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Abstract

In recent research, metric learning methods have attracted in-
creasing interests in machine learning community and have
been applied to many applications. However, the existing
metric learning methods usually use a fixed L2-norm to mea-
sure the distance between pairwise data samples in the pro-
jection space, which cannot provide an effective mechanism
to automatically remove the noise that exist in data samples.
To address this issue, we propose a new robust formulation
of metric learning. Our new model constructs a projection
from higher dimensional Grassmann manifold into the one in
a relative low-dimensional with more discriminative capabil-
ity, where the errors between sample points are considered as
an MLE (maximum likelihood estimation)-like estimator. An
efficient iteratively reweighted algorithm is derived to solve
the proposed metric learning model. More importantly, we es-
tablish the generalization bounds for the proposed algorithm
by utilizing the techniques of U-statistics. Experiments on six
benchmark datasets clearly show that the proposed method
achieves consistent improvements in discrimination accuracy,
in comparison to state-of-the-art methods.

Introduction
A large number of machine learning algorithms involve the
use of a distance metric over the original input space. An
effective distance, which successfully captures the impor-
tant interrelations among data, can significantly improve the
performance of algorithms. The Mahalanobis distance gen-
eralizes the standard Euclidean distance by admitting arbi-
trary linear scalings and rotations of the feature space. It has
shown promising results in many machine learning tasks.
Recent studies on metric learning mainly focus on learning
an optimal Mahalanobis distance in supervised settings.

The goal of Mahalanobis metric learning is to seek a
square matrix M ∈ Rd×d from the training set X =
{x1,x2, · · ·,xn}(∈ Rd×n), under which the distance be-
tween any two samples xi and xj in X can be computed as:
dM(xi, xj) =

√
(xi − xj)TM(xi − xj). Most of Maha-

lanobis metric learning methods utilize weakly-supervised
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constraints to induce a powerful distance metric. Represen-
tative methods include Information Theoretic Metric Learn-
ing (ITML) (Davis et al. 2007), Large Margin Nearest
Neighbor (LMNN) (Weinberger and Saul 2009), Logistic
Discriminant Metric Learning (LDML) (Guillaumin, Ver-
beek, and Schmid 2009).

The most popular way to enhance robustness of metric
learning is to incorporate the structural information of met-
ric matrix M or each sample xi into models. To this end,
some regularized metric learning methods (Law, Thome,
and Cord 2014; Huo, Nie, and Huang 2016) use the sparse
or low-rank regularization to characterize the structure of M.
Robust Structural Metric Learning (RSML) (Lim, McFee,
and Lanckriet 2013) enforces group sparsity structure on the
learned transformation. The maximum correntropy criterion
was introduced to improve the robustness (Xu et al. 2018c).
In (Xu et al. 2018b), the Wasserstein distance was utilized to
characterize the errors between pairwise samples. The ma-
trix variate Gaussian mixture distribution was adopted to
model the structure of the metric matrix (Luo and Huang
2018).

More recently, a trend of integrating different traditional
techniques into metric learning has emerged. For instance,
RDML (Yi et al. 2012) uses the matrix completion technique
to rectify the noisy pairwise similarities in metric learn-
ing. Hamming Distance Metric Learning (Norouzi, Fleet,
and Salakhutdinov 2012) formulates the hashing problem
by preserving the relative similarity defined over triplets of
items. Hierarchical multimodal metric learning (Zhang, Pa-
tel, and Chellappa 2017) efficiently learns multiple metrics
for multimodal data while fully exploiting the relationships
among these metrics. Joint intensity metric learning method
(Makihara et al. 2017) induces the dissimilarity using a bi-
linear form of joint intensity and spatial metrics, and alter-
nately optimizes it by linear SVM or ranking SVM. Met-
ric Learning with multiple Kernels (Wang et al. 2011) com-
bines metric learning and multiple kernel learning, while
deep metric learning method in (Oh Song et al. 2016) de-
fines a novel structured prediction objective on the lifted
pairwise distance matrix during the neural network training.
The bilevel model was introduced to unify the metric learn-
ing and dictionary learning (Xu et al. 2018a).

