
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Scaling-Up Split-Merge MCMC with Locality Sensitive Sampling (LSS)

Chen Luo, Anshumali Shrivastava
Department of Computer Science, Rice University

{cl67, anshumali}@rice.edu

Abstract

Split-Merge MCMC (Monte Carlo Markov Chain) is one of
the essential and popular variants of MCMC for problems
when an MCMC state consists of an unknown number of
components. It is well known that state-of-the-art methods
for split-merge MCMC do not scale well. Strategies for rapid
mixing requires smart and informative proposals to reduce the
rejection rate. However, all known smart proposals involve
expensive operations to suggest informative transitions. As
a result, the cost of each iteration is prohibitive for massive
scale datasets. It is further known that uninformative but com-
putationally efficient proposals, such as random split-merge,
leads to extremely slow convergence. This tradeoff between
mixing time and per update cost seems hard to get around.
We leverage some unique properties of weighted MinHash,
which is a popular LSH, to design a novel class of split-merge
proposals which are significantly more informative than ran-
dom sampling but at the same time efficient to compute.
Overall, we obtain a superior tradeoff between convergence
and per update cost. As a direct consequence, our proposals
are around 6X faster than the state-of-the-art sampling meth-
ods on two large real datasets KDDCUP and PubMed with
several millions of entities and thousands of clusters.

Introduction
Bayesian mixture models are of great interest due to their
flexibility in fitting a countably infinite number of compo-
nents which can grow with the data (Medvedovic, Yeung,
and Bumgarner 2004). The growth of model complexity
with the data is also in agreement with modern progress in
machine learning over massive datasets. However, the ap-
pealing properties of Bayesian modeling come with hard
computational challenges. Even with simple mixture mod-
els, the mathematical problems associated with training and
inference are intractable. As a result, recent research focuses
on developing tractable computational techniques. In partic-
ular, the use of Markov chain Monte Carlo (MCMC) meth-
ods, to sample from the posterior distribution (Andrieu et
al. 2003; Nasrabadi 2007; Wang and Blei 2012) is widely
prevalent. The practical utility of these methods is illus-
trated in several applications including haplotype recon-
struction (Eronen, Geerts, and Toivonen 2003), nucleotide

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

substitutions (Huelsenbeck and Ronquist 2001),and gene ex-
pression (Sharma and Adlakha 2015), etc.

Metropolis-Hastings (MH) (Andrieu et al. 2003) is a fa-
vorite class of MCMC methods, which includes several
state-of-the-art algorithms that have proven useful in prac-
tice. MH is associated with a transition kernel which pro-
vides a proposal step. This step is followed by appropriate
stochastic acceptance process that ensures detailed balance.
A notable example of MH is the Split-Merge MCMC algo-
rithm (Jain and Neal 2004; Wang and Russell 2015) which is
particularly useful for problems where an MCMC state can
be thought of as consisting of a number of components (or
clusters). Here as the name suggests, the proposal step com-
prises of either a split or a merge. A split move partitions
an existing mixture component (or cluster) into two, while a
merge move combines two mixture components into one.

In the seminal work of (Jain and Neal 2004), split-merge
MCMC procedure was proposed. To illustrate the process,
the authors first introduce a random split-merge MCMC,
where the split and the merge decision were taken uniformly
at random. However, it was also pointed out, in the same pa-
per, that due to the random nature of the proposal it was un-
likely to lead to a new state x′ with higher likelihood L(x′)
leading to low acceptance. To mitigate the slow progress,
the authors then propose the restricted Gibbs split-merge
(RGSM). In RGSM, the idea was to use restricted Gibbs
sampling to generate proposals with a higher likelihood of
acceptance, instead of a random proposal. Thus, a less num-
ber of MCMC iterations were sufficient for convergence due
to fewer rejections. However, the cost of restricted Gibbs is
very high. As a result, even though the iterations are less,
each iteration is costly making the overall algorithm slow,
especially for large datasets. Our experiments confirm this
slow convergence of RGSM.

An essential and surprising observation about space
asymmetry with smart proposals in split-merge MCMC was
made in (Wang and Russell 2015). The authors show the ne-
cessity to mix smart and dumb (random) proposals for faster
progress. They proposed a Smart-Dumb/Dumb-Smart Algo-
rithm (SDDS) as an alternative to RGSM. Instead of relying
on Gibbs sampling, the SDDS algorithm uses the likelihood
of the model itself as a guiding strategy for smart proposals.
In other words, the SDDS method evaluates a large num-
ber of possible proposals x′ based on the likelihood of each

4464

x′ and choose the best ones. This strategy, as expected, en-
sures a higher chance of improving the state x with every
proposal. However, from a computational perspective, it is
not difficult to see that smart proposal x′ obtained after eval-
uation of a large number of proposal states, based on the
likelihood, is equivalent to evaluating all these states for ac-
ceptance/rejection as part of MH (Wang and Russell 2015).
As a result, the reduction in the number of iteration is not
helpful in obtaining an efficient algorithm. Our experiments
show that SDDS also has poor convergence.

Unfortunately, most MCMC methodologies ignore the
tradeoff between the number of iteration and computations
associated with each iteration. They instead only focus on
reducing the number of rejections, which is often achieved
by informative proposals with increased per iteration cost. In
this paper, we are interested in efficient split-merge MCMC
algorithm which leads to overall fast convergence. Thus, re-
ducing both is the aim of this work.

