delete the last column, and denote
by zo the absolute value of the last row of Ẑ∗. zo describes
how the test example xo is affiliated with the labeled data
Xl. Then we calculate the score for each of the K known
classes as:

Ck
o =

∑m
i=1 I(yl(i) = k) · zo(i)∑m

i=1 I(yi = k)
, (7)

where I(·) is the identity function. Ck
o estimates how likely

xo belongs to class k.
Next, we need to decide whether xo belongs to a novel

class or not. Inspired by (Prewitt, Judith, and L. Mendel-
sohn 1966) which is prevalent in picture precessing, we use
a iterative method to determine the threshold for distinguish
known and novel classes. Given an instance xo of the test set
Xt, we firstly calculate the score so = arg maxk=1:K Ck

o ,
and then find the maximum score smax and minimal score
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smin among all test data. After that the threshold is tem-
porally set as (smax + smin/2), and the test set is divided
into two subsets according to the threshold. Then we update
smax and smin by the mean scores of the two subsets, re-
spectively. And the threshold updates as (smax + smin/2).
This process will be repeated until the threshold value con-
verges to a stable value. Figure 2 shows an example of
the score distribution over the test data on ExtendedYaleB.
It demonstrate that the above method can find a accurate
threshold for separating known and novel classes. At last, if
the test instance xo is identified as from known classes, then
its class label will be further determined as arg maxk C

k
o .

Although some efficient solutions have been proposed
for the problem in Eq. 6 (Zhang, Lin, and Zhang 2013;
Liu and Yan 2011), it is still can not get the solution directly
because we do not know the value of Sl; moreover, it is not
scalable because we need to compute the affiliation matrix
for each test example during the test phase. To overcome this
problem, we adopt the incremental SVD (Berry, Dumais,
and O’Brien 1995) to obtain a fast solution for calculating
the affiliation matrix. Assume that we have the initial af-
filiation matrix of training data Zl = VlSlV

>
l for Xl, and

SVD(Xl) = UlΣlV
>
l . We add test data matrix Xt ∈ Rd×m

to Xl to form the new data matrix Xnew = [Xl;Xt]. We
can make use of the SVD results over Xl instead of perform
SVD from scratch on Xnew. With the result from (Berry,
Dumais, and O’Brien 1995), we have:

SVD(Xnew) = UnewΣnewV
>
new = UlΣl[V

>
l ;V >t ],

where Vt = X>t UlΣ
−1
l . Thus for the case of adding a new

test instance xo, we can have:

Ẑ∗ = V̂ SlV̂
>,

and V̂ > =
[
V >l ;V >t [:, o]

]
. It can be further written as:

Ẑ∗ = V̂ (V >l ZlVl)V̂
>.

With this incremental solution to calculate the affiliation
matrix, we can finally get efficient method to perform clas-
sification and novel class detection. The whole procedure of
our method is summarized in Algorithm 2.

Experiments
Datasets and algorithms
In our experiments, three datasets are used to examine
the performance of the compared methods. ExtendedYaleB
(Lee, Ho, and Kriegman 2005) has 28 classes, each of
which has 576 images. Each image is resized to 48 × 42.
Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) consists
of 70000 examples from 10 classes, where each example is
a 28 × 28 grayscale image of clothes or shoes. We sample
500 instances for each class from those two datasets. Coil20
(S.A.Nene, Nayar, and H.Murase 1996) contains 20 classes,
each of which has 72 examples.

The following methods are compared with our proposed
method. OneClass SVM (Schölkopf et al. 2001) is a base-
line to learn a model for the known classes, and then can be
applied to detect novel classes. MOC-SVM incorporates the

Algorithm 2 The ASOCIA Algorithm

Input: Unlabeled dataset X ∈ Rd×n; Initialize A ∈ Rn×n;
1: Perform Algorithm1 on X to select the representative

examples Xl;
2: Learn the low-rank representation Zl of Xl;
3: Clear Zl by setting non-block diagonal area to zero
4: Perform SVD over Xl: SVD(Xl) = UlΣlV

>
l

5: Incremental SVD over test data Xt: Vt = X>t UlΣ
−1
l

6: Compute the affiliation matrix Z∗i for each example
7: Compute the score si for each example
8: Compute the threshold: τ
9: for each xi ∈ Xt do

10: if si < τ then
11: xi is detected as from novel class
12: else
13: xi is classified as yi = argmaxkC

k
i

14: end if
15: end for

one-vs-rest strategy with OneClass SVM to perform open-
set classification. SENC (Mu et al. 2017) uses matrix sketch
techniques to store data information and distinguish new
data and classify known class data by the sketch matrix.
ASG (Yu et al. 2017) adopts adversarial learning to find a
boundary around seen class data, and achieved state-of-the-
art performance for open-set classification. ASOCIA-0 is a
baseline of our method that simply ignore the diversity dur-
ing active selection, i.e., it sets λ = 0 in Eq. 3.