It is worth noting that the metric matrix M can be de-
composed as: M = PTP, where P ∈ Rp×d and p ≤ d,
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since it is symmetric and positive semi-definite. As a result,
dM(xi, xj) = ‖P(xi − xj)‖2. This means that learning
a Mahalanobis distance metric M is equivalent to seeking
a linear transformation P which projects each sample xi
into a low dimensional subspace. In the above mentioned
methods, the distance between Pxi and Pxj of the low di-
mensional subspace is measured via the traditional L2-norm,
which is not robust to data noise. On the other hand, these
methods are all dependent on the hypothesis that the data are
obtained from an Euclidean vector space. This is often not
held in many practical applications, where the linear sub-
spaces with the same dimensionality reside on a special type
of Riemannian manifold, i.e., Grassmann manifold, which
has a nonlinear structure (Yu and Zhang 2010). A few exist-
ing works overcome the above drawbacks by exploiting typ-
ical Riemannian geometries for kernel embedding (Huang
et al. 2015). However, they are only confined to pairwise
constraints and use a fixed matrix norm to measure the dif-
ferences between any two samples projected onto the low di-
mensional manifold. More importantly, the theoretical guar-
antee of metric learning with triplet constraints on manifolds
is missing.
Our Contributions. In this paper, we address the Metric
learning problem via constructing a projection from higher
dimensional Grassmann manifold into the one in a relative
low-dimensional with more discriminative capability. Dif-
ferent from other existing approaches which use a fixed
norm to characterize errors, our method provides an effec-
tive mechanism to automatically remove the noise that ex-
ist in samples since our model actually performs a robust
regression-like process on the Grassmann manifold. The
contributions of this paper can be summarized as follows:
•We provide a robust metric learning method with triplet

constraints based on Grassmann manifold. We measure the
error between data points in the low-dimensional manifold
using an MLE-like estimator, which minimizes some func-
tion associated with the distribution of errors. We apply this
strategy to LMNN and transform the minimization prob-
lem, named Robust LMNN (RLMNN), into an iteratively
reweighted regression-like problem.
• The complete theoretical guarantee for our model is es-

tablished. This is the first time to establish the generalization
analysis of metric learning with triplet constraints on Grass-
mann manifold. Leveraging the techniques of U-statistics
analysis, we derive the generalization bound of our new
model. Our results can be extended to other metric learning
models on Grassmann manifolds.
•We conduct extensive experiments, including face veri-

fication (associated with images, videos, and kinship), video
and image classification, on six benchmark datasets. The ex-
perimental results demonstrate that our method can achieve
superior performance as compared to some newest methods.

Notations
Throughout this paper, let y = {y1, y2, · · ·, yn} be the label
set of input (or training) samples A = {A1,A2, · · ·,An},
where each Ai ∈ Rd×p (i = 1, 2, · · ·, n). For example, the
label of sample Ai is yi. r(yi, yl) = 1 if yi 6= yl other-
wise r(yi, yl) = 0. Suppose input samples A and labels y

are contained in an input space A and a label space Y , re-
spectively. Denote B = A × Y and assume B := {Bi =
(Ai, yi) ∈ B : i ∈ Nn}, where Nn = {1, 2, · · ·, n}. For
any x ∈ R, the function f(x) = [x]+ is equal to x if x > 0
and zero otherwise. For any X,Z ∈ Rd×p, let 〈X,Z〉 =
trace(XTZ), where trace(·) denotes the trace of a matrix. ◦
is the Hadamard product and E(·) is the Expectation of a ran-
dom variable. For any matrix-norm ‖ · ‖, its dual norm ‖ · ‖∗
is defined, for any X, by ‖X‖∗ = sup‖Z‖≤1 trace(XTZ).

Backgrounds
Regularized LMNN
We revisit the well-known LMNN (Large Margin Nearest
Neighbor) metric learning method (Weinberger and Saul
2009). The LMNN objective includes two terms (one for
each neighborhood objective): First, it reduces the distance
between an instance and its target neighbors (i.e., the same
labeled inputs), thus pulling them closer and making the in-
puts local neighborhood smaller. Second, it moves impostor
neighbors (i.e., differently labeled inputs) farther away so
that the distances to impostors should exceed the distances
to target neighbors by a large margin. Let

εz(M) =
∑
i,j i

DM(xi,xj) + µ
∑
i,j i,l

r(yi, yl)

· [1 +DM(xi,xj)−DM(xi,xl)]+,

(1)

where DM(xi,xj) = (xi − xj)
TM(xi − xj) and the pa-

rameter µ > 0. The notation j  i indicates that input xj
is a target neighbor of input. When r(yi, yl) = 1, xl is an
impostor neighbor of xi.