Parallelization is Complementary: Due to the signifi-
cance of the problem there are several works which try to
scale up MCMC by using parallelism. Parallelism is often
achieved by running parallel MCMC chains on subsets of
data and later merging them (Chang and Fisher III 2013).
Since our proposal reduces the overall cost of split-merge
MCMC algorithm in general, it will reduce the cost of each
of the parallel chains thereby increasing the effectiveness
of these parallelisms on MCMC. Thus, existing advances in
parallelizing MCMC is complementary to our proposal.

Our Contributions: In this work, we show that it is
possible to construct informative proposals without sacri-
ficing the per-iteration cost. We leverage a simple observa-
tion that while designing proposals we can favor configu-
rations where entities similar are likely to be in the same
component. We use standard notions of vector similarity
such as cosine or Weighted jaccard. To perform such sam-
pling efficiently, we capitalize on the recent advances in
LSH sampler (Luo and Shrivastava 2018; Spring and Shri-
vastava 2017a; Charikar and Siminelakis 2017) that can per-
form adaptive sampling based on similarity. This forms our
first proposal.

Our first proposal leads to around 3x improvements over
state-of-the-art methods. However, with similarity driven
sampling, computing the Metropolis-Hastings (MH) ratio
requires quadratic cost in the size of the cluster being split
or merged. This is because while computing the state tran-
sition probability, we need to evaluate all possible ways that
can lead to the desired split configuration. All these config-
urations have different probabilities due to similarity-based
adaptive sampling and hence the probability computation is
expensive. It appears at first that this cost is unavoidable.
Surprisingly, it turns out that there is a rare sweet spot. With
Weighted MinHash, we can design a split-merge proposal
where the total cost of MH update is only linear in the size
of the cluster being split or merged. The possibility is unique
to MinHash due to its k-way generalized collision probabil-
ity (Shrivastava and Li 2013). Our proposal and novel exten-
sion of MinHash collision probability could be of indepen-
dent interest in itself.

Overall, our proposed algorithms obtain a sweet tradeoff

between the number of iteration and computational cost per
iteration. As a result, we reduce the overall convergence in
time, not just in iterations. On two large public datasets,
our proposal MinHash Split-Merge (MinSM) significantly
outperforms other state-of-the-art split-merge MCMC algo-
rithms in convergence speed as measured on wall clock time
on the same machine. Our proposed algorithm is around 6x
faster than the second best baseline on synthetic datasets as
well as realworld datasets without loss in accuracy.

Background
Our work requires bridging Locality Sensitive Sampling
with split-merge MCMC algorithm. We briefly review the
necessary background.

Locality Sensitive Hashing
Locality-Sensitive Hashing (LSH) is a popular technique
for efficient approximate nearest-neighbor search. LSH is a
family of functions, such that a function uniformly sampled
from this hash family has the property that, under the hash
mapping, similar points have a high probability of having
the same hash value. More precisely, considerH a family of
hash functions mapping RD to a discrete set [0, R− 1].
Definition 1 Locality Sensitive Hashing (LSH) Family A
family H is called (S0, cS0, u1, u2)-sensitive if for any two
points x, y ∈ Rd and h chosen uniformly from H satisfies
the following:
• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ u1
• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ u2

A collision occurs when the hash values for two data vec-
tors are equal, meaning that h(x) = h(y). LSH is a very
well studied topic in computer science theory and database
literature. There are many well-known LSH families in the
literature. Please refer (Gionis et al. 1999) for details.

Locality Sensitive Sampling (LSS) and Unbiased Esti-
mators LSH was considered as a black-box algorithm
for similarity search and dimensionality reduction. Re-
cent research (Spring and Shrivastava 2017a; Charikar and
Siminelakis 2017; Luo and Shrivastava 2018; Chen, Shri-
vastava, and Steorts 2017; Spring and Shrivastava 2017b)
found that LSH can be used for something more subtler
but useful. It is a data structure that can be used for ef-
ficient dynamically adaptive sampling. We first describe
the sampling algorithm of (Spring and Shrivastava 2017a;
Charikar and Siminelakis 2017; Luo and Shrivastava 2018;
Chen, Shrivastava, and Steorts 2017) and later comment on
its properties crucial to our proposal.

The algorithm uses two parameters - (K,L). We con-
struct L independent hash tables from the collection C. Each
hash table has a meta-hash function H that is formed by
concatenating K random independent hash functions from
some appropriate locality sensitive hash familyH. The can-
didate sampling algorithm works in two phases (Spring
and Shrivastava 2017a; Charikar and Siminelakis 2017;
Luo and Shrivastava 2018; Chen, Shrivastava, and Steorts
2017): (1) Pre-processing Phase: We construct L hash ta-
bles from the data by storing all elements x ∈ C. This is

4465

one-time linear cost. (2) Sampling Phase: Given a query q,
we collect one bucket from a randomly selected hash table
and return a random element from the bucket. If the bucket
is empty, we reselect a different hash table again. Keep track
of the number of different tables T probed.

