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Abstract
Dictionary Learning (DL) plays a crucial role in numerous
machine learning tasks. It targets at finding the dictionary
over which the training set admits a maximally sparse rep-
resentation. Most existing DL algorithms are based on solv-
ing an optimization problem, where the noise variance and
sparsity level should be known as the prior knowledge. How-
ever, in practice applications, it is difficult to obtain these
knowledge. Thus, non-parametric Bayesian DL has recently
received much attention of researchers due to its adaptabil-
ity and effectiveness. Although many hierarchical priors have
been used to promote the sparsity of the representation in
non-parametric Bayesian DL, the problem of redundancy for
the dictionary is still overlooked, which greatly decreases
the performance of sparse coding. To address this problem,
this paper presents a novel robust dictionary learning frame-
work via Bayesian inference. In particular, we employ the
orthogonality-promoting regularization to mitigate correla-
tions among dictionary atoms. Such a regularization, encour-
aging the dictionary atoms to be close to being orthogonal,
can alleviate overfitting to training data and improve the dis-
crimination of the model. Moreover, we impose Scale mix-
ture of the Vector variate Gaussian (SMVG) distribution on
the noise to capture its structure. A Regularized Expecta-
tion Maximization Algorithm is developed to estimate the
posterior distribution of the representation and dictionary
with orthogonality-promoting regularization. Numerical re-
sults show that our method can learn the dictionary with an
accuracy better than existing methods, especially when the
number of training signals is limited.

Introduction
In the last decades, sparse coding, inspired by the sparsity
mechanism of human vision system (Olshausen and Field
1996), has become a significant technique in computer vi-
sion and machine learning with many real-world applica-
tions such as image classification (Wright et al. 2009), visual
tracking (Mei and Ling 2011) and cluster analysis (Elham-
ifar and Vidal 2009). It models signals as linear combina-
tions of a small number of atoms chosen from a large dic-
tionary by solving an l0 minimization problem. In addition
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to solid theoretical studies (Candes and Tao 2005), numer-
ous linear models following this line of sparse coding have
recently emerged as powerful tools to cope with a variety
of estimation tasks, e.g., Collaborative Representation Clas-
sifier (CRC) (Zhang, Yang, and Feng 2011), Robust Sparse
Coding (RSC) (Yang et al. 2011b), Nuclear norm based Ma-
trix Regression (NMR) (Yang et al. 2017a), capped norm
based robust dictionary learning (Jiang, Nie, and Huang
2015), and group sparsity based model (Nie et al. 2010;
Yuan, Liu, and Ye 2011).

The dictionary plays an important role in these sparse rep-
resentation based models. A desired dictionary learned from
data often outperforms a set of predefined bases (Guo et al.
2016). As a result, dictionary learning (DL) has received a
growing interest and a large number of DL algorithms have
been proposed in recent years. K-SVD (Aharon, Elad, and
Bruckstein 2006), as a classic DL algorithm, alternates be-
tween sparse coding of the examples based on the current
dictionary and a process of updating the dictionary atoms
to better fit the data. However, K-SVD focuses on only the
representational power of the dictionary (or the efficiency of
sparse coding under the dictionary) without considering its
capability for discrimination. To overcome this limitation,
(Zhang and Li 2010) proposed a discriminative K-SVD al-
gorithm to learn an over-complete dictionary from a set of
labeled training face images. Different from (Zhang and Li
2010), (Yang et al. 2011a) employed the Fisher discrimi-
nation criterion to learn a structured dictionary (FDDL for
short). However, FDDL is not able to effectively represent
the non-linear changes introduced by the pose variation.
Thus (Shekhar et al. 2013) presented a robust supervised
method for learning a single dictionary to optimally repre-
sent both source and target data.

In practical applications, however, labeling samples is
usually expensive and time consuming due to the signifi-
cant human effort involved. Thus, it is desired to develop
semi-supervised or weakly-supervised algorithms for effi-
ciently learning a dictionary. To this end, (Wang et al. 2013)
proposed robust semi-supervised dictionary learning model,
while (Yang and Chen 2017) explored the discrimination of
labeled and unlabeled training data by requiring discrimina-
tive representation residual and coefficients. However, these
semi-supervised DL methods only modify the objective to
include a label fit term that renders the learned dictionary as
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discriminative as possible, which may lead to sub-optimal
classification performance. To alleviate this shortcoming,
(You et al. 2018) considered a weak-supervision setting for
analysis dictionary learning that is suitable for classification.
priors.

