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Abstract

To construct small mobile networks without performance loss
and address the over-fitting issues caused by the less abundant
training datasets, this paper proposes a novel super sparse
convolutional (SSC) kernel, and its corresponding network
is called SSC-Net. In a SSC kernel, every spatial kernel has
only one non-zero parameter and these non-zero spatial posi-
tions are all different. The SSC kernel can effectively select
the pixels from the feature maps according to its non-zero
positions and perform on them. Therefore, SSC can preserve
the general characteristics of the geometric and the channels’
differences, resulting in preserving the quality of the retrieved
features and meeting the general accuracy requirements. Fur-
thermore, SSC can be entirely implemented by the “shift” and
“group point-wise” convolutional operations without any spa-
tial kernels (e.g., “3× 3”). Therefore, SSC is the first method
to remove the parameters’ redundancy from the both spa-
tial extent and the channel extent, leading to largely decreas-
ing the parameters and Flops as well as further reducing the
img2col and col2img operations implemented by the low lev-
eled libraries. Meanwhile, SSC-Net can improve the sparsity
and overcome the over-fitting more effectively than the other
mobile networks. Comparative experiments were performed
on the less abundant CIFAR and low resolution ImageNet
datasets. The results showed that the SSC-Nets can signifi-
cantly decrease the parameters and the computational Flops
without any performance losses. Additionally, it can also im-
prove the ability of addressing the over-fitting problem on the
more challenging less abundant datasets.

Introduction and related works
The models’ size of Convolutional Neural Networks (CNNs)
is usually too large to be deployed on the mobile devices and
they often suffer from the over-fitting problem caused by the
less abundant datasets. As illustrated in (Wu et al. 2018),
most of the learned parameters are close to zero and the ac-
tivated feature maps from different channels in a layer share
similar geometric characteristics. This implies the parame-
ters of the convolutional kernel are very redundant. There-
fore, numerous methods, which can be classified into two
categories, have been proposed to compress the networks.
The algorithms in the first category are mostly based on
pruning the weights or neurons and quantizing the weights
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in the networks, such as (Han et al. 2015; Lin et al. 2017;
Dong, Chen, and Pan 2017; Hubara et al. 2016; Lin, Zhao,
and Pan 2017). However, these methods are not flexible dur-
ing training and they do not perform well in terms of accu-
racy. The second category of methods are proposing more
efficient structures to remove the redundancy of the param-
eters. One of the most popular structures is the branchy net-
work, such as the latest MobileNet family (Howard et al.
2017; Sandler et al. 2018) and IGCV family (Xie et al. 2018;
Sun et al. 2018) networks. These branchy architectures
are implemented by “group convolutions” and also called
group-conv mobile CNNs.

Group convolutions
It is generally known that a regular convolutional kernel has
spatial extent and channel extent, where the former value is
always much smaller than the latter, for instance, a kernel
with a size of “3 × 3 × 32 × 32”. Therefore, “group con-
volutions” is proposed to remove the redundancy from the
channel extent. It equally divides the input channels and the
convolutional filters into several groups, and in every group ,
it performs the corresponding filters. “Group convolutions”
can effectively reduce parameters and computations. How-
ever, there are no interactions among the groups. This leads
to the less accurate approximations of the regular kernel.
To resolve this issue, the “shuffle channel” was proposed in
ShuffleNet (Zhang et al. 2017).

Shuffle channel operation
Shuffle channel operation was used between two “group
convolutions” to shuffle the out feature maps from all the
groups along the channel extent. The general process is
shown in Figure 1. Suppose it first splits the input chan-
nels to G parts and every part has C channels. Then, every
part is fed to the first corresponding group convolutions (G
groups). Next, all the output feature maps are concatenated
together and permuted to be divided into C partitions. Fi-
nally, another “group convolutions” with C groups are per-
formed separately on C partitions and concatenate all the
output feature maps. Although this operation can remedy the
no connections for different groups along the channel extent,
it still needs the convolutional kernels with a spatial size of
“3× 3”, which is redundant in the spatial dimensions .
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Figure 1: General combinational structure of “group convolutions” and “shuffle channel” operations.