It is not difficult to show that an item returned as a candi-
date from a (K,L)-parameterized LSH algorithm is sampled
with probability exactly 1−(1−pK)L× 1

Size , where p is the
collision probability of LSH function and Size is the num-
ber of elements in the bucket (Spring and Shrivastava 2017a;
Charikar and Siminelakis 2017; Luo and Shrivastava 2018;
Chen, Shrivastava, and Steorts 2017). The LSH family de-
fines the precise form of p used to build the hash tables.
Specifically, when L = 1 and K = 1, the probability re-
duced to the collision probability itself (p). Our proposal will
heavily rely above observation to design an informative pro-
posal distribution.

Weighted (or Generalized) MinHash
Weighted Minwise Hashing is a known LSH for the
Weighted Jaccard similarity (Leskovec, Rajaraman, and Ull-
man 2014). Given two positive vectors x, y ∈ RD, x, y > 0,
the (generalized) Weighted Jaccard similarity is defined as
J(x, y) =

∑D
i=1 min{xi,yi}∑D
i=1 max{xi,yi}

., where J(x, y) is a frequently
used measure for comparing web-documents (Leskovec, Ra-
jaraman, and Ullman 2014), histograms, gene sequences,
etc.

Weighted Minwise Hashing (WMH) (or Minwise Sam-
pling) generates randomized hash (or fingerprint) h(x), of
the given data vector x ≥ 0, such that for any pair of vectors
x and y, the probability of hash collision (or agreement of
hash values) is given by Pr(h(x) = h(y)) =

∑
min{xi,yi}∑
max{xi,yi} .

A unique property of Minwise Hashing is that there is
a natural extension of k-way collision (Shrivastava and Li
2013). In particular, given vectors x(1), x(2), ..., x(s), the si-
multaneous collision probability is given by:

Pr(h(x(1)) = h(x(2)) = ... = h(x(s)))

=

∑D
j min{x(1)j , x

(2)
j , ..., x

(s)
j }∑D

j max{x(1)j , x
(2)
j , ..., x

(s)
j }

(1)

Minwise hashing can be extended to negative elements us-
ing simple feature transforms (Li 2017), which essentialy
doubles the dimentions to 2D. In this paper, MinHash and
Weighted MinHash denote the same thing.

Split-Merge MCMC
Split-Merge MCMC (Hughes, Fox, and Sudderth 2012) is
useful for dealing with the tasks such as clustering or topic
modeling where the number of clusters or components are
not known in advance. Split-Merge MCMC is a Metropolis-
Hastings algorithm with two main transitions: Split and
Merge. During a split, a cluster is partitioned into two com-
ponents. On the contrary, a merge takes two components and
makes them to one.

During the MCMC inference process, split and merge
moves simultaneously change the number of components

and change the assignments of entities to different compo-
nents. (Jain and Neal 2004) proposes the first non-trivial Re-
stricted Gibbs Split-Merge (RGSM) algorithm, which was
later utilized for efficient topic modeling over large datasets
in (Wang and Blei 2012).

In (Wang and Russell 2015), the authors presented a
surprising argument about information asymmetry. It was
shown that both informative split and merge leads to poor
acceptance ratio. The author proposed a combination of the
smart split with dumb (random) merge and dumb split with
smart merge as a remedy. The algorithm was named as
Smart-Dumb/Dumb-Smart Split Merge algorithm (SDDS),
which was superior to RGSM. To obtain non-trivial smart
split (or merge), the authors propose to evaluate a large num-
ber of dumb proposals based on the likelihood and select the
best. This search process made the proposal very expensive.
It is not difficult to see that finding a smart split is compu-
tationally not very different from running a chain with sev-
eral sequences of dumb (random) splits (Wang and Russell
2015).

LSS based Split-Merge MCMC
Utilizing Similarity Information: In this paper, we make
an argument that similarity information, such as cosine sim-
ilarity, between different entities is almost always available.
For example, in the clustering task, the vector representation
of the data is usually easy to get for computing the likeli-
hood. Even in an application where we deal with complex
entities such as trees, it is not uncommon to have approxi-
mate embeddings (Bengio, Weston, and Grangier 2010).

It is natural to believe that similar entities, in terms of co-
sine similarity or Jaccard distance, of the underlying vec-
tor representation, are more likely to go to the same cluster
than non-similar ones. Thus, designing proposals which fa-
vor similar entities in the same cluster and dissimilar entities
in different clusters is more likely to lead to acceptation than
random proposals.

However, the problem is far from being solved. Any
similarity based sampling requires computing all pairwise
similarity as a prerequisite, which is a quadratic operation
O(n2). Quadratic operations are near-infeasible for large
datasets. One critical observation is that with the modern
view of LSH as samplers, described preview section, we can
get around this quadratic cost and design cheaper non-trivial
proposals.

Naive LSS based Proposal Design
This section discusses how LSH can be used for efficient
similarity sampling which will lead to an informative pro-
posal. In addition, we also want the cost of computing the
transition probabilities q(x′|x), which is an important com-
ponent of the acceptance ratio α(x′|x) (Jain and Neal 2004),
to be small. Here, x denotes the state before split/merge, and
x′ denote the state after split/merge. For a good proposal
design, it is imperative that q(x′|x) is easy to calculate as
well as the proposed state x′ is informative. Thus, design-
ing the right MCMC proposal process is the key to speed up
computation. Following the intuition described before, we

4466

introduce our LSS based proposal design in the rest of this
section.