The performance of the methods mentioned above is
highly dependent on some prior knowledge such as noise
variance and sparsity level (Chen et al. 2013) for choosing
a proper regularizer. In practice, nevertheless, these prior in-
formation are usually complex and unavailable. To mitigate
this limitation, nonparametric Bayesian dictionary learn-
ing algorithms (Zhou et al. 2009; 2012) are recently de-
veloped. They cast dictionary learning as a factor-analysis
problem, with the factor loading corresponding to the dic-
tionary elements (atoms). Then, the model parameters are
learned by utilizing nonparametric Bayesian techniques like
the beta process (BP) (Paisley and Carin 2009), and the In-
dian buffet process (IBP) (Ghahramani and Griffiths 2006),
which circumvents arduous parameter adjustment task and
explains DL models from the statistical perspective. To en-
hance the discrimination of dictionary, (Akhtar, Shafait, and
Mian 2016) adaptively built the association between the dic-
tionary atoms with the class labels such that this associa-
tion signifies the probability of selection of the dictionary
atoms in the expansion of classs-pecific data. Taking the un-
certainty of the estimates in the inference process into ac-
count, (Serra et al. 2017) presented a novel Bayesian ap-
proach for the l1 sparse dictionary learning problem based
on K-SVD. To promote the sparsity of the representation,
(Yang et al. 2017b) leveraged a Gaussian-inverse Gamma
hierarchical prior in modeling.

Although many supervised techniques (Akhtar, Mian, and
Porikli 2017) can be integrated into Bayesian DL algo-
rithms, they tried to improve the representation performance
of sparse coding by constructing overcomplete dictionaries.
This is obviously insufficient since such a strategy often re-
sults in high computation cost and ambiguity in correspond-
ing representations. Meanwhile, in many practical applica-
tions, we may not learn a satisfactory dictionary due to the
limited training samples. Thus, how to eliminate the redun-
dancy among the dictionary atoms to improve the represen-
tational power of sparse coding becomes an urgent problem
to be solved.
Our Contributions. In this paper, we propose a
novel Bayesian dictionary learning method. It uses the
Orthogonality-Promoting regularization, i.e., BMD regular-
izer (Xie et al. 2018), to mitigate correlations among the
dictionary atoms. This regularizer encourages the dictionary
atoms to be close to being orthogonal, which not only
can alleviate overfitting to training data, but also improve
the discrimination of the model. To facilitate the design
of algorithm, we approximate the BMD regularizers with
convex functions. Based on the basic framework of DL,
we perform a Regularized Expectation Maximization of
model parameters with the approximated BMD regularizer
on the desired prior distribution. We model dictionaries,
representation coefficients and noise under the Hierarchical
formulation. Specially, we consider the relationship among
elements of each noise vector using the Scale Mixture of

the Vector variate Gaussian (SMVG) distribution, which
is a long-tail distribution and often is applied to robust
modeling. This paper makes three main contributions:
• Based on the Hierarchical formulation, a novel non-

parametric Bayesian dictionary learning model is intro-
duced. It uses Orthogonality-Promoting regularization to
eliminate the redundancy among the dictionary atoms, lead-
ing to the stronger representation for sparse coding.
• To effectively estimate model parameters, a Regularized

Expectation Maximization Algorithm is provided, which
considers the structural information of the noise.
• Our experiments on four benchmark databases (AR,

Extended Yale B, UCF sports action and Caltech-101
databases) show the superior performance of our method in
classification tasks.

Preliminaries and Background
Notations
The bold capital and bold lowercase symbols are used to rep-
resent matrices and vectors, respectively. The transpose of
the matrix M is defined as MT . tr(M) and |M| (or det(M))
denote the trace and determinant of a square matrix M,
respectively. exp(·) denotes the exponential function and
etr(·) = exp(tr(·)). R and Rl×m is the set of all real num-
ber and the set of all real l × m-dimensional matrices, re-
spectively. For a matrix M, its i-th row is denoted by mi

and mij denotes the (i, j)-th entry of M. If a l × l matrix
M is positive semi-define, we denote M � 0 or M ∈ R+

l .
E(M) and Cov(M) denote the expectation and covariance
of M, respectively. Ip represents a p × p identity matrix.
z ∼ Nl(0,∆p) denotes that the p-dimensional vector z fol-
lows Gaussian distribution with zero mean and variance ma-
trix ∆p. ‖ z ‖1 and ‖ z ‖2 denote the l1 and l2 of vector
z, respectively. ‖ M ‖F defines the Frobenius norm of the
matrix M, which is equal to the l2-norm of Vec(M), i.e.,
‖ M ‖F=‖ Vec(M) ‖2. ∇φ(·) denotes the gradient of func-
tion φ(·).