The optimization problem for LMNN is as follows:

min
M

εz(M) . (2)

To avoid the problem of overfitting, many regularizations
over matrix M can be added into (2). Here, we focus on four
matrix-norm regularizations: (I) Squared Frobenius-norm:
‖M‖2F =

∑d
i=1

∑d
j=1M

2
ij , where Mij denotes the ma-

trix element at the i-th row and j-th column of M; (II)
L1-norm: ‖M‖1 =

∑d
i=1

∑d
j=1 |Mij |; (III) mixed (2,1)-

norm: ‖M‖(2,1) =
∑d
i=1(

∑d
j=1M

2
ij)

1
2 ; (IV) trace norm:

‖M‖tr =
∑d
i=1 δi, where δ1, δ2, · · ·, δd are the singular val-

ues of M.
Denoting the objective function in (2) by εz(M), the op-

timization problem (2) with matrix-norm regularization can
be simplified as:

Mz = argmin
M∈M

(εz(M) + λΛ(M)), (3)

where Λ(·) is Squared Frobenius-norm, sparse L1-norm,
mixed (2, 1)-norm or trace norm, λ > 0 is a balance pa-
rameter andM denotes the feasible region of M.

Grassmann Manifold
A manifold is locally similar to Euclidean space around each
point of the manifold. Especially, Grassmann manifold has
been successfully applied to many research communities
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such as subspace clustering (Shen, Krim, and Gu 2016) and
dictionary learning (Harandi et al. 2015). The definition of
Grassmann Manifold can be written as:

Definition 1 (Grassmann Manifold) (Absil, Mahony,
and Sepulchre 2009) The Grassmann manifold, denoted by
G(p; d), consists of all the p-dimensional subspaces embed-
ded in d-dimensional Euclidean spaceRd(0 ≤ p ≤ d).

It easy to see that an element of G(p; d) is a linear sub-
space span(U). Here, we assume that span(U) is spanned
by its orthonormal basis matrix U of size d × p such that
UTU = Ip, where Ip is the identity matrix of size p × p.
Therefore, Grassmann manifold can be embedded into sym-
metric matrices space as, Π : G(p; d)→ Sym(d), Π(U) =

UUT . Under the projection mapping Π(·), we can represent
the elements on the Grassmann manifold with projection
matrices UUT , which is helpful for designing algorithms on
the Grassmann manifold.

There are several possible choices to define a distance on
the Grassmann manifold. The most popular way is to em-
bed the Grassmann manifold into symmetric matrices space
where the Euclidean metric is available. Due to its effective-
ness, we use Embedding Distance in this paper.

Definition 2 (Embedding Distance) (Harandi et al. 2015)
Given Grassmann points U1 and U2, the corresponding dis-
tance on Grassmann manifold can be defined as:

dist2g(U1,U2) =
1

2
‖ Π(U1)−Π(U2) ‖2F . (4)

Robust LMNN on Grassmann Manifold
As discussed in Section 1, conventional metric learning
methods use a fixed L2-norm to measure the distance be-
tween any two samples projected onto the low dimensional
subspace, which is sensitive to both sample and feature
noise. Especially the distributions of data in practical appli-
cations are extremely complicated and far from Gaussian or
Laplace distribution (Luo et al. 2015). Thus, L2-norm (even
L1-norm ) cannot characterize these noise. To tackle this
problem, in this section, we propose a new robust metric
learning model based on Grassmann manifold, which can
effectively deal with noisy data. We first formulate the prob-
lem of our method for the video classification task. After
that, we describe the optimization of our problem.

