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Abstract

Deep reinforcement learning techniques have demonstrated
superior performance in a wide variety of environments. As im-
provements in training algorithms continue at a brisk pace, the-
oretical or empirical studies on understanding what these net-
works seem to learn, are far behind. In this paper we propose
an interpretable neural network architecture for Q-learning
which provides a global explanation of the model’s behavior
using key-value memories, attention and reconstructible em-
beddings. With a directed exploration strategy, our model can
reach training rewards comparable to the state-of-the-art deep
Q-learning models. However, results suggest that the features
extracted by the neural network are extremely shallow and
subsequent testing using out-of-sample examples shows that
the agent can easily overfit to trajectories seen during training.

Introduction
The last few years have witnessed a rapid growth of research
and interest in the domain of deep Reinforcement Learn-
ing (RL) due to the significant progress in solving RL prob-
lems (Arulkumaran et al. 2017). Deep RL has been applied
to a wide variety of disciplines ranging from game play-
ing, robotics, systems to natural language processing and
even biological data (Silver et al. 2017; Mnih et al. 2015;
Levine et al. 2016; Kraska et al. 2018; Williams, Asadi, and
Zweig 2017; Choi et al. 2017). However, most applications
treat neural networks as a black-box and the problem of un-
derstanding and interpreting deep learning models remains a
hard problem. This is even more understudied in the context
of deep reinforcement learning and only recently has started
to receive attention. Commonly used visualization methods
for deep learning such as saliency maps and t-SNE plots of
embeddings have been applied to deep RL models (Grey-
danus et al. 2017; Zahavy, Ben-Zrihem, and Mannor 2016;
Mnih et al. 2015). However, there are a few questions over the
reliability of saliency methods including, as an example, sen-
sitivity to simple transformations of the input (Kindermans et
al. 2017). The problem of generalization and memorization
with deep RL models is also important. Recent findings sug-
gest that deep RL agents can easily memorize large amounts
of training data with drastically varying test performance
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and are vulnerable to adversarial attacks (Zhang et al. 2018;
Zhang, Ballas, and Pineau 2018; Huang et al. 2017).

In this paper, we propose a neural network architecture for
Q-learning using key-value stores, attention and constrained
embeddings, that is easier to study than the traditional deep
Q-network architectures. This is inspired by some of the
recent work on Neural Episodic Control (NEC) (Pritzel et
al. 2017) and distributional perspectives on RL (Bellemare,
Dabney, and Munos 2017). We call this model i-DQN for
Interpretable DQN and study latent representations learned
by the model on standard Atari environments from Open AI
gym (Brockman et al. 2016). Most current work around in-
terpretability in deep learning is based on local explanations
i.e. explaining network predictions for specific input exam-
ples (Lipton 2016). For example, saliency maps can highlight
important regions of the input that influence the output of
the neural network. In contrast, global explanations attempt
to understand the mapping learned by a neural network re-
gardless of the input. We achieve this by constraining the
latent space to be reconstructible and inverting embeddings
of representative elements in the latent space (keys). This
helps us understand aspects of the input space (images) that
are captured in the latent space across inputs. Our visualiza-
tions suggest that the features extracted by the convolutional
layers are extremely shallow and can easily overfit to trajec-
tories seen during training. This is in line with the results of
(Zhang et al. 2018) and (Zhang, Ballas, and Pineau 2018).
Although our main focus is to understand learned models,
it is important that the models we analyze perform well on
the task at hand. To this end, we show our model achieves
training rewards comparable to Q-learning models like Dis-
tributional DQN (Bellemare, Dabney, and Munos 2017). Our
contribution in this work is threefold:

• We explore a different neural network architecture with
key-value stores, constrained embeddings and an explicit
soft-assignment step that separates representation learning
and Q-value learning (state aggregation).