Motivation of super sparse convolutional kernel

Considering these issues, a new viewpoint is put forward in
this paper for the first time that the feature maps’ general
geometric characteristics and the information’s differentia-
tion from different channels can be preserved through the
selection of one pixel from every channel at different spa-
tial locations. Accordingly, the introduced super sparse con-
volutional (SSC) kernel in this paper should select the pix-
els from the feature maps and perform operations on them
by satisfying the above requirements. Consequently, a 2 di-
mensional spatial convolutional kernel is used to dilute and
place its parameters into 3 dimensions at the same spatial
positions, which is called super sparse convolutional kernel.
Figure 2 illustrates the comparisons of the regular convolu-
tional kernel and the SSC kernel. It is notable that in this
3 dimensional kernel, every spatial kernel just has one pa-
rameter. The SSC operations can be easily and more effi-
ciently implemented by “shift”(proposed in Shift-Nets (Wu
et al. 2017)) and “grouped point-wise” convolutional oper-
ations without any spatial kernels (e.g., “3 × 3”). Shift-Net
only removes the spatial’s redundancy, and group-conv mo-
bile CNNs only removes the channel’s redundancy. How-
ever, our SSC is the first method to remove the redundancy
from both the spatial and channel extents at the same time.
Furthermore, the SSC kernels can keep the spatial geomet-
ric characteristic and maintain the channels’ differentiation
based on its none-zero values’ locations. All of these factors
lead to largely decreasing the model’s size than the other
popular CNNs without performance loss and avoiding the
over-fitting more effectively than the other state-of-the-art
mobile CNNs.

Super sparse convolutional neural networks
Super sparse convolutional kernel

In Figure 2b, a SSC kernel can be seen as diluting a two
dimensional spatial kernel (called the basic kernel) into a
three dimensional kernel. In this way, the spatial non-zero
locations are kept the same with the basic kernel, which can
preserve the general geometric characteristics. And the di-
luting process can maintain the features’ differences along
the channel extent. Suppose the 4 dimensional regular con-
volutional kernel is T ∈ Rk×k×C×D, where k×k indicates
the spatial kernel size. C and D refer to the number of input
and output channels respectively. The SSC kernel is denoted
by S ∈ Rk×k×C×D. Then, S can be extended from the ba-
sic kernel W ∈ Rk×k×D. It is noteworthy that in a SSC
kernel, C = k × k. Therefore, the definition of SSC can be

formulated as below:

Sx,y
i,j =

{
Wx,y

j , i = x× k + y
0, otherwise. (1)

Where x, y indicate the spatial location and x, y ∈
{0, 1, 2, ..., k − 1}. Besides this, i ∈ {0, 1, 2, ..., C − 1} and
j ∈ {0, 1, 2, ..., D − 1}.

Implementation of the SSC operations
Given an input tensor I ∈ Rw×h×C , which is conducted
by the novel SSC kernel T , and the relevant output tensor
O ∈ Rw×h×D can be obtained as following equation:

O(x, y, q) =

C−1∑
p=0

k−1∑
i=0

k−1∑
j=0

T (i, j, p, q)

I(x+ i− δ1, y + j − δ2, p).

(2)

Where δ1 = δ2 = bk/2c and q ∈ {0, 1, 2, ..., D − 1}. Ac-
cording to the Equation 1, the computational process of the
SSC operations can be simplified by the equation below:

O(x, y, q) =

C−1∑
p=0

T (ip, jp, p, q)

I(x+ ip − δ1, y + jp − δ2, p).

(3)

Where the (ip, jp) is the only one nonzero parameter’s
spatial coordinate at the pth channel and ip × k + jp = p.

From Equation 3, it is clear that an output value at the
specific spatial location can be computed through the sum-
mation from C times multiplication operations. Moreover,
since every plane in a SSC kernel has one parameter, it can
be transformed to a “point-wise” kernel. Furthermore, in or-
der to preserve the spatial location relations in the comput-
ing process, we use a shift kernel P ∈ Rk×k×C×D (in-
troduced in (Wu et al. 2017)), which performs on feature
maps to catch the features according to the SSC kernels’
non-zero spatial locations. The shift process operation is
demonstrated in Figure 3. The definition of this shift kernel
is shown as below:

Px,y
i,j =

{
1, Sx,y

i,j 6= 0
0, otherwise. (4)

Form Equation 3 and 4, the SSC operations can be further
formulated as the following equation:

O(x, y, q) =

C−1∑
p=0

T (p, q)P(ip, jp, p, q)

I(x+ ip − δ1, y + jp − δ2, p).