We first create the hash tables T for sampling. We use
Sign Random Projection as the LSH function, thus our no-
tion of similarity is cosine (Gionis et al. 1999). It is pointed
out that, we can also use other LSH functions when the sim-
ilarity notion is different. We pay a one-time linear cost for
this preprocessing. Note, we need significantly lessK and L
(both has value 10 in our experiments) compared to what is
required for near-neighbor queries as we are only sampling.
The sampling is informative for any values of K and L. For
the details of analysis on K and L, please refer (Spring and
Shrivastava 2017a).

For our informative proposal, we will need capabilities to
do both similarity sampling as well as dissimilarity sampling
for merge and split respectively. The similarity sampling is
the usual sampling algorithm discussed in previous sections,
which ensures that given a query u, points similar to u are
more likely to be sampled. Analogously, we also need to
sample points that are likely to be dissimilar. With cosine
similarity, flipping the sign of the query, i.e., changing u to
−u will automatically do dissimilarity sampling.

Inspired from (Wang and Russell 2015), we also lever-
age the information asymmetry and mix smart and dumb
moves for better convergence. However, this time our pro-
posals will be efficient. At each iteration of MCMC, we start
by choosing randomly between an LSH Smart-split/Dumb-
merge or an LSH Smart-merge/Dumb-split operation. These
two operations are defined below:

Naive LSH Smart-split/Dumb-merge LSH based split
begins by randomly selecting an element u in the dataset.
Then, we use LSS (Locality-sensitive Sampler) to sample
points likely to be dissimilar to u. Thus, we query our data
structure T with −u as the query to get another element v
which is likely far away from u. If u and v belong to the
same cluster C, we split the cluster. During the split, we cre-
ate two new clusters Cu and Cv . We assign u to Cu and v
to Cv . For every element in C, we randomly assign them
to either Cu or Cv . Since we ensure that dissimilar points
u and v are split, this is an informative or smart split. If we
find u and v are already in a different cluster, we do a dumb
merge: randomly select two components, and merge these
two components into one component.

The most important part is that we can precisely compute
the probability of the proposed split move q(x′|x) and the
corresponding inverse move probability q(x|x′) as follow:

q(x′|x) =
(
1

2

)|Cu|+|Cv|−2

Cu∑
u

Cv∑
v

(
1

n

(
1−

(
1− Pr(−u, v)K

)L) |Cv ∩ S−u|
|S−u|

)
.

=

∑Cu

u

∑Cv

v

(
1
n

(
1−

(
1− Pr(−u, v)K

)L) |Cv∩S−u|
|S−u|

)
2|Cu|+|Cv|−2

q(x|x′) = 2

Mx′(Mx′ − 1)
.

(2)

In the above, n is the number of data point. S−u is the set
of data points that returned by querying in T using −u, and
|S−u| denotes the number of elements in S−u. Mx′ denotes
the number of clusters in state x′. C denotes the original
component, Cu and Cv are the two new components after
split with elements u and v in them. K is the number of bits
used for hashing, and L is the number of hash tables probed.
Pr(−u, v) is the collision probability between −u and v.

Naive LSH Smart-merge/Dumb-split LSH based Merge
begins by randomly selecting an element u in the dataset.
Then use LSS to sample from hash tables T to get another
element v which is similar with u. Then, if the mixture com-
ponent of u and v are different, then we do merge operation
for the corresponding two mixture component. If u and v are
in the same components, we do a dumb split: randomly se-
lect one cluster, and split this component into two separate
components.

We provide the the probability of the merge move q(x′|x)
and the corresponding inverse probability q(x|x′):

q(x′|x) =
Cu∑
u

Cv∑
v

(
1

n

(
1−

(
1− Pr(u, v)K

)L) |Cv ∩ Su|
|Su|

)
,

q(x|x′) =
1

Mx′
(
1

2
)|Cu|+|Cv|.

(3)

In the above, Su is the set of data points that returned by
query in T using u. |Su| denotes the number of elements in
Ss. All the other symbols have the same meaning as before.
Pr(u, v) is the collision probability between u and v.

Notice that, to calculate the transition probabilities in Eq.
2 and Eq. 3, we need to sum over all possible u and v in the
two components Cu and Cv . This could be expensive when
the cluster size is large. In other words, this complexity of
this proposal is quadratic to the size of the cluster.

The quadratic cost seems unavoidable. LSH does simi-
larity based sampling. Thus, we can sample pairs u and v
in adaptive fashion efficiently. A split of cluster C into Cu

and Cv can happen because of any two elements x ∈ Cu

and y ∈ Cv being samples. As a result, the transition proba-
bility requires accumulating non-uniform probabilities of all
possible combinations, making it quadratic to compute. On
the other hand if every pair has same probability then the
proposal is random. Overall, it seems hopeless to split the
cluster adaptively and at the same time get the probability of
split linear in the size of cluster.

It turns out, surprisingly, that a very unique design of pro-
posal that satisfies our wishlist. It is the unique mathemat-
ical properties of MinHash and a novel generalization of
its k-way collision probability that makes this possible. In
the next section, we will introduce the method of use k-way
minhash for scaling up MCMC (Shrivastava and Li 2013).

MinSM: MinHash based Split-Merge MCMC
Ideally, after identifying u we should split so that all the ele-
ments similar to u goes to Cu and rest goes to Cv . This will
be a significantly more informative proposal than random as-
signments to Cu and Cv . However, evaluating the transition

4467

probability of configuration under LSH would be computa-
tionally expensive, as LSH sampling is correlated and the
expressions are contrived as we introduced before.