The projection on Grassmann manifold. Assume n
video sequences of face frames are given as {X1,X2, · ·
·,Xn}, where each Xi ∈ RD×ni describes a data matrix
of the i-th video containing ni frames, each frame being
expressed as a D-dimensional feature vector. In these data,
each video belongs to one of face classes denoted byCi. The
i-th video Xi is represented by a q-dimensional linear sub-
space spanned by an orthonormal basis matrix Hi ∈ RD×P ,
s.t. XiXTi ' HiΣiHT

i , where Σi and Hi correspond to ma-
trices of the p largest eigenvalues and eigenvectors respec-
tively.

Remark 1. For images, we can use the similar strategy as
in (Xu et al. 2014) to construct {X1,X2, · · ·,Xn}.

Next, we seek to learn a projection P that maps high-
dimensional Grassmann point Hi ∈ G(p;D) to a point Li
in a relative low-dimensional Grassmann manifold G(p; d),

where D > d, that is, Li = PTHi, where P ∈ RD×d is a
transformation matrix of column full rank.

As discussed before, only the linear subspaces spanned by
orthonormal basis matrix can form a valid Grassmann mani-
fold. In (4), however, except the case that P is an orthogonal
matrix, PTHi is not generally an orthonormal basis matrix.
To tackle this issue, we perform QR decomposition on ma-
trix Li as follows,

Li = PTHi = QiRi ⇒ Qi = PT Z̃i, (5)

where Z̃i = HiR−1
i ∈ RD×p denotes the normalized Hi,

Qi ∈ Rd×p is an orthogonal matrix and Ri ∈ Rp×p is an in-
vertible upper-triangular matrix. Since both Li and Qi gen-
erate the same (columns) subspace, the orthogonal matrix
Qi (or PT Z̃i) can be used as the representative of the low-
dimensional Grassmann point mapped from Hi. Therefore,
the distance between Qi and Qj on Grassmann manifold can
be computed as:

dist2g(Qi,Qj) = dist2g(PT Z̃i,PT Z̃j)

=
1

2
‖PT Z̃iZ̃i

T
P− PT Z̃jZ̃j

T
P‖2F

=
1

2
‖PTGijP‖2F ,

(6)

where Gij = Z̃iZ̃i
T
− Z̃jZ̃j

T
, which is a symmetric matrix

of size D ×D.
Robust LMNN model on Grassmann manifold. We

propose to find an MLE-like solution of matrix P. Denote

Eij = (elmij )d×d = PT Z̃iZ̃i
T

P − PT Z̃jZ̃j
T

P, where elmij
is an element in the l-th row and m-th column of Eij . As-
sume that all elmij (l = 1, · · ·, d,m = 1, · · ·, d) are inde-
pendently and identically distributed according to some un-
known probability density function (PDF) PΩ(elmij ), where
Ω denotes the parameter set that characterizes the distribu-
tion. Denote E = {Eij : i, j = 1, 2, · · ·, n, j 6= i}, then
the likelihood of the estimator can be written as LΩ(E) =∏n
i,j∈Nnj 6=i

∏d
l,m=1 PΩ(elmij ). The MLE aims to maximize

this likelihood function or, equivalently, minimize the ob-
jective function: −lnLΩ =

∑
i,j∈Nn,j 6=i

∑d
l,m=1 ρΩ(elmij ),

where ρΩ(elmij ) = −lnPΩ(elmij ).
With consideration of the constraint of P, the MLE of P

can be formulated as the following minimization:

min
P

∑
i,j∈Nnj 6=i

d∑
l,m=1

ρΩ((PTGijP)lm), s.t. Λ(P) ≤ ν,

(7)
where ν > 0 and Elmij denotes an element in the l-th row and
m-th column of Eij . In fact, the above problem is similar
to an M-estimator, which is a popular robust technique. M-
estimators try to reduce the effect of outlier by replacing the
traditional squared residual by novel function ρΩ(·). This
technique requires ρΩ(·) to be symmetrical, positive definite
and monotonically increasing.

The model (7) can be ultimately approximated by

min
P

∑
i,j∈Nnj 6=i

‖Wij ◦ (PTGijP)‖2F , s.t. Λ(P) ≤ ν, (8)
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where the (l,m)-th element of Wij is

wΩ(elmij ) =
1

elmij

dρΩ(elmij )

delmij
, (9)

and
dρΩ(elmij )

delmij
denotes the the derivative of ρΩ(elmij ) with re-

gard to elmij . The detailed derivation is given in Supplemental
Materials.