(5)
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(a) Regular convolutional kernel: the kernel has k × k × C parameters (e.g., k = 3, C = 9),
and it can be split to C spatial kernels along the channel extent.

(b) SSC kernel: the kernel has k × k parameters (e.g., k = 3), it consists of C (C = k × k)
spatial kernels, and every spatial kernel has only one non-zero parameter.

Figure 2: Comparisons of regular convolutional and SSC kernel.

Figure 3: Shift operational process: the feature maps are first
padded with zero along each side, then each padded feature
map is cropped based on the relevant shift kernel’s non-zero
direction (the colored location in the shift kernel). In this
figure, the shift kernel’s spatial size is “3×3” and the feature
maps’ size is “4× 4”.

From Equation 5, the SSC operation can be implemented by
the “shift” and “point-wise” convolutional operations, which
can save much more parameters and computational Flops.

The basic SSC module and the SSC-Nets
A “ point-wise” convolutional layer is first used to project
the input feature maps into a required dimensional space,
which can also fuse the previous module’s output features
from different groups. The obtained projected feature map
channels areM . Then, two SSC layers are equipped together
with a “shuffle-channel” operation between them. Before
each SSC operation, another “group point-wise” convolu-
tional layer is utilized to force every SSC’s input to have
similar geometric characteristics as much as possible. Fi-
nally, similar to ResNets (Huang et al. 2016), identity map-
ping is also adopted in the SSC module. The detailed struc-
ture of a SSC-Net’s basic module is shown in Table 1.

It is important that in the second SSC layer, we still shift
the feature maps and employ “point-wise” convolutional op-
erations on every C channels. Then, the number of groups

Table 1: SSC basic module. All the operations’ output chan-
nels are M . C = k2 and G = d× C. k2 is the SSC kernel’s
spatial size.

Stage Operation Groups Channels/Group

Conv1 1× 1 1 M

Conv2 1× 1 G C

1st SSC shift G C
1× 1 G C

Shuffle shuffle C G

Conv3 1× 1 C G

2nd SSC
shift G C
1× 1 G C
1× 1 C G

becomes G (G = d×C, d is a positive integer). Finally, an-
other “group point-wise” convolution with C groups is uti-
lized to merge the G groups to C groups. Hence, the SSC
module entirely employs “point-wise” and “group point-
wise” convolutions, which can largely decrease the param-
eters and computational Flops. The SSC-Net uses the mod-
ularized design method based on ResNet56 (Huang et al.
2016), SSC-Net also has three big blocks with different out-
put spatial sizes (e.g., 32× 32, 16× 16 and 8× 8) and every
block has B basic modules. The output channels of every
stage will be doubled when moving to the next stage. The
other details remain the same with ResNet56 (Huang et al.
2016).

Analysis of SSC kernels’ parameters
For a ResNet’s basic module in ResNet56 (Huang et al.
2016), suppose the kernel’s spatial size is “k × k” and the
input and output channels are K. Therefore, a ResNet’s ba-
sic module’s parameters PR are:

PR = 2× (k × k ×K ×K) = 2k2K2 (6)
For a SSC-Net’s basic module (Table 1), suppose the in-

put and output channels are M , and the groups of the first
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SSC operation are G. Each group has C channels. Thus, the
number of parameters PS of a SSC-Net’s basic module is:

PS =(1× 1×M ×M) + 2× (1× 1×M ×M/G)

+ 2× (1× 1×M ×M/C) + (1× 1×M ×M/G)

=M2 + 3MC + 2M2/C = (1 + 2/C)M2 + 3MC

(7)

From Equation 6 and 7, when M = K and C = k × k,

PS =
1

2

(
C + 2

C2
+

3

M

)
PR ≈

1

2C
PR. (8)

Therefore, when k is 3, C = k × k = 9 and PS ≈
1

18
PR,

which implies the SSC-Nets have much fewer parameters
than the regular networks of the same width.