Dictionary Learning
Let A = [a1, a2, · · · , an] be a given dictionary, where each
atom ai ∈ Rd. Considering the classical sparse coding task,
a signal y ∈ Rd can be approximately represented by a lin-
ear combination of a few atoms from the dictionary A as:

y ≈ Ax = x1a1 + x2a2 + · · ·+ xnan, (1)

where x = [x1, x2, · · ·, xn] ∈ Rn is a sparse coefficient
vector. To this end, x is characterized by an l0-norm, which
leads to the l0-norm minimization problem.

However, the minimization of l0-norm is an NP hard prob-
lem. Donoho proved that “for most large under-determined
systems of linear equations, the minimal l1-norm near-
solution approximates the sparsest near-solution” (Donoho
2006), therefore recent research usually formulates the
sparse coding problem as the minimization of l1-norm, i.e.,
the coding coefficient can be got by solving the following
equation:

minx ‖ y− Ax ‖22 +α ‖ x ‖1 . (2)
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Cases Squared Frobenius Norm (SFN) Von Neumann divergence (VND) Log-Determinant Divergence (LDD)
φ(X) ‖ X ‖2F tr(XlogX− X) −logdetX
Λφ(X,Y) ‖X− Y‖2F tr(XlogX− XlogY− X + Y) tr(XY−1)− logdet(XY−1)
Λφ,con(X,Y) ‖ X− Y ‖2F +tr(X) tr((X + εY)log(X + εY)) −logdet(X + εY) + (log 1

ε )tr(X)

Table 1: Three different cases for φ(X), which induce three BMDs, where ε > 0 is a small scalar

where α > 0 is a balance parameter. In (2), the first term
is called as reconstruction error, and the second term is the
sparsity penalty.

The choice of dictionary A dominates the representation
performance of coefficients x. To obtain a better dictionary
from the training set of k samples Y = [y1, y2, · · ·, yk] ∈
Rd×k, many dictionary learning (DL) algorithms have been
proposed, the basic idea of which is to minimize the follow-
ing empirical cost function over both a dictionary A and a
sparse coefficients matrix X = [x1, x2, · · ·, xk] ∈ Rd×k:

minA,X ‖ Y− AX ‖2F +β ‖ X ‖1
s.t., ‖ ai ‖22≤ 1, ∀ i = 1, 2, · · ·, n,

(3)

where β > 0 is a balance parameter. The constraint ‖ ai ‖22≤
1 targets at preventing dictionary A from being arbitrarily
large because it would cause very small values of coeffi-
cients matrix X. In (3), one seeks to match the dictionary
A to the imagery of interest, while simultaneously encour-
aging a sparse representation X.

Orthogonality-Promoting Regularization
Orthogonality-promoting regularization, preventing the re-
dundancy among the learned variables, has been recently
studied in some machine learning problems including la-
tent variable modeling, multitask learning and metric learn-
ing (Xie et al. 2018). Due to the easy convex relaxation and
complete theoretical guarantee, we choose BMD regularizer
as an orthogonality-promoting regularization in this paper.

Definition 1. Given a strictly convex, differentiable func-
tion φ : Rl×m −→ R. For any two real symmetric matrix
X,Y ∈ Rl×l, a BMD is defined as:

Λφ(X,Y) = φ(X)− φ(Y)− tr((∇φ(Y))T (X− Y)). (4)

Different functions φ can induce different versions of
BMD, which can been used to measure the closeness be-
tween two matrices. According to (Xie et al. 2018), we sum-
marize three cases about φ in Table 1. The second line of Ta-
ble 1 shows three popular φ functions, which generate three
BMDs, i.e., Squared Frobenius Norm (SFN), Von Neumann
divergence (VND) and Log-Determinant Divergence (LDD)
as displayed in the third line of Table 1. The convex relax-
ations for three different BMDs are described in the last line
of Table 1.