Let Bi = (Ai, yi), where Ai = Z̃iZ̃
T

i , and

εB,W(P) =
1

n(n− 1)(n− 2)

∑
i,j i,l

ΦP(Bi,Bj ,Bl),

(10)
where

ΦP(Bi,Bj ,Bl) =
1

v
‖Wij ◦ (PTGijP)‖2F + µr(yi, yl)

· [1 + ‖Wij ◦ (PTGijP)‖2F − ‖Wil ◦ (PTGilP)‖2F ]+.
(11)

The above pairwise model (8) can be further extended
to triplet model. Thereby we can propose a robust LMNN
(RLMNN) model with regularization terms based on Grass-
mann manifold:

PB,W = argmin
P∈P

(εB,W(P) + λΛ(P)), (12)

where λ > 0 and P denotes the feasible region of P. If we
obtain the optimal objection matrix P, we can use Eq. 4 to
measure the distance between any two samples on Grass-
mann manifold.

Proposed algorithm. The performance of the model is
dependent on the choice of weight function. Considering
that the logistic function has properties similar to the hinge
loss in SVM and has been widely applied to robust regres-
sion problem, in this paper, we choose it as the weight func-
tion, i.e.,

wΩ(elmij ) = (exp(η%−η(elmij )2)/(1+exp(η%−η(elmij )2)))1/2, (14)

where η and % are positive scalars. Parameter % controls the
decreasing rate from 1 to 0, and η controls the location of
demarcation point. Especially, by ρ(·), we can find the PDF
P(·) of elmij .

We propose to use an iteratively reweighted algorithm to
optimize model (12). The detailed iteration process for solv-
ing model (12) is listed in Algorithm 1. Each iteration of
Algorithm 1 involves a key subproblem (13), which can be
optimized via subgradient method, i.e.,

P⇐ P− a∇P, (15)

where ∇P is a subgradient of the objection (13) with regard
to P and a > 0 is a step size.

Convergence. By the constraint conditions:

εB,W(t+1)(Pt+1) + λΛ(Pt+1) ≤ εB,W(t)(Pt) + λΛ(Pt),
(16)

it is easy to see that the objective (12) is monotonically de-
creasing with the iteration number. Considering that the ob-
jective (12) is nonnegative, the convergence of Algorithm 1
can be guaranteed.

Algorithm 1 RLMNN via Iteratively Reweighted Method

Input: training samples X and parameters λ, µ, η, %.
Initialization: P0 = ID×d, where ID×d denotes the D×
d identity matrix.
While Stopping criteria is not satisfied do
1. Calculate the error E(t+1)

ij = P(t)TGijP(t);

2. Estimate weight matrix W(t+1)
ij by (12). Denoting

eij,t+1 = e
(t+1)
ij , then (l,m)-th diagonal element of

W(t+1)
ij is

wΩ(elmij,t+1)

=exp(η%− η((elmij,t+1)2)/(1 + exp(η%− η((elmij,t+1)2));

3. Calculate the optimal P∗ of the following problem:

P∗ = argmin
P∈P

(εz,W(t)(P) + λΛ(P)), (13)

4. Update P(t+1): If t = 1, P(t+1) = P∗; if t > 1,
P(t+1) = P(t) + ς(t+1)(P∗ − P(t)), where 0 < ς(t+1) <
1 is the step size, and a suitable ς(t+1) should make
εz,W(t+1)(Pt+1) + λΛ(Pt+1) ≤ εz,W(t)(Pt) + λΛ(Pt).
(ς(t+1) can be searched from 1 to 0 by the standard line
search process.)
Output: Optimal P(t+1).

Generalization Bounds of Our Method
We will introduce some important definitions and Lemmas
which are helpful for establishing the generalization bounds
of our model.

Definition 3 (McDiarmid’s inequality (McDiarmid
1989)). We say the function f :

∏n
k=1 ∆k → R (each ∆k is

a linear space) with bounded differences {ck}nk=1 if, for all
1 ≤ k ≤ n,

max
z1, · · ·, z′k
z′k, · · ·, zn

| f(z1, · · ·, zk−1, zk, zk+1, · · ·, · · ·, zn)

− f(z1, · · ·, zk−1, z
′
k, zk+1, · · ·, · · ·, zn) |≤ ck.