• We show that such a model can improve interpretability
in terms of visualizations of the learned keys (cluster),
attention maps and saliency maps. Our method attempts
to provide a global explanation of the model’s behavior
instead of explaining specific input examples (local ex-
planations). We also develop a few examples to test the
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generalization behavior.

• We show that the model’s uncertainty can be used to drive
exploration that reaches reasonably high rewards with re-
duced sample complexity (training examples) on some of
the Atari environments.

Related Work
Many attempts have been made to tackle the problem of in-
terpretability with deep learning, largely in the supervised
learning case. (Zhang and Zhu 2018) carry out an in-depth
survey on interpretability with Convolutional Neural Net-
works (CNNs). Our approach to visualizing embeddings is
in principle similar to the work of (Dosovitskiy and Brox
2016) on inverting visual representations. They train a neu-
ral network with deconvolution layers using HOG, SIFT
and AlexNet embeddings as input and their corresponding
real images as ground truth (the sole purpose of this net-
work being visualization). Saliency maps are another popular
type of method that generate local explanations which gener-
ally use gradient-like information to identify salient parts of
the image. The different ways of computing saliency maps
are covered exhaustively in (Zhang and Zhu 2018). Few of
these have been applied in the context of deep reinforce-
ment learning. (Zahavy, Ben-Zrihem, and Mannor 2016) use
the Jacobian of the network to compute saliency maps on
a Q-value network. Perturbation based saliency maps using
a continuous mask across the image and also using object
segmentation based masks have been studied in the con-
text of deep-RL (Greydanus et al. 2017; Iyer et al. 2018;
Li, Sycara, and Iyer 2017). In contrast to these approaches,
our method is based on a global view of the network. Given
a particular action and expected returns, we invert the cor-
responding key to try and understand visual aspects being
captured by the embedding regardless of the input state. More
recently, (Verma et al. 2018) introduce a new method that
finds interpretable programs that can best explain the policy
learned by a neural network- these programs can also be
treated as global explanations for the policy networks.

Architecturally, our network is similar to the network first
proposed by (Pritzel et al. 2017). The authors describe their
motivation as speeding up the learning process using a semi-
tabular representation with Q-value calculations similar to
the tabular Q-learning case. This is to avoid the inherent slow-
ness of gradient descent and reward propagation. Their model
learns to attend over a subset of states that are similar to the
current state by tracking all the states recently seen (up-to
half-million states) using a k-d tree. However, their method
does not have any notion of clustering or fixed Q-values. Our
proposed method is also similar to Bellemare, Dabney, and
Munos’s work on categorical/distributional DQN. The differ-
ence is that in our model the cluster embeddings (keys) for dif-
ferent Q-values are accessible freely (for analysis and visual-
ization) because of the explicit soft-assignment step, whereas
it is almost impossible to find such representations while
having fully-connected layers like in (Bellemare, Dabney,
and Munos 2017). Although we do not employ any iterative
procedure (like refining keys; we train fully using backpropa-
gation), works on combining deep embeddings with unsuper-

vised clustering methods (Xie, Girshick, and Farhadi 2016;
Chang et al. 2017) (joint optimization/iterative refinement)
have started to pick up pace and show better performance
compared to traditional clustering methods.

Another important direction that is relevant to our work
is that of generalizing behavior of neural networks in the
reinforcement learning setting. (Henderson et al. 2017) dis-
cuss in detail about general problems of deep RL research
and evaluation metrics used for reporting. (Zhang et al. 2018;
Zhang, Ballas, and Pineau 2018) perform systematic exper-
imental studies on various factors affecting generalization
behavior such as diversity in training seeds and randomness
in environment rewards. They conclude that deep RL mod-
els can easily overfit to random reward structures or when
there is insufficient training diversity and careful evaluation
techniques (such as isolated training and testing seeds) are
needed.