Proposed Method
In this section, we first describe our Hierarchical model for
dictionary learning, then provide a Regularized Stochastic
Variational Inference (RSVI) to estimate model parameters.

Overview of the Proposed Framework

Most of the compressive sensing literature assumes “off-the-
shelf” wavelet and DCT bases/dictionaries, but recent de-
noising and inpainting research has demonstrated the signif-
icant advantages of learning an often over-complete dictio-
nary matched to the signals of interest. In previous section,
we revisited the basic sparse dictionary learning model. For
the convenience, we rewritten it as:

Y = AX + E, (5)

where E = [e1, e2, · · ·, ek] is the representation error matrix.
Our goal is to estimate the optimal dictionary A and

representation coefficients matrix X according to the given
prior information. From statistical viewpoint, model (3) as-
sumes each xi follows independent identically distributed
(i.i.d.) with Laplace distribution, while each error vector
ei is characterized using independent Gaussian distribu-
tion. However, these simple priors cannot cope with those
complex data from real-world (Luo et al. 2018). To ad-
dress this issue, in the following, we develop a hierarchi-
cal Bayesian model with orthogonality-promoting regular-
ization for learning dictionaries.

Modeling error matrix E. In Bayesian modeling, we
need introduce a prior distribution on error matrix E. The
scale mixture of the Gaussian distribution (Luo et al. 2018)
belongs to the category of the elliptically contoured distri-
bution. Compared with Gaussian distribution, it has heavier
tails, which is beneficial for robust modeling. Meanwhile,
considering the correlation between elements of the practical
noise matrix E, Scale mixture of the Vector variate Gaussian
(SMVG) distribution is used to model it in the first layer.
That is,

ei = U
−1/w
i Φ

−1/2
i zi, (6)

where zi ∼ Nd(0, Id), i = 1, 2, · · · , k and w > 0. Each
Φi is called precision matrix. Each ei is controlled by the
nonnegative parameter Ui which is similar to the weight of
each group in group sparsity (Yuan, Liu, and Ye 2011).

Setting w as 2, (6) is equivalent to

P (ei|Φi, Ui, xi) =
|UiΦi|
(2π)d/2

exp

(
−1

2
eTi (UiΦi)ei

)
. (7)

It is worth noting that most of existing methods assume
that elements of the practical noise matrix E are indepen-
dently generated. But here, we use UiΦi to learn the struc-
ture of noise vector ei, which is suitable for image classifi-
cation with the occlusions or illumination.
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Since E = Y− AX, (7) is rewritten as

P (yi|Φi, Ui, xi,A)

=
|UiΦi|
(2π)d/2

exp

(
−1

2
(yi − Axi)T (UiΦi)(yi − Axi)

)
.

(8)

Suppose different samples are independent of each other.
Then, we have

P (Y|Φ,U,X,A) =

k∏
i

P (yi|Φi, Ui, xi,A). (9)

Here Φ = [Φ1,Φ2, · · · ,Φk] and U = [U1, U2, · · · , Uk].
In the second layer, we use Jeffrey’s prior to fit each scalar

variable Ui according to (Luo et al. 2018). Then,

P (U) =

k∏
i=1

P (Ui) ∝
k∏
i=1

1

Ui
. (10)

Gamma distribution (Luo et al. 2018) is one of the most
widely used prior for the precision matrix Φi of the ran-
dom effects since it provides a convenient conjugate prior
for multivariate normal distribution. Thus, for each super pa-
rameter Φi, we impose the matrix variate Gamma prior on
it, i.e.,

P (Φi) =
(
Td(c)|Wi|−c

)−1
|Φi|c−

1
2 (d+1)etr(−WΦi),

(11)

where Td(c) is a multivariate gamma function (Luo et al.
2018).