From another aspect, when the two modules have the
same number of parameters (PS = PR),

K =

√
M

2

(
C + 2

C2
M + 3

)
≤ 1

2

(
M

2
+
C + 2

C2
M + 3

)
≈
(
1

4
+

1

2C

)
M ≈

1

4
M,

(9)

this indicates SSC-Net is at least 4X wider than the regular
model with the same parameters. Hence, SSC-Net can pro-
cess and produce much more features. In addition, since the
number of Flops is “w×h” (indicating the width and height
of the feature map) times of the parameters, the SSC-Nets
also have notable advantages when comparing the Flops.

Experimental result and analysis
Datasets
This paper’s goal is to design mobile models to reduce the
number of parameters and computational complexity with-
out any loss in performance and overcome the over-fitting
problem on the less abundant datasets. As illustrated in
(Chrabaszcz, Loshchilov, and Hutter 2017), since the low
resolution ImageNet datasets’ spatial informations are much
less abundant than the original ImageNet datasets, the low
resolution ImageNet can make the model easily over-fitting
and become more challenging than the original ImageNet.
Therefore, we select the benchmark low resolution Ima-
geNet and CIFAR (Krizhevsky and Hinton 2009) datasets.

CIFAR datasets (Krizhevsky and Hinton 2009) have a
small number of images including CIFAR-10 and CIFAR-
100. They both have 60, 000 colored nature scene images
in total and the images’ size is 32 × 32. There are 50, 000
images for training and 10, 000 images for testing in 10
and 100 classes. Data augmentation is the same with the
common practice in (He et al. 2016a; Huang et al. 2016;
Larsson, Maire, and Shakhnarovich 2016).

Low resolution ImageNet datasets (Chrabaszcz,
Loshchilov, and Hutter 2017) are the down-sampled vari-
ants of ImageNet (Deng et al. 2009) and contain the same
number of classes and images of ImageNet. There are three
versions in total: ImageNet-64 × 64, ImageNet-32 × 32

and ImageNet-16 × 16, which indicates the down-sampled
images’ sizes are respectively 64 × 64, 32 × 32 and
16 × 16. In order to keep the same spatial size with CIFAR
datasets, we perform SSC-Nets on ImageNet-32 × 32. The
augmentation of this dataset is the same with (Chrabaszcz,
Loshchilov, and Hutter 2017).

Initialization and hyper-parameters
The different versions of SSC-Nets, ResNet and Shift-Nets
are respectively indicated by SSC-Nets-B-G, ResNets-B-ε
and Shift-Nets-B-ε, whereB represents the number of basic
modules in a big block. G denotes the number of groups in
the first block. ε is the expansion parameter (Wu et al. 2017).
ResNets and Shit-Nets will have different model sizes by
toggling ε.

The almost identical weight initialization and optimiza-
tion configuration introduced in ResNet are adopted in SSC-
Nets. The mini-batch size is set to 128. The SGD method and
Nesterov momentum (Sutskever et al. 2013) are utilized in
the optimization. Where the momentum is 0.9. On CIFAR,
the training epoch is set to 160, and the optimization starts
from the initial learning rate with 0.1, which is divided by
10 at the 80th and 120th epoch. For ImageNet, the training
epoch is 40. The learning rate starts from 0.01 and is divided
by 10 every 10 epoches. Finally, the weight decay is set to
0.0002 and 0.0001 on CIFAR and ImageNet, respectively.

Parameter comparisons with approximately the
same accuracy
SSC-Nets and Shift-Nets both employ “point-wise” convo-
lutions entirely, where SSC-Nets are implemented based on
ResNet. Consequently, SSC-Nets are compared with Shift-
Nets and ResNets. We first compare the models’ sizes under
the approximately the same accuracy. The final number of
parameters is shown in Table 2. The results of ResNets and
Shift-Nets are reported in (Wu et al. 2017), and the value
in the “params” column indicates a rough level of these two
models’ parameters, since some models’ parameters and de-
tailed structures are not illustrated in (Wu et al. 2017). It is
apparent that SSC-Nets have much fewer parameters than
the ResNets and Shift-Nets. SSC-Nets-2-9 reduces about
3.5X parameters compared with ResNet-18-6 and Shift-Net-
18-6. In addition, SSC-Net-3-9 also reduces about 3.1X pa-
rameters compared with ResNet-18-9 and Shift-Net-18-9.
What is more, the results show that SSC-Nets can even
achieve better performances than the compared models. For
instance, SSC-Net-3-9 with 0.56M parameters improves the
CIFAR10 accuracy by 1.14% than Shift-Net-18-9. Addition-
ally, compared with the best CIFAR10 accuracy 93.17%
achieved by the Shift-Net-18-6 with 1.18M parameters,
Shift-Net-18-9 with 1.76M parameters decreases the ac-
curacy, which is caused by the over-fitting problem. How-
ever, the larger model sized SSC-Nets-3-9 still outperforms
SSC-Nets-2-9 through increasing the CIFAR10 accuracy by
0.69%. The experimental results show that the SSC-Nets can
avoid this problem effectively.