Proposed Method
We follow the usual RL setting and assume the environment
can be modelled as a Markov Decision Process (MDP) rep-
resented by the 5-tuple (S,A, T,R, γ), where S is the state
space, A is the action space, T (s′|s, a) is the state transition
probability function, R(s, a) is the reward function and γ ∈
[0, 1) is the discount factor. A policy π : S → A maps every
state to a distribution over actions. The value function V π(st)
is the expected discounted sum of rewards by following pol-
icy π from state st at time t, V π(st) = E[

∑T
i=0 γ

irt+i]. Sim-
ilarly, the Q-value (action-value) Qπ(st, a) is the expected
return starting from state st, taking action a and then follow-
ing π. Q-value function can be recursively estimated using the
Bellman equation Qπ(st, a) = E[rt + γmaxa′ Q(st+1, a

′)]
and π∗ is the optimal policy which achieves the highest
Qπ(st, a) over all policies π.

Similar to the traditional DQN architecture (Mnih et al.
2015), any state st (a concatenated set of input frames) is
encoded using a series of convolutional layers each followed
by a non-linearity and finally a fully-connected layer at the
end h(st) = Conv(st). This would usually be followed by
some non-linearity and a fully-connected layer that outputs
Q-values. Instead, we introduce a restricted key-value store
over which the network learns to attend as shown in Figure 1.

Intuitively, the model is trying to learn two things. First, it
learns a latent representation h(st) that captures important vi-
sual aspects of the input images. At the same time, the model
also attempts to learn an association between embeddings of
states h(st) and embeddings of keys in the key-value store.
This would help in clustering the state (around the keys)
based on the scale of expected returns (Q-values) from that
state. We can think of the N different keys ha (for a given
action a) weakly as the cluster centers for the corresponding
Q-values, attention weights wa(st) as a soft assignment be-
tween embeddings for current state h(st) and embeddings for
different Q-values {ha1 , ha2 , · · ·haN}. This explicit association
step helps us in understanding the model in terms of attention
maps and visualizations of the cluster centers (keys).

The key-value store is restricted in terms of size and values
of the store. Each action a ∈ A has a fixed number of key-
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Figure 1: Model Architecture- Interpretable DQN (i-DQN)

value pairs (say N ) and the value associated with every key
is also held constant. N values {v1, v2, · · · , vN} are sampled
uniformly at random from (Vmin, Vmax) (usually (−25, 25))
once and the same set of values are used for all the actions.
All of the keys (N × A) are also initialized randomly. To
compute attention, the embeddings h(st) for a state st are
compared to all the keys {ha1 , ha2 , · · · , haN} in the store for a
particular action (a) using a softmax over their dot products.

w(st)
a
i =

exp (h(st) · hai )∑
j exp (h(st) · haj )

(1)

These attention weights over keys and their corresponding
value terms are then used to calculate the Q-values.

Q(st, a) =
∑
i

wai (st)vi

Now that we have Q-values, we can define the different losses
that can be used to train the network,

• Bellman Error (Lbellman): The usual value function esti-
mation error.

Lbellman(θ) = (Q(st, a, θ)− Yt)2

where Yt = R(st, a, st+1) + γmax′aQ(st+1, a
′, θ)

• Distributive Bellman Error (Ldistrib): We force the dis-
tributive constraint on attention weights between current
and next states similar to (Bellemare, Dabney, and Munos
2017) using values {v1, v2, · · · , vN} as supports of the
distribution. The distributive loss is defined as the KL
divergence between φT w(st+1)

a∗ and w(st)a where T
is the distributional Bellman operator and φ is the pro-
jection operator and a∗ is best action at state st+1 i.e.

a∗ = argmaxaQ(st+1, a).

Ldistrib(θ) =DKL(φT w(st+1)
a∗ , w(st)

a) (2)

=−
∑
i

φT w(st+1)
a∗

i · w(st)ai (3)

Equation (3) is simply the cross entropy loss (assuming
w(st+1)

a∗ to be constant with respect to θ, similar to the
assumption for Yt in Bellman error).