(17)

Lemma 1 (McDiarmid’s inequality (McDiarmid 1989)).
Suppose f :

∏n
k=1 ∆k → R with bounded differences

{ck}nk=1, then, for all ι > 0, there holds

Pz{f(z)− Ezf(z) ≥ ι} ≤ e
− 2ι2∑n

k=1
c2
k . (18)

We need the following contraction property of the
Rademacher averages which is essentially implied by Theo-
rem 4.12 in (Ledoux and Talagrand 2013).

Lemma 2. Let F be a class of uniformly bounded real-
valued function on (∆, $) and h ∈ N . If for each i ∈
{1, 2, · · ·, h}, φi : R → R is a function having a Lipschitz
constant ci, then for any {xi}i∈Nh and i.i.d. Rademacher
variable {ιi ∈ {±1} : i ∈ Nh}

Eι(supf∈F
∑
i∈Nh

ιiφi(f(xi))) ≤ 2Eι(sup
f∈F

∑
i∈Nh

ciιif(xi)).

(19)
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Lemma 3. Given the i.i.d. random variables B1,B2, · ·
·,Bn ∈ B, then U-statistic of degree three with kernel
q : B × B × B → R is defined as

Un =
1

n!

∑
π

1

bn3 c

bn3 c∑
i=1

q(Bπ(i),Bπ(bn3 c+i),Bπ(2bn3 c+i)).

(20)
where the sum is taken over all permutations π of {1, 2, · ·
·n}.

Lemma 4. Let qτ : B × B × B → R be real-valued
functions indexed by τ ∈ T , where T is some index set. If
B1, · · ·,Bn are i.i.d., then we have that

E[supτ∈T
1

n(n− 1)(n− 2)

∑
qτ (Bπ(i),Bbn

3
c+i,B2bn

3
c+i)]

≤ E[supτ∈T
1

bn
3
c

bn
3
c∑

i=1

qτ (Bπ(i),Bbn
3
c+i,B2bn

3
c+i)].

(21)

Proof. From the representation of U-statistics (20), we ob-
serve that

E[supτ∈T
1

n(n− 1)(n− 2)

∑
qτ (Bπ(i),Bbn

3
c+i,B2bn

3
c+i)]

= Esupτ∈T
1

n!

∑
π

1

bn
3
c

bn
3
c∑

i=1

qτ (Bπ(i),Bbn
3
c+i,B2bn

3
c+i)

≤
1

n!
Esupτ∈T

∑
π

1

bn
3
c

bn
3
c∑

i=1

qτ (Bπ(i),Bbn
3
c+i,B2bn

3
c+i)

=
1

n!
ΣπEsupτ∈T

1

bn
3
c

bn
3
c∑

i=1

qτ (Bπ(i),Bbn
3
c+i,B2bn

3
c+i)

= Esupτ∈T
1

bn
3
c

bn
3
c∑

i=1

qτ (Bπ(i),Bbn
3
c+i,B2bn

3
c+i).

(22)

For clarity, Ω(·) is written as ‖ · ‖2 . We can see ‖Wij ‖ is
bounded since its each elementwΩ(elmij ) ∈ [0 1]. As a result,
it is reasonable that we assume ‖Wij ‖2F≤ γ, where γ > 0.
Additionally, we define the expectation of εB,W(P) as

εW(P) =

∫ ∫
ΦP(Bi,Bj ,Bl)dρ(Bi)dρ(Bj)dρ(Bl). (23)

Let PB,W be the solution of formulation (12). With the help
of the above results and techniques of U-statistic, we can
estimate the bound of εW(PB,W)−εB,W(PB,W) in (12) as
follows:

Theorem 1. For any 0 < δ < 1, with probability 1 − δ
we have that
εW(PB,W)− εB,W(PB,W)

≤ 2

(
1
vγ + 2µγ√
bn3 c

)
G∗
λ2

+
µ√
bn3 c

+

√
1

2
nϕ2ln

1

δ
,

(24)

where ϕ = 2(nv+nu+uv)
n(n−1)(n−2)

(
γ
vλ2G∗ + µ(1 + 4γ

λ2G∗)
)

and
G∗ = maxGij∈G ‖ Gij ‖2∗.