We also make some accuracy comparisons with SSC-Nets
possessing 1.5X fewer parameters than ResNets and Shift-
Nets (shown in Table 3). The results show that SSC-Nets can
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Table 2: Comparisons of parameters with approximately the
same accuracy (%) on CIFAR.

Method Params (M ) CIFAR10 CIFAR100

ResNet-18-6 1.18 79.02 68.87
Shift-Net-18-6 1.18 93.17 72.56
SSC-Net-2-9 0.34 93.24 72.62

ResNet-18-9 1.72 92.46 72.11
Shift-Net-18-9 1.76 92.79 74.10
SSC-Net-3-9 0.56 93.93 74.32

Table 3: Accuracy (%) of SSC-Nets with 1.5X fewer param-
eters compared with ResNets and Shit-Nets on CIFAR.

Method Params (M ) CIFAR10 CIFAR100

ResNet-9-6 0.58 89.89 67.45
Shift-Net-9-6 0.58 92.69 72.13
SSC-Net-2-9 0.34 93.24 72.62

ResNet-9-9 0.85 92.01 69.27
Shift-Net-9-9 0.87 92.74 73.64
SSC-Net-3-9 0.56 93.93 74.32

ResNet-18-9 1.72 92.46 72.11
Shift-Net-18-9 1.76 92.79 74.10
SSC-Net-6-9 1.15 95.14 75.99

consistently outperform ResNets and Shift-Nets. Compared
with the largest ResNet and Shift-Net models, SSC-Net-6-9
achieves much better accuracies of 95.14% and 75.99% on
CIFAR10 and CIFAR100 with only 1.15M parameters.

Finally, the comparisons of parameters using Top-1 ac-
curacy are performed on ImageNet-32 × 32 listed in Ta-
ble 4. The experimental results show that SSC-Nets achieve
a slightly better performance by utilizing 2X or 2.5X fewer
parameters than ResNets. It proves that SSC-Nets can also
perform effectively when facing more challenging datasets.

Accuracy comparisons with approximately the
same number of parameters
In order to test the performance when the model size of SSC-
Nets increases, the accuracy comparisons are made by de-
signing different SSC-Nets, whose parameters are approxi-
mately the same with the relevant ResNet and Shift-Net. The
final experimental results are shown in Table 5. It is notable
that all SSC-Nets outperform the compared networks at their
corresponding sized level. Especially, the the accuracies ob-
tained by SSC-Net-3-9, where it increases by 1.24% and
2.19% on CIFAR10 and CIFAR100 compared with Shift-
Net-9-6. The accuracies obtained by SSC-Net-6-9 increase
by 1.97% and 3.43% on CIFAR10 and CIFAR100 compared
with Shift-Net-18-6. Finally, compared with Shift-Net-18-9,
the largest model SSC-Net-9-9 improves the CIFAR10 and
CIFAR100 accuracies by 1.95% and 2.50%, respectively.

Additionally, on ImageNet-32×32 datasets (see Table 6),

Table 4: Parameter comparison with approximately the same
Top-1 accuracy (%) on Imagenet-32× 32.

Method Params (M ) Top-1 Reduction

ResNet-4-4 1.6 43.08
SSC-Net-3-9 0.8 43.88 2X
ResNet-4-8 3.5 48.94

SSC-Net-6-9 1.4 49.23 2.5X

Table 5: Accuracy (%) on CIFAR datasets with approxi-
mately the same number of parameters.