• Reconstruction Error (Lreconstruct): We also constrain the
embeddings h(st) for any state to be reconstructible. This
is done by transforming h(st) using a fully-connected
layer and then followed by a series of non-linearity and
deconvolution layers.

hdec(st) =W dech(st) (4)

ŝt = Deconv(hdec(st))

The mean squarred error between reconstructed image ŝt
and original image st is used,

Lreconstruct(θ) =
1

2
||ŝt − st||22

• Diversity Error (Ldiversity): The diversity error forces at-
tention over different keys in a batch. This is important
because training can collapse early with the network learn-
ing to focus on very few specific keys (because both the
keys and attention weights are being learned together). We
could use KL-divergence between the attention weights
but (Lin et al. 2017) develop an elegant solution to this in
their work.

Ldiversity(θ) = ||(AAT − I)||2

where A is a 2D matrix of size (batch size, N ) and each
row of A is the attention weight vector w(st)a. It drives
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(a) SpaceInvaders (b) Qbert

(c) MsPacman (d) MsPacman, DDQN

Figure 2: Visualizing keys, state embeddings using t-SNE: i-DQN, Q-value 25 (a)-(c); Double DQN(d)

AAT to be diagonal (no overlap between keys attended
to within a batch) and l-2 norm of w to be 1. Because of
softmax, the l-1 norm is also 1 and so ideally the attention
must peak at exactly one key however in practice it spreads
over as few keys as possible. Finally, the model is trained
to minimize a weighted linear combination of all the four
losses.
Lfinal(θ) = λ1Lbellman(θ) + λ2Ldistrib(θ)

+ λ3Lreconstruct(θ) + λ4Ldiversity(θ)

Experiments and Discussions
We report the performance of our model on eight Atari envi-
ronments (Brockman et al. 2016)- Alien, Freeway, Frostbite,
Gravitar, MsPacman, Qbert, SpaceInvaders, and Venture, in
Table 1. 1 Using the taxonomoy of Atari games from (Belle-
mare et al. 2016) and (Ostrovski et al. 2017), seven of the
eight environments tested (all except SpaceInvaders) are con-
sidered hard exploration problems. Additionally, three of
them (Freeway, Gravitar and Venture) are hard to explore be-
cause of sparse rewards. Since our focus is on interpretability,
we do not carry out an exhaustive performance comparison.
We simply show that training rewards achieved by i-DQN
model are comparable to some of the state-of-the-art models.
This is important because we would like our deep-learning
models to be interpretable but also remain competitive at
the same time. We look at scores against other exploration
baselines for Q-learning that do not involve explicit reward
shaping/exploration bonuses- Bootstrap DQN (Osband et al.
2016), Noisy DQN (Fortunato et al. 2017) and Q-ensembles
(Chen et al. 2018).

1Code available at https://github.com/maraghuram/I-DQN

Directed exploration

We use the uncertainty in attention weights to drive explo-
ration during training.U(st, a) is an approximate upper confi-
dence on the Q-values. Similar to (Chen et al. 2018) we select
the action maximizing a UCB style confidence interval,

Q(st, a) =
∑
i

wai (st)vi

U(st, a) =

√
Q(st, a)2 −

∑
i

wai (st)v
2
i

at =argmax
a∈A

Q(st, a) + λexp U(st, a)

Table 1 compares i-DQN’s performance (with directed ex-
ploration) against a baseline Double DQN implementation
(which uses epsilon-greedy exploration) at 10M frames. Dou-
ble DQN (DDQN), Distributional DQN (Distrib. DQN),
Bootstrap DQN and Noisy DQN agents are trained for up
to 50M steps which translates to 200M frames (Hessel et
al. 2017; Fortunato et al. 2017; Osband et al. 2016). The
Q-ensemble agent using UCB-style exploration is trained for
up to 40M frames (Chen et al. 2018). We see that on some of
the games, our model reaches higher training rewards within
10M frames compared to Double DQN, Distributional DQN
models. Also, our model is competitive with the final scores
reported by other exploration baselines like Bootstrap DQN,
Noisy DQN and Q-ensembles, and and even performs better
on some environments (5 out of 8 games). The training time
for i-DQN is roughly 2x slower because of the multiple loss
functions compared to our implementation of Double DQN.
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Environment 10M frames Reported Scores (final)
DDQN i-DQN DDQN Distrib. DQN Q-ensemble Bootstrap DQN Noisy DQN