We next show that MinHash with a very specific design
exactly achieves this otherwise impossible and ideal state
with the cost of evaluating the transition probability linear in
the size of the cluster. A unique property of MinHash is that
we can compute, in closed form and linear cost, the proba-
bility of collision of a set of points of any size ≥ 2. Such
computation is not possible with any other know LSH in-
cluding the popular random projections (Gionis et al. 1999).

We provide a novel extension of the collision probabil-
ity of MinHash to also include the probability of collision
with a given set and no collision with another given set (See
Equation 1). It is surprising that despite many non-trivial
correlations, the final probability expression is very simple
and only requires linear computations. As a result, we can
directly get the split of a cluster into two sets (or clusters)
and at the same time compute the transition probability. The
novel design and analysis of Minhash, presented here, could
be of independent interest in itself.

MinHash Smart-split/Dumb-merge MinHash based
split begins by flipping a coin to randomly choose from the
action of Smart-split or Dumb merge.

The LSH smart-split begins by randomly selecting an ele-
ment u in the dataset. Then, we use LSS (Locality-sensitive
Sampler) to sample a set of points that are likely to be simi-
lar to u from T , i.e., query T with u. Here we use Weighted
MinHash as the LSH and K = 1 is necessary. K ≥ 1 makes
the probability computations out of reach. Instead of sam-
pling a point from the bucket, as we do with LSS, we just
report the whole bucket as the set. Let us denote this sam-
pled set as Su. We now split the component Cu into two
components: Cu ∩ Su, Cu − Su. If the action is a dumb
merge, then we randomly select two components and merge
these two components into one component.

Given a new state x′, and the corresponding old state x,
we can precisely compute the probability of the proposed
split move q(x′|x) and the corresponding inverse move
probability q(x|x′) as follow:

Define p as the probability of agreement of weighted min-
hash of u with all of the data point in the queried set Su. The
known theory (Gionis et al. 1999) says that the expression
of p is given by Equation 1. However, we want something
more, we want all elements of Su to collide with u in the
bucket and anything in Cu − Su to not collide. Define Prob
as the probability of agreement of weighted minhash of u
with all of Su and none of the data point in Cu−Su. It turns
our that we can calculate this probability exactly as:

Prob =

∑2D
j max{0, (xjmin − xjmax)}∑2D

j xjall
, (4)

where xjmin = minx∈Cu∩Su
{xj}, xjmax =

maxx∈C−Su
{xj} and xjall = maxx∈Cu

{xj}
When we only use K = 1 Minhash, then the correspond-

ing proposal distribution is shown as follow:

q(x′|x) = |Su|
n
× Prob. (5)

a
b

c

f e

d

g

𝑋𝑋1 𝑋𝑋2

𝑋𝑋3

Figure 1: Three way Minwise Hashing.

Here, we give an illustration of the proof. Consider Fig-
ure 1. Let’s start with vanilla MinHash over sets and the ar-
guments will naturally extend to weighted versions. Given
X1, X2 and X3. We want the probability that the MinHash
of X1 and X2 collide but not of X3. From the theory of con-
sistent sampling (Shrivastava and Li 2013; Shrivastava 2016;
Manasse, McSherry, and Talwar 2010). This will happen if
we sample from b and the possibility is the union. Thus the
probability is b

a+b+c+d+e+f+g = |X1∩X2|−|X3|
|X1∪X2∪X3| which is es-

sentially we want the minimum of |X1 ∪ X2 ∪ X3| to be
sampled from the intersection of X1 and X2 and not from
X3. That is the only way the MinHash of X1 and X2 will
agree but not of X3. This argument can be naturally exten-
dend if we want X1, X2, ..., Xh to have same minhash and
not Y1, Y2, ..., Yg , the probability can be written as:

max{0, |X1 ∩X2 ∩ ... ∩Xh| − |Y1 ∪ Y2 ∪ ... ∪ Yg|}
|X1 ∪X2 ∪ ... ∪Xh ∪ Y1 ∪ Y2 ∪ ... ∪ Yg|

.

Now for weighted sets (non-binary), we can replace in-
tersection with minimum and unions with max leading to
the desired expression, which is due to the seminal works
in consistent weighted sampling a strict generalization of
MinHash. See (Shrivastava and Li 2013; Shrivastava 2016;
Manasse, McSherry, and Talwar 2010) for details. Also us-
ing (Leskovec, Rajaraman, and Ullman 2014) we can extend
it to negative weights as well using simple feature transfor-
mation.

It should be noted that this expression only requires cost
linear in the size of the cluster Cu being split. With this
value of Prob, the corresponding transition probability for
the split move is:

q(x′|x) = |Su|
n
× Prob, q(x|x′) = 2

Mx′(Mx′ − 1)
. (6)

In the above, n is the number of data point. Su is the set of
data points that returned by querying in T using u, and |Su|
denotes the number of elements in Su. D is the dimension
of the data. Mx′ denotes the number of clusters in state x′.

To be able to compute this expression and also get an in-
formative split was the primary reason for many choices that
we made. For example, K = 1 as needed so that we can
compute Prob in a simple closed form. As a result, we ob-
tain a very unique proposal. The idea and design could be of
independent interest in itself.