Method Params (M ) CIFAR10 CIFAR100

ResNet-3-6 0.19 90.09 64.27
Shift-Net-3-6 0.19 90.59 68.64
ResNet-18-1 0.21 76.82 60.44

Shift-Net-18-1 0.20 90.34 67.84
SSC-Net-1-9 0.19 91.06 68.73

ResNet-9-6 0.58 89.89 67.45
Shift-Net-9-6 0.58 92.69 72.13
ResNet-18-3 0.59 74.30 66.61

Shift-Net-18-3 0.59 91.98 71.83
SSC-Net-3-9 0.56 93.93 74.32

ResNet-18-6 1.18 79.02 68.87
Shift-Net-18-6 1.18 93.17 72.56
SSC-Net-6-9 1.15 95.14 75.99

ResNet-18-9 1.72 92.46 72.11
Shift-Net-18-9 1.76 92.79 74.10
SSC-Net-9-9 1.71 94.74 76.60

Table 6: Accuracy (%) on ImageNet-32 × 32 with approxi-
mately the same number of parameters.

Method Params (M ) Top-1 Top-5

ResNet-4-2 1.0 39.55 65.16
Shift-Net-4-2 1.0 41.47 67.44
SSC-Net-4-9 1.0 45.91 70.93

ResNet-4-4 1.6 43.08 69.08
Shift-Net-4-4 1.5 44.43 70.03
SSC-Net-6-9 1.4 49.23 73.81

ResNet-4-8 3.5 48.94 73.92
Shift-Net-4-8 3.5 51.85 75.88
SSC-Net-4-18 3.5 53.46 77.25

SSC-Nets can also significantly improve the performances.
In order to intuitively express the superiorities of SSC-

Nets, Figure 4 and Figure 5 show the performances achieved
by different models with various parameters and compu-
tational complexities, respectively. It is clear that SSC-Net
is more efficient than the other models. It can also achieve
much better results with much fewer parameters and Flops.
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(a) CIFAR10 acc (b) CIFAR100 acc

Figure 4: Accuracy vs. parameters tradeoff.

(a) CIFAR10 acc (b) CIFAR100 acc

Figure 5: Accuracy vs. Flops tradeoff.

Comparisons with state-of-the-art mobile CNNs
Finally, in order to sufficiently explore the SSC-Nets’ per-
formances, various SSC-Nets are compared with the other
state-of-the-art mobile models. On the ImgeNet-32 × 32,
Table.7 shows that SSC-Net achieves the best Top-1 and
Top-5 accuracy than the other mobile models. It also proves
that reducing spatial redundancy (SSC-Net and Shift-Net)
can avoid over-fitting better than reducing channel redun-
dancy (IGCV3-D 1.0), and SSC performs best because it re-
ducing both the spatial and channel redundancy. Hence, the
SSC-Net can remove the redundancy more thoroughly than
the other mobile CNNs. On the CIFAR, from the Table. 8,
it shows that the DenseNet is a optimal structure, because it
uses the dense connections and bottle-neck to decrease the
number of parameters and improve the performance. But,
DenseNets are not very practical to be deployed on the mo-
bile devices compared with the other group-conv mobile
models, since the dense connections bring large memory
storage in practice. For our SSC-Nets, it is clear that they
can produce much better performances than the other group-
conv mobile networks on CIFAR-10. As for the slightly dif-
ficult CIFAR 100, since SSC is entirely implemented by
the point-wise convolutions in practice, SSC-Net doesn’t
achieve the best accuracy, but, it can also meet the general
accuracy requirement.

Further investigation of the SSC kernel
The sparse property of the SSC Kernel In order to in-
tuitively observe the sparsity of the SSC kernel. Accord-
ing to (Ioannou et al. 2017), the filters’ relationships from
two layers can be obtained through calculating the inter-
covariances of the two successive layers’ response output
channels. The corresponding inter-covariances from differ-

Table 7: Comparisons of accuracy (%) with the latest state-
of-the-art mobile models on Imagenet-32× 32.

Method Params (M ) Top-1 Top-5

ResNet-4-8 3.5 48.94 73.92

MobileNetV2 3.5 48.98 73.82

IGCV-D 1.0× 3.5 49.40 74.04

Shift-Net-4-8 3.5 51.85 75.88

SSC-Net-4-18 3.5 53.46 77.25

Table 8: Accuracy (%) comparisons to other state-of-the-art
small and medium sized architectures on CIFAR.