Alien 1,533.45 2,380.72 3,747.7 4,055.8 2,817.6 2,436.6 2,394.90
Freeway 22.5 28.79 33.3 33.6 33.96 33.9 32
Frostbite 754.48 3,968.45 1,683.3 3,938.2 1,903.0 2,181.4 583.6
Gravitar 279.89 517.33 412 681 318 286.1 443.5
MsPacman 2,251.43 6,132.21 2,711.4 3,769.2 3,425.4 2,983.3 2,501.60
Qbert 10,226.93 19,137.6 15,088.5 16,956.0 14,198.25 15,092.7 15,276.30
Space Invaders 563.2 979.45 2,525.5 6,869.1 2,626.55 2,893 2,145.5
Venture 70.87 985.11 98 1,107.0 67 212.5 0

Table 1: Training scores (averaged over 100 episodes, 3 seeds). Scores for Double DQN , Distributional DQN and Noisy DQN
are from (Hessel et al. 2017); Scores for Bootstrap-DQN are as reported in the original paper (Osband et al. 2016); Scores for
UCB style exploration with Q-ensembles are from (Chen et al. 2018)

(a) Down (b) Downleft (c) Upleft (d) Right

Figure 3: MsPacman, Inverting keys for Q-value 25

(a) Right (b) R-Fire (c) Left (d) L-Fire (e) Fire

Figure 4: SpaceInvaders, Inverting keys for Q-value 25

What do the keys represent?
The keys are latent embeddings (randomly initialized) that
behave like cluster centers for the particular action-return
pairs (latent space being R256). Instead of training using un-
supervised methods like K-means or mixture models, we use
the neural network itself to find these points using gradient
descent. For example, the key for action right; Q-value 25
(Figure 2c) is a cluster center that represents the latent em-
beddings for all states where the agent expects a return of 25
by selecting action right. These keys partition the latent space
into well formed clusters as shown in Figure 2, suggesting
that embeddings also contain action-specific information cru-
cial for an RL agent. On the other hand, Figure 2d shows em-
beddings for DDQN which are not easily separable (similar
to the visualizations in (Mnih et al. 2015)). Since we use sim-
ple dot-product based distance for attention, keys and state
embeddings must lie in a similar space and this can be seen in
the t-SNE visualization i.e. keys (square boxes) lie within the
state embeddings (Figure 2). The fact that the keys lie close to
their state embeddings is essential to interpretability because
state embeddings satisfy reconstructability constraints.

Inversion of keys
Although keys act like cluster centers for action-return pairs,
it is difficult to interpret them in the latent space. By inverting
keys, we attempt to find important aspects of input space
(images) that influence the agent to choose particular action-
return pair (Deconv(hai )). These are ‘global explanations’
because inverting keys is independent of the input. For exam-
ple, in MsPacman, reconstructing keys for different actions
(fixing return of 25) indicates yellow blobs at many different
places for each action (Figure 3). We hypothesize that these
correspond to the Pacman object itself and that the model
memorizes its different positions to make its decision i.e. the
yellow blobs in Figure 3d correspond to different locations
of Pacman and for any input state where Pacman is in one
of those positions, the agent selects action right expecting
a return of 25. Figure 5 shows such examples where the
agent’s action-return selection agrees with reconstructed key
(red boxes indicate Pacman’s location). Similarly, in SpaceIn-
vaders, the agent seems to be looking at specific combinations
of shooter and alien ship positions that were observed during
training (Figure 4).