Result on the open-set classification
For each dataset, we set 20% of the class labels as known,
and others as novel classes. For ExtendedYaleB, half of the
5 known classes are randomly selected as the training set,
from which the ASOCIA algorithm will actively select 150
examples from each class for annotation. At test stage, the
other half of training examples from known classes together
with all examples from unknown classes are used as the test
set. Similar data partition is applied to Fashion-MNIST and
Coil20, which have 2 and 4 known classes, respectively. The
data partition is repeated for 10 times, and the average re-
sults are reported.

Because of the imbalanced size between known data
and novel data, the measurements used here are accuracies
of known class and novel class respectively: Accuracy −
known = Mknown

Nknown
, where Mknown is the number of

known data that are classified correctly to the true class, and
Nknown is the number of true known data in test data. Sim-
ilarly, for novel class data, Accuracy − novel = Mnovel

Nnovel
.

Besides, we also adopt F1-measure to evaluate the over-
all performance on all test data (Yu et al. 2017; Mu et al.
2017). The results are showed in Table 1, 2 and 3, respec-
tively. OneClass SVM can only distinguish between known
and novel classes; and thus no accuracy-known and F1-total
available for this method.

From the results in the tables, we can observe that in
most cases the proposed ASOCIA method can achieve the
best performance for both classification accuracy on known
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Table 1: Open-set classification result of ExtendedYaleB: Best results are bold, OC could not classify known data with detail
label, so some results are NA.

Method OC MOC SENC ASG ASOCIA-0 ASOCIA

Accuracy-known NA 0.515± 0.034 0.240± 0.029 0.876± 0.023 0.935± 0.018 0.939± 0.016
Accuracy-novel 0.404± 0.027 0.663± 0.064 0.528± 0.008 0.898± 0.036 0.999± 0.002 0.999± 0.001

F1-total NA 0.340± 0.052 0.140± 0.032 0.838± 0.003 0.964± 0.008 0.966± 0.009

Table 2: Open-set classification result of Coil20: Best results are bold, OC could not classify known data with detail label, so
some results are NA.

Method OC MOC SENC ASG ASOCIA-0 ASOCIA

Accuracy-known NA 0.751± 0.049 0.443± 0.013 0.896± 0.085 0.958± 0.026 0.980± 0.018
Accuracy-novel 0.591± 0.012 0.950± 0.014 0.377± 0.015 0.904± 0.034 0.970± 0.038 0.996± 0.003

F1-total NA 0.770± 0.036 0.225± 0.007 0.788± 0.069 0.927± 0.059 0.982± 0.009

Table 3: Open-set classification result of Fashion-MNIST: Best results are bold, OC could not classify known data with detail
label, so some results are NA.

Method OC MOC SENC ASG ASOCIA-0 ASOCIA

Accuracy-known NA 0.760± 0.057 0.345± 0.093 0.824± 0.043 0.818± 0.128 0.810± 0.031
Accuracy-novel 0.196± 0.010 0.574± 0.042 0.574± 0.026 0.178± 0.060 0.674± 0.162 0.720± 0.160

F1-total NA 0.439± 0.030 0.225± 0.055 0.322± 0.017 0.539± 0.077 0.571± 0.092

Table 4: Performance on multiple test stages of ExtendedYaleB: Best results are bold, OC could not classify known data with
detail label, so some results are NA.

Method
Stage one Stage two Stage three

Precision Recall F1-Measure Precision Recall F1-Measure Precision Recall F1-Measure

OC NA 0.599± 0.046 NA NA 0.661± 0.061 NA NA 0.406± 0.046 NA
MOC 0.605± 0.047 0.938± 0.042 0.725± 0.048 0.640± 0.037 0.899± 0.079 0.736± 0.041 0.354± 0.058 0.692± 0.111 0.426± 0.071
SENC 0.398± 0.035 0.677± 0.016 0.461± 0.031 0.437± 0.045 0.557± 0.011 0.464± 0.038 0.267± 0.096 0.612± 0.032 0.317± 0.099