Modeling dictionary A. Similarly, to effectively model
dictionary A, we use the scale mixture of the Vector variate
Gaussian distribution to fit it under Hierarchical formula-
tion, i.e.,

ai = V
−1/w
i Ψ

−1/2
i gi, (12)

where gi ∼ Nd(0, Id), i = 1, 2, · · · , k, and each ai > 0.
Letting w = 2, we have

P (ai|Ψi, Vi) =
|ViΨi|
(2π)d/2

exp
(
−1

2
aTi (ViΨi)ai

)
. (13)

Assuming that different atoms are independent of each other,
we have

P (A|Ψ,V) =

k∏
i

P (ai|Ψi, Ui), (14)

where Ψ = [Ψ1,Ψ2, · · · ,Ψk] and V = [V1, V2, · · · , Vk].
In the second layer, we impose Jeffrey??s prior on each

scalar variable Vi, i.e.,

P (V) =

k∏
i=1

P (Vi) ∝
k∏
i=1

1

Vi
. (15)

Meanwhile, matrix variate Gamma prior is chosen as the
prior distribution of each Φi, i.e.,

P (Ψi) =
(
Tn(c)|Wi|−c

)−1
|Ψi|c−

1
2 (n+1)etr(−WΨi).

(16)

Modeling coefficients matrix X. In the first layer, ele-
ments in the coefficient vector x are assumed to be indepen-
dent and follow the scale mixture of the univariate Gaussian
distribution, which has been extensively used to exploit the
sparsity of xj (Luo et al. 2018). That being said,

xij = (γij)
−1/2zij , (17)

where zij ∼ N(0, 1), (γij)
−1 is the precision of xij , and xij

is the i-th element of xj . This is equivalent to setting

P (xij) =

√
γij
2π
exp(−γij(xij)2/2) = N(xij |0, (γij)−1).

(18)
Let γj = [γj1, γj2, · · · , γjn]T and γdiag

j =

diag(γ1j , γ2j , · · · , γnj), then (18) can be re-expressed
as:

P (xj |γj) =
|γj |

(2π)n/2
exp

(
−1

2
xTj γ

diag
j xj

)
. (19)

Thus,
P (X|γ) = Πk

j=1P (xj |γj), (20)

where γ = [γ1,γ2, · · · ,γk]. The second layer specifies
Gamma distributions as hyper priors over each hyper param-
eters γi in our method. Therefore,

P (γj) = Πk
j=1P (γij) = Πk

j=1Gamma(γij |a+ 1, b)

= Πk
j=1

ba+1

Γ(a+ 1)
γaijexp(−bγij).

(21)

Regularized Expectation Maximization (REM)
Algorithm
The EM algorithm (McLachlan and Krishnan 2007) is a gen-
eral methodology for maximum likelihood (ML) or MAP
estimation. The recent emphasis in the sparse or low-rank
reconstruction literature on probabilistic models has led to
the increased interest in EM. The EM algorithm starts from
an initial guess and iteratively runs an expectation (E) step,
which evaluates the posterior probabilities using currently
estimated parameters, and a maximization (M) step, which
re-estimates the parameters based on the probabilities cal-
culated in the E step. The iterations will not stop until the
convergence conditions are satisfied.

In our method, we consider dictionary A and representa-
tion coefficients X as the hidden variable. Thus, for E-step,
based on the current parameters, the Maximum-A Posteri-
ori (MAP) estimate of X, denoted as X̂, can be achieved by
solving the following problem:

X̂ = argmaxXP (X|A,Y,Φ,U,γ,Ψ,V)

= argmaxXP (Y|Φ,U,X,A)P (X|γ)P (A|Ψ,V).
(22)

Similarly, the Maximum-A Posteriori (MAP) estimate of
A, denoted as Â, can be achieved by solving the following
problem:

Â = argmaxAP (A|X,Y,Φ,U,γ,Ψ,V)

= argmaxAP (Y|Φ,U,X,A)P (X|γ)P (A|Ψ,V).
(23)
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Let

LA = P (Y|Φ,U,X,A)P (X|γ)P (A|Ψ,V). (24)

To encourage the dictionary atoms to be close to being or-
thogonal, we use BMD regularizers to constrain dictionary
atoms. Then, (23) becomes:

Â = argminA

(
−lnLA + ρΛφ,con(ATA, In)

)
. (25)

For Eq. (22), we can obtain a closed-form solution by
computing its derivative. However, for Eq. (25), we only can
iteratively calculate it. Here we adopt stochastic proximal
subgradient method to optimize it, i.e.,

A(t) ←proxη(t)R(A(t−1) − η(t)