4468

Minhash Smart-merge/Dumb-split The proposed smart-
merge begins by randomly selecting a center u in the dataset.
Then, we use LSS (Locality-sensitive Sampler) to sample a
center v that are likely to be similar to u. Then we merge the
component Cu and Cv to one component.

If the action is a dumb split: randomly select one clus-
ter, and split this component into two separate components
uniformly.

Given a new state x′, and the corresponding old state x.
We provide the probability of the merge move q(x′|x) and
the corresponding inverse probability q(x|x′) as follow:

q(x′|x) = 1

Mx

∑2D
j min{uj , vj}∑2D
j max{uj , vj}

1

|Su|
,

q(x|x′) = 1

Mx′
(
1

2
)|Cu|+|Cv|.

(7)

In the above, Su is the set of data points that returned by
the query in hash table T using u. |Su| denotes the number
of elements in Su. uj denotes j-th feature of the data point
u. All the other symbols have the same meaning as before.

As we introduced before, our proposed algorithm be-
longs to the general framework of metroplis-hastings algo-
rithm (Andrieu et al. 2003). After each split/merge move, we
need to calculate the acceptance rate α(x′|x) for this move:
α(x′|x) = min{1, L(x′)q(x|x′)

L(x)q(x′|x) }, where x′ is the proposed
new state, x is the previous state, q(x′|x) here is the designed
proposal distribution, and it can be calculated as introduced
in previous sections. L(x) is the likelihood value of the state
x.

The likelihood of the data is generally in the form of
L(x) =

∏
D pj(ei), where pj(ei) is the probability of

ei ∈ D in it’s corresponding component Cj . D denotes the
total dataset. In the split merge MCMC, only the compo-
nents that being split/merged will change of the likelihood
value. So, that the ratio L(x′)

L(x) is cheap to compute, since all
the probability of unchanged data will be canceled.

Empirical Study
In this section, we demonstrate the advantage of our pro-
posed models by applying it to the Gaussian Mixture model
inference and compare it with state-of-the-art sampling
methods.

Gaussian Mixture Model
We briefly review the Gaussian Mixture Model. A Gaus-
sian mixture density is a weighted sum of component den-
sities. For a M -class clustering task, we could have a set of
GMMs associated with each cluster. For a D-dimensional
feature vector denoted as x, the mixture density is defined as
p(x) =

∑M
i=1 wipi(x), where wi, i = 1, ...,M are the mix-

ture weights which satisfy the constraint that
∑M

i = 1 and
wi ≥ 0. The mixture density is a weighted linear combina-
tion of component M uni-model Gaussian density functions
pi(x), i = 1, ...,M . The Gaussian mixture density is param-
eterized by the mixture weights, mean vectors, and covari-
ance vectors from all components densities.

For a GMM-based clustering task, the goal of the model
training is to estimate the parameters of the GMM so that
the Gaussian mixture density can best match the distribu-
tion of the training feature vectors. Estimating the parame-
ters of the GMM using the expectation-maximization (EM)
algorithm (Nasrabadi 2007) is popular. However, in most of
the real world applications, the number of clusters M is not
known, which is required by the EM algorithm. On the other
hand, Split-Merge based MCMC algorithms are used for in-
ference when M is unknown, which is also the focus of this
paper. We therefore only compare our proposal LSHSM and
other state-of-the-art split-merge algorithms on GMM clus-
tering which does not require the prior knowledge of the
number of clusters.

Experimental Setup
Competing Algorithms: We compare following four split-
merge MCMC sampling algorithm on GMM with an un-
known number of clusters: RGSM: Restricted Gibbs split-
merge MCMC algorithm (Jain and Neal 2004) is considered
as one of the state-of-the-art sampling algorithm. SDDS:
Smart-Dumb/Dumb-Smart Split Merge algorithm (Wang
and Russell 2015). LSHSM: The Naive version of LSH
based Split Merge algorithm by using Sign Random Pro-
jection. In the LSHSM method, we use fixed K = 10 and
L = 10 for all the dataset. We fix the hashing scheme
to be signed random projection. MinSM: LSH based split
merge algorithm is the proposed method in this paper. In the
MinSM method, we use fixed K = 1 and L = 1 for all the
dataset.

0 2 4 6 8 10

CPU Execution Time(h)

0

2K

4K

6K

8K

10K

12K

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(a) KDDCUP Dataset

0 5K 10K 15K

Number of Iterations

0

0.5K

1K

1.5K

2K

3K

3.5K

Li
ke

lih
oo

d
LSHSM
RGSM
SDDS
MinSM

(b) KDDCUP Dataset

0 0.5K 1K 1.5K 2K 2.5K

CPU Execution Time(s)

0

0.5K

1K

1.5K

2K

2.5K

3K

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(c) PubMed Dataset

0 2M 4M 6M 8M

Number of Iterations

0

2K

4K

6K

8K

10K

12K

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(d) PubMed Dataset

Figure 2: The time and iteration wise comparison of the
likelihood for difference methods on the two real dataset.
It is obviously that our proposed MinSM algorithm can be
at least 6 times faster than the state of the art algorithms in
the real large dataset.