The keys have never been observed by the deconvolution
network during training and so the reconstructions depend
upon its generalizability. Interestingly, reconstructions for
action-return pairs that are seen more often tend to be less
noisy with less artifacts. This can be observed in Figure 3
for Q-value 25 where actions Right, Downleft and Upleft
nearly 65% of all actions taken by the agent. We also look at
the effect of different reconstruction techniques keeping the
action-return pair fixed (Figure 6). Variational autoencoder
with β set to 0 yields sharper looking images but increasing
β which is supposed to bring out disentanglement in the
embeddings yields reconstructions with almost no objects.
Dense VAE with β = 0 is a slightly deeper network similar
to (Oh et al. 2015) and seems to reconstruct slightly clearer
shapes of ghosts and pacman.

Evaluating the reconstructions
To understand the effectiveness of these visualizations, we
design a quantitative metric that measures the agreement
between actions taken by the agent and the actions sug-
gested using the reconstructed images. With a fully trained
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Input State Input State Input State Input State Input State

(a) (Downleft, 25) (b) (Right, 25) (c) (Downleft, 25) (d) (Upleft, 25) (e) (Up, 25)

Figure 5: MsPacman, examples where agent’s decision agrees with the reconstructed image

Agreement AE VAE
(β = 0)

VAE
(β = 0.01)

Dense VAE
(β = 0)

MsPacman
(Color)

30.76 29.78 16.8 23.73

MsPacman
(Gray,
Rescaled)

19.87 18.14 10.97 14.56

Table 2: Evaluating visualizations: Agreement scores

Figure 6: Reconstruction: AE, VAE β = 0, VAE β = 0.01,
Dense VAE

model, we reconstruct images {sa1 , sa2 , · · · saN} from the keys
{ha1 , ha2 , · · ·haN} for all actions a ∈ A. In every state st, we
induce another distribution on the Q-values using the cosine
similarity in the image space,

w′(st)
a
i = Softmax(

st · sai
||st||2·||sai ||2

)

similar to w(st)ai (which is also a distribution over Q-values
but in the latent space). Using w′(st)

a
i , we can compute

Q′(st, a) and U ′(st, a) as before and select an action a′t =
argmaxa∈AQ

′(st, a) + λexpU
′(st, a). Using at and a′t, we

define our metric of agreeability as

Agreement =
1at=a′t

1at=a′t
+ 1at 6=a′t

where 1 is the indicator function. We measure this across
multiple rollouts (5) using at and average them . In Table 2,
we report Agreement as a percentage for different encoder-
decoder models. Unfortunately, the best agreement between
the actions selected using the distributions in the image space
and latent space is around 31% for the unscaled color ver-
sion of MsPacman. In MsPacman, the agent has 9 different
actions and a random strategy would expect to have an Agree-
ment of ∼ 11%. However, if the agreement scores were high
(80-90%), that would suggest that the Q-network is indeed
learning to memorize configurations of objects seen during
training. One explanation for the gap is that reconstructions
rely heavily on generalizability to unseen keys.

Adversarial examples that show memorization
Looking at the visualizations and rollouts of a fully trained
agent, we hand-craft a few out-of-sample environment states
to examine the agent’s generalization behavior. For example,
in MsPacman, since visualizations suggest that the agent
may be memorizing pacman’s positions (also maybe ghosts
and other objects), we simply add an extra pellet adjacent
to a trajectory seen during training (Figure 7a). The agent
does not clear the additional pellet and simply continues
to execute actions performed during training (Figure 7b).
Most importantly, the agent is extremely confident in taking
actions initially (seen in attention maps Figure 7a) which
suggest that the extra pellet was probably not even captured
by the embeddings. Similarly, in case of SpaceInvaders, the
agent has a strong bias towards shooting from the leftmost-
end (seen in Figure 4). This helps in clearing the triangle