· ∇(lnLA(t−1) + ρΛφ,con(A(t−1)TA(t−1), In)),
(26)

where

proxR(B) = argminA∈Rd×n{
1

2
‖ A−B ‖2F +R(A)} (27)

is a proximal mapping.
In the M-step, using the current posterior probabilities,

parameters Θ = {γ,Φ,U,Ψ,V} can be obtained by mini-
mizing the following help function:

Q(Θ,Θold) + logP (Θ), (28)

where Θold includes the values of parameters from the pre-
vious iteration and Q(Θ,Θold) can be defined as

Q(Θ,Θold) = EX|Y,A,Θold [logP (X,A,Y|Θ)], (29)

and
P (Θ) = P (γ)P (Φ)P (U)P (Ψ)P (V). (30)

Taking the stationary point of the objective function (28)
with respect to each parameter, we can obtain their solutions.
In fact, we can equivalently write the basic iterative proce-
dure as follows:

X ← argmaxXP (X|A,Y,Φ,U,γ,Ψ,V); (31)

Â← argminA

(
−lnLA + ρΛφ,con(ATA, In)

)
; (32)

γ ← argmaxγ,Φ,U,Ψ,VP (γ,Φ,U,Ψ,V). (33)

Φ← argmaxγ,Φ,U,Ψ,VP (γ,Φ,U,Ψ,V). (34)

U← argmaxγ,Φ,U,Ψ,VP (γ,Φ,U,Ψ,V). (35)

Ψ← argmaxγ,Φ,U,Ψ,VP (γ,Φ,U,Ψ,V). (36)

V← argmaxγ,Φ,U,Ψ,VP (γ,Φ,U,Ψ,V). (37)
The prior distribution for each parameter has been given in
the previous section. As we know, the complexity of stan-
dard EM algorithm for estimating model parameters is very
high. To circumvent this shortcoming, we can use stochas-
tic EM (SEM) algorithm (Dombry et al. 2017) to train our
model. The basic idea of SEM algorithm is to randomly
choose training sample and compute the corresponding so-
lution in each step. But here, we omit the detailed iterative
procedure.

Experiments
We evaluated the performance of the proposed approach on
two face data sets: the AR (Martinez 1998) and the Extended
YaleB (Lee and J. Ho 2005) for face recognition, a data
set for action recognition: UCF sports action (Rodriguez,
Ahmed, and Shah 2008) and a data set for object categories:
Caltech-101 (Lazebnik, Schmid, and Ponce 2006). These
data sets are commonly used in the related literature for eval-
uation of matrix regression and dictionary learning models.
Meanwhile, our method is compared with some representa-
tive methods such as Sparse Representation based classifi-
cation (SRC) (Wright et al. 2009), Collaborative Represen-
tation based Classification (CRC) (Zhang, Yang, and Feng
2011), K-SVD (Aharon, Elad, and Bruckstein 2006), Fisher
Discrimination Dictionary Learning (FDDL) (Yang et al.
2011a), Label Consistent K-SVD (LS-KSVD) (Jiang, Lin,
and Davis 2013), Beta Process Construction (BPC) (Zhou
et al. 2009) and Nonparametric Bayesian Correlated Group
Regression (BCGR) (Luo et al. 2018). Specifically, SRC and
CRC belong to the category of the matrix regression. BCGR
is a nonparametric Bayesian matrix regression method. K-
SVD, FDDL and LS-KSVD are classical dictionary learn-
ing methods. BPC is the well-known Bayesian dictionary
learning method, which considers beta process as a prior for
learning a dictionary. According to the suggestion of (Luo
et al. 2018), we set a, b, c = 10−4. To be fair, we adopt the
sparse representation based classifier.

Databases
The AR face database contains over 4,000 color face im-
ages of 126 people, including frontal views of faces with dif-
ferent facial expressions, lighting conditions and occlusions.
The pictures of most persons were taken in two sessions
(separated by two weeks). Each section contains 13 color
images and 120 individuals (65 men and 55 women) partic-
ipated in both sessions. The images of these 120 individu-
als were selected and used in our experiment. We projected
165 × 120 cropped face images onto 540-dimensional vec-
tors using a random projection matrix (Wright et al. 2009),
thereby extracting Random-Face features.