Dataset: We evaluate the effectiveness of our algo-
rithm on both two large real-world datasets: KDDCUP and

4469

0 1000 2000 3000 4000 5000

Number of Iterations

0

2

4

6

8

10

12
Li

ke
lih

oo
d

LSHSM
RGSM
SDDS
MinSM

(a) S1 dataset

0 20K 40K 60K 80K 100K

Number of Iterations

0

25

50

75

100

125

150

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(b) S2 dataset

0 100K 200K 300K 400K 500K

Number of Iterations

0

150

300

450

600

750

900

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(c) S3 Dataset

0 1 2 3 4 5

CPU Execution Time(s)

0

2

4

6

8

10

12

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(d) S1 dataset

0 5 10 15 20 25

CPU Execution Time(s)

0

25

50

75

100

125

150

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(e) S2 dataset

0 100 200 300 400 500

CPU Execution Time(s)

0

150

300

450

600

750

900

Li
ke

lih
oo

d

LSHSM
RGSM
SDDS
MinSM

(f) S3 dataset

Figure 3: The time and iteration wise comparison of the
likelihood for difference methods on the Synthetic Dataset.
MinSM outperforms the other baselines by a large margin. It
is also clear that requiring less iteration does not mean faster
convergence.

PubMed. KDDCUP data was used in the KDD Cup 2004
data mining competition. It contains 145751 data point.
The dimensionality of the dataset is 74. We have 2000
ground truth cluster labels for this dataset. 1 The PubMed
abstraction dataset contains 8200000 abstractions that ex-
tracted from the PubMed 2. All the documents represented
as the bag-of-words representation. In the data set, we have
141043, different words. This data set is ideal for document
clustering or topic modeling.

Synthetic data is a standard way of testing GMM models
(Nasrabadi 2007). So, in this paper, we also use synthetic
datasets as a sanity check to evaluate the performance of
different methods. The process of generating the synthetic
dataset is as follow: Randomly generate k different Gaussian
distributions (with different corresponding mean and vari-
ance). We fix the k = 10 in our experiment. Then based on
the randomly generated Gaussian distributions, we generate
a set of data points for each Gaussian distribution. Here we
fix the dimensionality of each data point to 25. In this exper-

1https://cs.joensuu.fi/sipu/datasets/
2www.pubmed.gov

Table 1: Clustering Accuracy for Different Methods

Methods Metric S1 S2 S3 KDD Pub
RGSM NMI 0.96 0.93 0.88 0.74 0.63

Accuracy 0.95 0.92 0.87 0.68 0.62
SDDS NMI 0.97 0.96 0.95 0.86 0.80

Accuracy 0.98 0.97 0.94 0.85 0.77
LSHSM NMI 0.96 0.95 0.96 0.84 0.77

Accuracy 0.97 0.94 0.96 0.83 0.75
MinSM NMI 0.96 0.94 0.96 0.83 0.75

Accuracy 0.97 0.94 0.97 0.84 0.74

iment, we generate three sythntic dataset with different size
(e.g. 100, 1000, 10000). We name the three synthetic dataset
as S1, S2, S3.

Speed Comparison and Analysis
We first plot the evolution of likelihood both as a function of
iterations as well as the time of all the three competing meth-
ods. The evolution of likelihood and time with iterations on
two real-world data is shown in Fig. 2. The result on three
synthetic data set is shown in Fig. 3.

We can see a consistent trend in the evolution of likeli-
hood, which holds true for both simulated as well as real
datasets. First of all, RGSM consistently performs poorly
and requires both more iterations as well as time. This
demonstrate that the need of combining smart and dumb
moves for faster convergence made in (Wang and Russell
2015) is necessary. RGSM does not use it and hence leads
to poor, even iteration wise, convergence.

SDDS seems to do quite well, compared to our proposed
LSHSM when we look at iteration wise convergence. How-
ever, when we look at the time, the picture is completely
changed. MinSM is significantly faster than SDDS, even if
the convergence is slower iteration wise. This is not sur-
prising because the per-iteration cost of MinSM is orders
of magnitude less than SDDS. SDDS hides the computa-
tions inside the iteration by evaluating every possible state
in each iteration, based on likelihood, is equivalent to sev-
eral random iterations combined. Such costly evaluation per
iteration can give a false impressing of less iteration.

It is clear from the plots that merely comparing iterations
and acceptance ratio can give a false impression of supe-
riority. Time wise comparison is a legitimate comparison
of overall computational efficiency. Clearly, MinSM outper-
forms the other baselines by a large margin.

Clustering Accuracy Comparison
To evaluate the clustering performance of different algo-
rithms, we use two widely used measures (Accuracy and
NMI (Nasrabadi 2007)). Normalized Mutual Information
(NMI) (Nasrabadi 2007) is widely used for measuring the
performance of clustering algorithms. It can be calculated
as NMI(C,C ′) = I(C;C′)√

H(C)H(C′)
, where H(C) and H(C ′)

are the marginal entropies, I(C;C ′) is the mutual informa-
tion between C ′ and C. The Accuracy measure, which is
calculated as the percentage of target objects going to the

4470

correct cluster, is defined as Accuracy =
∑k

i=1 ai

n , where ai
is the number of data objects clustered to its corresponding
true cluster, k is the number of cluster and n is the number
of data objects.