Theorem 1 provides a general framework for error bound
of LMNN with any matrix norm regularization on Grass-
mann manifold and can be applied to other triplet models.

Experiments and Discussions
In this section, we evaluate the effectiveness of our method
on six standard databases, including LFW database (Huang
et al. 2007), PubFig database (Kumar et al. 2009), YouTube
Face Database (Wolf, Hassner, and Maoz 2011), OSR
database (Parikh and Grauman 2011) and Highway Traf-
fic Database (Chan and Vasconcelos 2008). We design
face verification experiments on PubFig, LFW and Youtube
video datasets, video classification experiments on the High-
way Traffic Database, image classification experiments on
OSR, LFW and PubFig databases. Some existing meth-
ods, including R-MLR (Lim, McFee, and Lanckriet 2013),
LMNN (Weinberger and Saul 2009), LMNN Trace (Huo,
Nie, and Huang 2016), LMNN Fantope (Law, Thome, and
Cord 2014), LMNN Cap (Huo, Nie, and Huang 2016),
KISSME (Koestinger et al. 2012), ITML (Davis et al. 2007),
LDML (Guillaumin, Verbeek, and Schmid 2009), IDEN-
TITY (Huo, Nie, and Huang 2016) and MAHAL (Huo, Nie,
and Huang 2016), are compared with our method. We set
λ = 0.1, µ = 0.5, η = 0.8 and % = 0.1 in our method.

Experiments on LFW Database
In this subsection, we implement face verification experi-
ments on the Labeled Faces in the Wild (LFW) dataset. We
utilize two different feature representations, i.e., LFW At-
tribute feature and LFW SIFT feature datasets. The same ex-
periment setting in (Huo, Nie, and Huang 2016) is adopted.
ROC (Receiver Operator Characteristic) curves for all meth-
ods, including LMNN Cap, Fantope, KISSME , ITML,
LDML, Identity, MAHAL and RLMNN are plotted in Fig.
1(a) and 1(b). Meanwhile, we compute Equal Error Rate
(EER) and use 1-EER values to evaluate the performance
of these methods. Fig. 1(a) shows the results on LFW At-
tribute feature dataset. It is observed that Mahalanobis dis-
tance between two similar pairs performs better than Eu-
clidean distance. It increases the performance from 78.3% to
81.7%. Comparing with Identity and Mahalanobis methods,
KISSME achieves a significant improvement. The results of
other methods with learning Mahalanobis distance are also
competitive. For example, LMNN Cap and Fantope reach
84.5% and 84.1%, respectively. For SIFT Feature dataset,
we can find the similar phenomenon. However, our method
consistently outperforms other methods.

Experiments on PubFig Face Database
Two experiments are carried out on the PubFig Face
Dataset (Kumar et al. 2009). In first experiment, we focus
on face verification task using face verification benchmark
dataset. Fig. 1(c) exhibits the performance of each com-
pared method. It is obvious that our methods have remark-
able priorities compared to the other algorithms. For exam-
ple, the 1-EER values of LMNN Cap, Fantope, KISSME,
ITML, LDML, IDENTITY, MAHAL and RLMNN are
0.782, 0.781, 0.766, 0.725, 0.719 and 0.788, respectively.
In the second experiment, we use a subset face images of
Pubfig database, which include 771 images from 8 face
categories. The experimental setting is the same as (Law,
Thome, and Cord 2014). We run this experiment 5 times,
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Figure 1: ROC curves of face verification on LFW (Attribute and SIFT features), Pubfig, and Youtube datasets

where 30 images per person in training data are selected ran-
domly each time, and the average performance is used as
evaluation criterion. The average classification accuracies of
all methods are shown in Table 1. We can find that RLMNN
achieves an improvement of about 2.2% as compared to the
second best method: LMNN Cap. Meanwhile, it is clear that
some methods based on LMNN, including LMNN Trace,
LMNN fantope and LMNN Cap, have the similar results.