Methods 2/class 4/class 6/class 8/class 10/class

SRC 25.00 25.83 37.17 39.17 40.67
CRC 20.83 23.17 27.17 28.17 31.00
K-SVD 27.83 20.83 37.17 41.83 42.50
FDDL 28.67 29.50 43.17 47.83 39.67
LS-KSVD 25.00 21.67 36.17 44.17 43.83
BPC 16.67 19.00 26.50 32.50 26.50
BCGR 25.91 26.82 39.03 41.21 41.67
Our method 30.95 32.13 43.78 44.29 43.86

Table 2: Classification accuracy (%) for sunglasses disguise
on the AR face Database

The extended Yale B face database contains 38 human
subjects under nine poses and 64 illumination conditions the
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Methods 2/class 4/class 6/class 8/class 10/class

SRC 27.17 30.00 36.83 42.50 43.67
CRC 16.33 14.33 19.00 20.17 21.83
K-SVD 23.00 16.17 30.83 36.50 41.83
FDDL 13.50 13.50 13.67 14.17 17.50
LS-KSVD 25.67 29.33 48.33 52.50 52.50
BPC 10.00 7.83 9.67 11.33 22.00
BCGR 27.31 30.29 35.82 43.61 44.19
Our method 31.32 34.10 47.56 52.91 53.17

Table 3: Classification accuracy (%) for scarf disguise on the
AR face Database

light source direction and the camera axis. The 64 images of
a subject in a particular pose are acquired at camera frame
rate of 30 frames/s, so there is only small change in head
pose and facial expression for those 64 images. Here we
create 504-dimensional random face features (Wright et al.
2009) from the 192× 168 cropped face images.

Caltech-101 database contains 9, 144 image samples
from 101 object categories and a class of background im-
ages. The number of samples per class in this database
vary between 31 and 800. For classification, we first cre-
ated 4096- dimensional feature vectors of the images using
the 16- layer deep convolutional neural networks for large
scale visual recognition. These features were used to create
the training and the testing data sets

UCF sports action database consists of a set of actions
collected from various sports which are typically featured on
broadcast television channels such as the BBC and ESPN.
The video sequences were obtained from a wide range of
stock footage websites including BBC Motion gallery and
GettyImages. The dataset includes a total of 150 sequences
with the resolution of 720 × 480. The collection represents
a natural pool of actions featured in a wide range of scenes
and viewpoints. By releasing the data set we hope to en-
courage further research into this class of action recognition
in unconstrained environments. Since its introduction, the
dataset has been used for numerous applications such as:
action recognition, action localization, and saliency detec-
tion. We used the action bank features (Sadanand and Corso
2012) for this database to train and test our approach.

Experiments on the AR face database
Two groups of experiments are designed on the AR face
database. In the first experiment, we test the performance of
our method under different number of training samples. As
we know, AR face database contains 14 face images without
real disguise for each person. We randomly choose 2, 4, 6,
8 or 10 face images from them as training samples. Then,
three face images with sunglasses and three face images
with scarf from session 1 are considered as test samples,
respectively. Tables 2 and 3 report the classification accura-
cies of SRC, CRC, K-SVD, FDDL, LS-KSVD, BPC, BCGR
and our method for the two cases under different number of

training samples. The advantage of our method is more ob-
vious with the decreasing of number of training samples. Es-
pecially, when there are less than 6 training samples, at least
2.28% improvement is achieved by our methods compared
to other method. Although both SRC and BCGR exclusively
handle occlusion problem, they rely on overcomplete dic-
tionary. Therefore, for small samples, our method perform
better than these two methods.

We conduct the second experiment on session 1 from the
AR face database. A random subset with three per subject
is chosen to form the training set and the rest are taken as
the testing set. The experiment is repeated over five random
splits of the data set. The second line of Table 4 lists the
average classification accuracies and standard deviations of
all methods. It can be observed that the proposed method has
a leading performance. It achieves an improvement of more
than 2% as compared to the second best method: FDDL. The
Bayesian dictionary learning method BPC seems to perform
poorly at handling occlusions.