ActMiner 0.578± 0.037 0.958± 0.015 0.720± 0.0.026 0.383± 0.043 0.628± 0.108 0.476± 0.063 0.529± 0.037 0.831± 0.061 0.646± 0.041
ASG 0.956± 0.016 0.948± 0.019 0.952± 0.011 0.981± 0.019 0.926± 0.026 0.945± 0.013 0.996± 0.006 0.865± 0.030 0.926± 0.016

ASOCIA-0 0.937± 0.101 0.969± 0.023 0.949± 0.060 0.975± 0.025 0.997± 0.010 0.985± 0.012 0.996± 0.003 0.942± 0.019 0.968± 0.010
ASOCIA 0.973± 0.024 0.956± 0.015 0.964± 0.015 0.999± 0.001 0.968± 0.017 0.984± 0.009 0.986± 0.016 0.944± 0.017 0.964± 0.014
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Figure 3: Performance changes with the scale of affiliation matrix
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classes and detection accuracy on novel classes. Especially,
the superiority of ASOCIA over ASOCIA-0 validates that
considering the diversity is helpful for active sampling of
representative examples. Among the compared methods,
ASOCIA-0 tends to be effective in most cases, probably
benefits from the low-rank representation learning. ASG
also achieves descent performance on some datasets, but
is less effective on the others. One possible reason is that
ASG need to identify the boundary for generating examples.
While on some small datasets with limited labeled data, e.g.,
Coil20, it may lose its edge due to the less accurate bound-
ary. In addition, ASG generates data around each known
class based on the distance. So if data from different classes
are close to each other, ASG may confuse to recognize the
labels of data. In contrast, our model based on low-rank rep-
resentation learning can distinguish data based on the sub-
space where data lies in.

SENC gets relatively less effective results. In (Mu et al.
2017), the matrix sketch technique aims at large data ma-
trix, and requires a large number of labeled data. While in
our experiments, only a few examples are used to train the
model. Besides, SENC computes inner products of the test
data with every row of the sketch matrix. The datasets used
here are image files. For example, for grayscale images, in-
ner product of two undertint images is smaller than one un-
dertint image with a dark image, so inner products of data to
sketch matrix rows may not appropriate.

Result with different scales of affiliation matrix
In previous experiments, the average budget number is 30
for each class in the affiliation matrix. Here we examine how
the performance changes with the increase of the affiliation
matrix size. For each dataset, 6 classes are used and 3 of
them are known classes and the other 3 classes are novel.
The number of examples in each class is the same as previ-
ous experiments. We select data from 3 known classes and
the budget number is from 15 to 90. The result is showed in
Figure 3.

Figure 3 shows that the method achieves a high accu-
racy of novel class detection with various affiliation matrix
sizes. Because in this experiment the score statistical distri-
bution shows that the score range of novel data is smaller and
lies in a narrow interval of unimodal distribution, so after
the threshold separated the score list, novel data can always
be classified correctly with high accuracy. But the score of
known data is widely distributed. In the beginning, the ac-
curacy of known data and the F1-measure are at low level
and the standard deviation measurements are larger, After
the training data grows to a certain scale, the performance
stays at high level with a more steady state.

Update the model on multiple test stages
In this subsection, we examine the performance of the pro-
posed method in a more challenging case with multiple test
stages. In the beginning, no labeled data are available and
we select 90 data from unlabeled dataset which contains
3 classes, then in every test stage, test dataset contains 6
classes, i.e., 3 novel classes are added. In each stage, we

label the selected data and merge them with labeled data se-
lected previously for the model training. We set three stages
until 9 classes are included in the model. Due to the equal
number of known data and novel data in test dataset, we use
Precision, Recall and F1-measure as measurements where
known data classified correctly are seen as true positive data,
novel data classified correctly are seen as true negative data.
The result is showed in Table 4. ASOCIA and ASOCIA-
0 have the best classification results and new data detec-
tion effects. ActMiner (Masud et al. 2010) uses clustering
to control the boundary which is a hypersphere determined
by the furthest point to the corresponding cluster center, so
it is more sensitive to outliers and may not filter new class
data accurately.

Conclusion
We study a challenging case of open-set classification,
where the training data is collected from known class but
fully unlabeled, while the test data is from a open-set of
both known and novel classes. We propose an active learn-
ing approach to perform both classification of known classes
and detection of novel classes. On one hand, representative
sampling is incorporated with diversity to actively select the
most important examples for label annotation; on the other
hand, low-rank representation along with a online solution is
learned to achieve discriminative features. The effectiveness
of the proposed ASOCIA approach is validated on multiple
datasets with regard to different performance measures. In
the future, we plan to incorporate other classification tech-
niques with representation learning to further improve the
performance.
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