Experiments on YouTube Face Database
The YouTube Face (YTF) (Wolf, Hassner, and Maoz 2011)
contains 3,425 videos of 1,595 different persons collected
from the YouTube website. In this database, there exist
large variations in pose, illumination, and expression in each
video sequence. We follow the standard evaluation proto-
col (Wolf, Hassner, and Maoz 2011) to perform standard,
ten-fold, cross validation, pairmatching tests. Specifically,
we use the officially provided 5,000 video pairs, which are
equally divided into 10 folds. Each fold contains 250 intra-
personal pairs and 250 interpersonal pairs. We directly crop
the face images according to the provided data and then re-
size them into 24 × 40 pixels for YTF. The raw intensity
feature of resized video frames is extracted. Fig. 1(d) shows
the ROC for the video based face verification on YTF. It
can observed that the performances of the low-rank metric
learning methods such as LMNN Cap and Fantope are sim-
ilar. However, compared with state-of-the art methods, the
advantages of our method (0.72) are still obvious.

Experiments on Outdoor Scene Recognition
The Outdoor Scene Recognition (OSR) dataset from (Parikh
and Grauman 2011) is used in this experiment. It includes
2688 images from 8 scene categories, which are described
by high level attribute features. 30 images for each category
are chosen as training data, and other images are used as
testing data. The training data is randomly selected and this
procedure is repeated 5 times. The average accuracy is used
to evaluate the performance of each method. The detailed
results of all methods are shown in the third line of Table 1.
From Table 1, it is seen that the performance of some meth-
ods related to LMNN (including LMNN cap, LMNN trace
and LMNN cap) is comparative. As the previous experi-
ment, the result of LMNN still lags behind some regular-
ized methods, which implies the regularization is helpful for
improving the performance of models. It is clear that our
method achieves a leading performance: 78.1523%.

Experiments on Highway Traffic Database
Highway Traffic (HT) dataset (Parikh and Grauman 2011)
contains 253 video sequences of highway traffic. These se-
quences are labeled with three levels: 44 clips at heavy level,
45 clips at medium level and 164 clips at light level. Each
video sequence has 42 to 52 frames. The video sequences
are converted to gray images and each image is normalized
to size 24×24. Experimental results for classification tasks
are shown in the fourth line of Table 1. In addition to our
method and LMNN Fantope, the experimental accuracies of

4485



Databases R-MLR LMNN LMNN Trace LMNN Fantope LMNN Cap RLMNN
PubFig 77.36 ±1.28 77.33 ±1.36 77.67 ±1.49 78.65±1.19 78.87 ±1.93 82.75 ±1.32
OSR 76.26 ±1.63 75.32 ±1.61 76.02 ±1.84 76.47 ±1.97 76.51 ±1.45 78.83 ±1.51
HT 87.37 ±1.92 83.87 ±1.86 83.87 ±2.37 91.34 ±1.32 83.87 ±1.29 94.35 ±1.68

Table 1: The classification accuracy(%) and standard deviation of each method on three databases

(a) Results of 5 neareset neighbors when we query an
image on OSR dataset. The first second shows the results
of LMNN Cap, and the second row is the results of our
method.

(b) Results of 5 neareset neighbors when we query an
image on Pubfig dataset. The first second shows the re-
sults of LMNN Cap, and the second row is the results of
our method.

Figure 2: Results of 5 neareset neighbors when we query an image. Green line means this neighbor is in the same class with
query image, and red line denotes they are different.

the other methods are very similar. Our method is at least 2
percent higher than the corresponding compared methods.
Although both LMNN Fantope and LMNN Cap belong to
the low-rank metric learning methods, LMNN Fantope per-
forms better than LMNN Cap. Experimental results demon-
strate that the low-dimensional Grassmann points generated
by our proposed method include more discrimination than
the traditional Euclidean vector space.

Conclusions
In this paper, we proposed a robust LMNN algorithm based
on Grassmann manifold. Traditional metric learning meth-
ods are sensitive to the practical noise because they use L2-
norm to characterize the error between two samples in the
projection space. Meanwhile, they assume that the data are
from Euclidean vector space. Our method constructs a pro-
jection from higher dimensional Grassmann manifold into
the one in a relative low-dimensional with more discrimina-
tive capability, where the errors between sample points are
considered as an MLE (maximum likelihood estimation)-
like estimator. We provided the complete theoretical guar-
antee for our method. Experimental results demonstrate the
effectiveness of the proposed method.
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