Method Params (M )CIFAR10CIFAR100

Swapout (Singh, Hoiem, and Forsyth 2016) 1.1 93.42 74.14

DenseNet (Huang et al. 2017b) 1.0 94.76 75.58
DenseNet-BC (k = 12) (Huang et al. 2017b) 0.8 95.49 77.73

ResNet (Huang et al. 2017a) 1.7 94.48 71.98
ResNet(pre-act) (He et al. 2016b) 1.7 94.54 75.67

DFM-MP1 (Zhao et al. 2016) 1.7 95.06 75.54

MobileNetV2 (Sun et al. 2018) 2.3 94.56 77.09

IGCV2∗-C416 (Xie et al. 2018) 0.7 94.51 77.05
IGCV2 (Sun et al. 2018) 2.3 94.76 77.45

IGCV3-D 0.7× (Sun et al. 2018) 1.2 94.92 77.83
IGCV3-D 1.0× (Sun et al. 2018) 2.4 94.96 77.95

Shift-Net-18-6 1.2 93.17 72.56

SSC-Net-6-9 1.2 95.14 75.99
SSC-Net-3-18 2.1 94.55 77.13
SSC-Net-4-18 2.8 94.95 77.67

ent stages of the Shift-Net and SSC filters are shown in
Figure 6. The smaller the covariance, the sparser the filters
are. From the Figure 6d, 6e and 6f, the SSC filters obtain
an evident block diagonal sparsity, which implies the 4 di-
mensional SSC kernel is very sparse. Furthermore, in every
group, all the 3 dimensional SSC filters from the two suc-
cessive layers are clearly clustered in a block with strong
relationships, which effectively demonstrates that each 3
dimensional SSC filter can retrieve the specific geometric
characteristics in its corresponding group. Consequently, the
SSC kernel is more targeted and can process more informa-
tion efficiently. This contributes to obtaining better features
through its super sparse structures and effectively preventing
any over-fitting.

Comparisons of sparsity ability Based on the concept of
SSC, SSC-Net is more sparser in the form because of the
virtual zero parameters existing in the SSC filter’s struc-
ture. However, in order to further explores this sparse struc-
ture’s effect on the SSC’s real parameters, Figure 7 shows
the cumulative distribution probabilities of the convolutional
weights from ResNets, ShiftNets and SSC-Nets with almost
the same model size level on CIFAR 10. Figure 7a, 7b and
7c showed all the SSC-Nets’ weights are closer to zero than
other models with the same number of parameters. This re-

4445



(a) Stage 1 of Shift-Nets (b) Stage 2 of Shift-Nets (c) Stage 3 of Shift-Nets

(d) Stage 1 of SSC-Nets (e) Stage 2 of SSC-Nets (f) Stage 3 of SSC-Nets

Figure 6: Inter covariances of SSC-Nets and Shift-Nets.

(a) On 0.19M params (b) On 0.87M params (c) On 1.76M params (d) Various SSC-Nets

Figure 7: Comparisons of sparsity ability on CIFAR10.

veals the real nature of SSC’s sparsity ability and the rea-
son why sparse models can avoid over-fitting better on the
less abundant dataset. Additionally, when the model size be-
comes larger, Shift-Net’s sparsity ability decreases gradually
until almost to same extent with ResNet. However, from Fig-
ure 7d, when the model size increases, SSC-Net’s sparsity
ability is also improved. This proves that SSC can combat
over-fitting more effectively on the less abundant datasets.

Conclusion
A novel super sparse convolutional kernel (SSC) is proposed
in this paper. The SSC kernel is much sparser than the tra-
ditional convolutional kernel, since it is the first method to
reduce the parameters’ redundancy from both the spatial and
the channel extents at the same time. Additionally, the re-
trieved features by the SSC kerenl can preserve the gen-
eral characteristics of the geometric and the channels’ dif-

ferences and the computational Flops can be also largely
decreased. Finally, it is effectively implemented by “shift”
and “group point-wise” convolutional operations. Experi-
mental results show that SSC-Nets can effectively decrease
the model’s size without any performance losses and address
the over-fitting better than the other state-of-the-art mobile
networks on the more challenging less abundant databases.
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