Table 1 shows the clustering accuracy of different com-
peting methods. We can see that the MinSM, LSHSM and
SDDS are much more accurate than RGSM. This observa-
tion is in agreement with the likelihood plots. On the other
hand, the accuracy difference between MinSM, LSHSM and
SDDS is negligible. This small difference is due to the mis-
match between the likelihood value and clustering accuracy.
It should be noted that the difference is small for SDSS and
MinSM variants because both achieved the same likelihood
value. For the Random Split merge with the worse likeli-
hood, the difference is huge, indicating the clustering results
does correlate with likelihood values except for minor vari-
ations.

Conclusion
The Split-Merge MCMC (Monte Carlo Markov Chain) is
one of the essential and popular variants of MCMC for
problems with an unknown number of components. It is a
well known that the inference process of SplitMerge MCMC
is computational expensive which is not applicable for the
large-scale dataset. Existing approaches that try to speed
up the split-merge MCMC are stuck in a computational
chicken-and-egg loop problem.

In this paper, we proposed MinSM, accelerating Split
Merge MCMC via weighted Minhash. The new splitmerge
MCMC has constant time update, and at the same time the
proposal is informative and needs significantly fewer itera-
tions than random split-merge. Overall, we obtain a sweet
tradeoff between convergence and per update cost. Exper-
iments with Gaussian Mixture Model on two real-world
datasets demonstrate much faster convergence and better
scaling to large datasets.

Acknowledgement
This work was supported by National Science Foundation
IIS-1652131, BIGDATA-1838177, RI-1718478, AFOSR-
YIP FA9550-18-1-0152, Amazon Research Award, ONR
BRC grant on Randomized Numerical Linear Algebra.

References
Andrieu, C.; De Freitas, N.; Doucet, A.; and Jordan, M. I. 2003.
An introduction to mcmc for machine learning. Machine learning
50(1-2):5–43.
Bengio, S.; Weston, J.; and Grangier, D. 2010. Label embedding
trees for large multi-class tasks. In Advances in Neural Information
Processing Systems, 163–171.
Chang, J., and Fisher III, J. W. 2013. Parallel sampling of dp
mixture models using sub-cluster splits. In Advances in Neural
Information Processing Systems, 620–628.
Charikar, M., and Siminelakis, P. 2017. Hashing-based-estimators
for kernel density in high dimensions. FOCS.
Chen, B.; Shrivastava, A.; and Steorts, R. C. 2017. Unique entity
estimation with application to the syrian conflict. arXiv preprint
arXiv:1710.02690.

Eronen, L.; Geerts, F.; and Toivonen, H. 2003. A markov chain
approach to reconstruction of long haplotypes. In Biocomputing
2004. World Scientific. 104–115.
Gionis, A.; Indyk, P.; Motwani, R.; et al. 1999. Similarity search
in high dimensions via hashing. In VLDB, volume 99, 518–529.
Huelsenbeck, J. P., and Ronquist, F. 2001. Mrbayes: Bayesian
inference of phylogenetic trees. Bioinformatics 17(8):754–755.
Hughes, M. C.; Fox, E.; and Sudderth, E. B. 2012. Effective split-
merge monte carlo methods for nonparametric models of sequen-
tial data. In Advances in neural information processing systems,
1295–1303.
Jain, S., and Neal, R. M. 2004. A split-merge markov chain monte
carlo procedure for the dirichlet process mixture model. Journal of
Computational and Graphical Statistics 13(1):158–182.
Leskovec, J.; Rajaraman, A.; and Ullman, J. D. 2014. Mining of
massive datasets. Cambridge university press.
Li, P. 2017. Linearized gmm kernels and normalized random
fourier features. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
315–324. ACM.
Luo, C., and Shrivastava, A. 2018. Arrays of (locality-sensitive)
count estimators (ace): Anomaly detection on the edge. In Proceed-
ings of the 2018 World Wide Web Conference, WWW’18, 1439–
1448.
Manasse, M.; McSherry, F.; and Talwar, K. 2010. Consistent
weighted sampling. Unpublished technical report) http://research.
microsoft. com/en-us/people/manasse 2.
Medvedovic, M.; Yeung, K. Y.; and Bumgarner, R. E. 2004.
Bayesian mixture model based clustering of replicated microarray
data. Bioinformatics 20(8):1222–1232.
Nasrabadi, N. M. 2007. Pattern recognition and machine learning.
Journal of electronic imaging 16(4):049901.
Sharma, A., and Adlakha, N. 2015. A computational model to
study the concentrations of dna, mrna and proteins in a growing
cell. Journal of Medical Imaging and Health Informatics 5(5):945–
950.
Shrivastava, A., and Li, P. 2013. Beyond pairwise: Provably fast
algorithms for approximate k-way similarity search. In Advances
in Neural Information Processing Systems, 791–799.
Shrivastava, A. 2016. Simple and efficient weighted minwise hash-
ing. In Advances in Neural Information Processing Systems, 1498–
1506.
Spring, R., and Shrivastava, A. 2017a. A new unbiased and
efficient class of lsh-based samplers and estimators for parti-
tion function computation in log-linear models. arXiv preprint
arXiv:1703.05160.
Spring, R., and Shrivastava, A. 2017b. Scalable and sustainable
deep learning via randomized hashing. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 445–454. ACM.
Wang, C., and Blei, D. M. 2012. A split-merge mcmc algorithm for
the hierarchical dirichlet process. arXiv preprint arXiv:1201.1657.
Wang, W., and Russell, S. J. 2015. A smart-dumb/dumb-smart
algorithm for efficient split-merge mcmc. In UAI, 902–911.

4471