4566



(a) Adversarial example

(b) Trajectory during training

(c) Adversarial example

(d) Trajectory during training

Figure 7: Adversarial examples for MsPacman (a)-(b) and SpaceInvaders (c)-(d)

like shape and moving to the next level (Figure 7d). However,
when triangular positions of spaceships are inverted, the agent
repeats the same strategy of trying to shoot from left and
fails to clear ships (Figure 7c). These examples indicate that
the features extracted by the convolutional channels seem
to be shallow. The agent does not really model interactions
between objects. For example in MsPacman, after observing
10M frames, it does not know general relationships between
pacman and pellet or ghosts. Even if optimal Q-values were
known, there is no incentive for the network to model these
higher order dependencies when it can work with situational
features extracted from finite training examples. (Zhang et
al. 2018) also report similar results on simple mazes where
an agent trained on insufficient environments tends to repeat
training trajectories on unseen mazes.

Sensitivity to hyperparameters

I-DQN’s objective function introduces four hyperparameters
for weighting the different loss components (λ1: for bell-
man error, λ2: distributional error, λ3: reconstruction error
and λ4: diversity error). The diversity error forces attention
over multiple keys (examples for λ4 = 0 and λ4 = 0.01
are shown in the supplementary material). In general, we
found the values λ1 = 1.0, λ2 = 1.0, λ3 = 0.05, λ4 = 0.01
to work well across games (detailed list of hyperparame-
ters and their values is reported in the supplementary mate-
rial). We ran experiments for different settings of λ1, λ2 and
λ3 keeping λ4 = 0.01 constant on Ms Pacman (averaged
over 3 trials). In general, increasing λ3 (coefficient on recon-
struction error) to 0.5 and 5.0 yields visually better quality
reconstructions but poorer scores- 3, 245.3 and 3, 013.1 re-
spectively (drop by ∼ 45%). Increasing λ1 = λ2 = 10.0
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also drops the score and yields poor reconstructions (some-
times without the objects of the game which loses inter-
pretability) but converges quite quickly (5, 267.15, drop by
∼ 12%). Out of λ1 (bellman loss) and λ2 (distributional
loss), λ2 seems to play a more important in reaching higher
scores compared to λ1 [λ1 = 1.0, λ2 = 10.0 score: 4, 916.0
; λ1 = 10.0, λ2 = 1.0, score: 4, 053.6]. So, the setting
λ1 = 1.0, λ2 = 1.0, λ3 = 0.05, λ4 = 0.01 seems to find
the right balance between the q-value learning losses and
regularizing losses. For the exploration factor, we tried a few
different values λexp = {0.1, 0.01, 0.001} and it did not have
a significant effect on the scores.

Conclusion
In this paper, we propose an interpretable deep Q-network
model (i-DQN) that can be studied using a variety of tools
including the usual saliency maps, attention maps and recon-
structions of key embeddings that attempt to provide global
explanations of the model’s behavior. We also show that the
uncertainty in soft cluster assignment can be used to drive ex-
ploration effectively and achieve high training rewards com-
parable to other models. Although the reconstructions do not
explain the agent’s decisions perfectly, they provide a better
insight into the kind of features extracted by convolutional
layers. This can be used to design interesting adversarial
examples with slight modifications to the state of the envi-
ronment where the agent fails to adapt and instead repeats
action sequences that were performed during training. This
is the general problem of overfitting in machine learning but
is more acute in the case of reinforcement learning because
the process of collecting training examples depends largely
on the agent’s biases (exploration). There are many interest-
ing directions for future work. For example, we know that
the reconstruction method largely affects the visualizations
and other methods such as generative adversarial networks
(GANs) (Goodfellow et al. 2014) can model latent spaces
more smoothly and could generalize better to unseen embed-
dings. Another direction is to see if we can automatically
detect the biases learned by the agent and design meaningful
adversarial examples instead of manually crafting test cases.
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