Experiments on the Extended Yale B database
Similar to the previous experiment, the first {5, 10, 15,
20} face images for each class from the Extended YaleB
database are chosen as training set, the rest are taken as the
testing set. The experimental results of each method are dis-
played in Table 5. It can be found that our method gives bet-
ter classification accuracy. With the decreasing of number
of training samples, the advantage of our method is more
clear as we expected. Meanwhile, FDDL shows a competi-
tive performance for “20/class” (68.20%). In the second ex-
periment, the Extended YaleB data is randomly split into two
subsets with thirty-four persons each. One for training and
the other for testing. We repeat the process five times to ob-
tain the results over the five testing sets. The mean classifi-
cation accuracy and standard deviations over the 5 training
set for each algorithm are detailed in the third line of Ta-
ble 4. It is easy to see that our method is superior to other
methods. Meanwhile, SRC (97.85%) and BCGR (97.12%)
outperform K-SVD (71.07%) and BPC (83.41%). The clas-
sification accuracy of LS-KSVD is 97.53% which is higher
than FDDL by 2.47%. On the Extended Yale B database,
SRC, LS-KSVD and BCGR is robust to illumination. Their
classification accuracies are: 97.85%, 71.07% and 97.12%.

Experiments on the UCF sports action database
Following a common evaluation protocol (Jiang, Lin, and
Davis 2013), we evaluate all methods via five-fold cross
validation on the UCF sports action database. The detailed
results of SRC, CRC, K-SVD, FDDL, LS-KSVD, BPC,
BCGR and our method are shown in the fourth line of Table
4. It can be observed that the proposed method achieves the
highest classification result (i.e., 91.38% accuracy), 1.52%
improvement over the second best method, SRC. Interest-
ingly, regression based methods such as SRC, CRC and
BCGR perform better than dictionary learning methods in-
cluding K-SVD, LS-KSVD, FDDL, and BPC. The perfor-
mance of LS-KSVD is not stable in this database. It only
achieves a classification accuracy of 71.07%, which is more
than ten percentage points lower than the other methods.

4477



Databases SRC CRC K-SVD LS-KSVD FDDL BPC BCGR Our method

AR 90.27±1.28 72.83±1.67 79.23±1.77 87.40±1.26 89.20±1.37 35.52±2.35 86.78±1.53 91.72±1.31
Extended Yale B 97.85±0.41 87.15±1.13 71.07±1.80 97.53±0.71 94.79±0.39 83.41±0.28 97.12±1.06 97.87±1.51

UCF sports 89.86±2.29 87.54±4.87 81.16±2.05 73.62±8.03 83.77±3.30 84.35±2.97 86.14±2.79 91.38±3.02

Caltech-101 97.35±0.17 88.28±0.33 80.64±2.81 97.83±0.23 91.35±0.10 89.26±0.60 92.18±0.56 97.91±0.82

Table 4: Classification accuracy (%) and standard deviations on the AR, Extended Yale B database, UCF sports action databases
and Caltech-101 database.

Methods 5/class 10/class 15/class 20/class

SRC 52.83 64.60 65.4 67.96
CRC 50.13 59.05 59.00 57.80
K-SVD 48.65 46.12 41.54 49.4
FDDL 48.52 61.85 65.56 68.20
LS-KSVD 53.51 59.14 60.68 64.87
BPC 43.57 55.26 26.50 40.69
BCGR 53.29 65.03 65.28 67.23
Our method 55.42 67.31 66.07 67.13

Table 5: Classification accuracy (%) on the Extended Yale
Database

Experiments on the Caltech-101 database

In this section, we implement an experiment on the Caltech-
101 database for object recognition. For this data set, we
directly use the 3000-dimensional Spatial Pyramid Features
of the images provided by Jiang et al. (Jiang, Lin, and Davis
2013). From these features, 15 random samples per class are
used for training and the remaining samples for testing. The
experimental results on this database are summarized in the
last line of Table 4. It is seen that the performance of our
method is similar to that of SRC and LS-KSVD. Especially,
LS-KSVD performs better than K-SVD, which indicates the
label information may be beneficial for classification task.
BPC (84.35%), as a Bayesian dictionary learning method,
has the higher accuracy as compared to K-SVD.

Conclusions
This paper proposed a non-parametric Bayesian approach
for learning a desired dictionary. We hierarchically model
each parameter and estimate them using a Regularized Ex-
pectation Maximization Algorithm. To eliminate the redun-
dancy of the dictionary atoms, we force a orthogonality-
promoting regularization on the dictionary matrix, which
improves the performance of sparse coding and the discrim-
ination of the model. A series of experiments on four bench-
mark databases demonstrate that the proposed model can ef-
fectively cope with the practical classification problem, par-
ticularly for the case where there is a limited number of
training samples.
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