
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Cost-Sensitive Learning to Rank

Ryan McBride, Ke Wang
Simon Fraser University, BC, Canada
rom2@sfu.ca and wangk@cs.sfu.ca

Zhouyang Ren, Wenyuan Li
Chongqing University, Chongqing, China

rzhouyang@gmail.com and wenyuan.li@ieee.org

Abstract

We formulate the Cost-Sensitive Learning to Rank problem
of learning to prioritize limited resources to mitigate the most
costly outcomes. We develop improved ranking models to
solve this problem, as verified by experiments in diverse do-
mains such as forest fire prevention, crime prevention, and
preventing storm caused outages in electrical networks.

1. Introduction
Motivation
Learning to Rank originated in information retrieval (IR)
and considers learning a ranking model for instances (such
as documents, movies, or web pages) according to their rel-
evance to a query. The training data is a list of pairs (x, y)
for each query, with y as the instance’s relevance to the query
(e.g., from zero, no relevance, to five, very relevant) and x as
instance features. An effective ranking model aims to rank
relevant instances correctly based on x for a future query.
Learning to Rank research thus primarily focuses on devis-
ing more useful IR based metrics (Wang et al. 2016), im-
proving performance on search engine data (Qin et al. 2010),
or developing solutions in new IR fields (e.g., relevant image
retrieval (Wang et al. 2014)).

However, we argue that many non-IR applications in in-
dustry could benefit from similar ranking models: com-
panies can learn to prioritize limited resources to events
with a high y, the numeric cost/impact. One such prob-
lem is with our industrial partner BC Hydro: storm caused
power outages result in severe social peril and millions of
dollars in economic losses every year (Insurance Journal
2017)(Bukaty 2013)(CBC News 2015)(Lawrence Berkeley
National Laboratory 2004). A power company could rank
potential outages for the next storm so high damage outages
can be prevented. We define such problems as cost-sensitive
ranking, problems of maximizing a company’s cost-saving
via a ranking model:

Definition 1 (Cost-Sensitive Learning to Rank) Consider
a training set of m “lists”, T = {Li}mi=1. The ith list
Li = (Xi, Yi) contains Xi = {xi,1, · · · , xi,ni

} and
Yi = {yi,1, · · · , yi,ni

} that describe the features x and the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example storm-caused power outage in Illi-
nois from interactions between weather, cable placement,
and surrounding vegetation. Ranking cities or geographical
areas by their risk of large outages in the same storm is an
example of our proposed Cost-Sensitive Ranking problem.
Image credit to Wikipedia user Robert Lawton.

Figure 2: A training set consisting of instances of electricity
supplying networks exposed to storms. Note that 1 m/s is
approximately 2.2 miles per hour or 3.6 kilometres per hour.

Storm Electrical Cable Wind Impact (Y)
ID Network In Length Speed

Storm1 City 1 5 km 14 m/s 10000 customers
Storm1 City 2 4 km 15 m/s 100 customers
Storm1 City 3 3 km 16 m/s 0 customers

Storm2 Rural 1 3 km 13 m/s 100 customers
Storm2 Rural 2 4 km 12 m/s 1 customer
Storm2 Rural 3 5 km 10 m/s 0 customers

cost/impact y of each instance in the list. The goal is to
build a ranking model that can be used to rank future lists
with instances that have known x but unknown y to mitigate
damage or attain profit. Per the standard Learning to Rank
assumptions, future lists are assumed sampled from the
same underlying distribution as T (e.g., each Li = (Xi, Yi)
is i.i.d. and (xi,j , yi,j) are also i.i.d. within each Li).

For example, the set T in Figure 2 contains two lists cor-

4570

responding to electrical networks exposed to two storms. An
instance is a network hit by a storm with x of (City, Cable
Length, Wind Speed) and y as the impact of the outage in
terms of the number of customers losing power. Similar to
IR research, only the instances in the same list are ranked or
compared to each other.

We argue that this ranking problem applies to many non-
IR domains. After all, risk management is the identification
and prioritization of risks, where risks can come from var-
ious sources: uncertainty in financial markets, legal liabili-
ties, credit risk, accidents, natural causes, and disasters. By
ranking which instances in a list have the highest risk, cost-
savings or profit can be attained. For example, every summer
wildfires destroy hundreds of homes due to dry weather con-
ditions, and a list of geographical regions can be ranked by
the y of the cost/damage of fires (e.g., destroyed homes or
evacuated population size); in business, a charity organiza-
tion wants to rank a list of potential donors/buyers by a y of
donation/purchase amounts so this profit can be accessed; in
finance, an insurance or a loan agency wants to rank appli-
cants by risk factors or credit scores. In all the above cases, a
ranked order is important because there are only limited re-
sources or positions available for a relevant set of instances.
Cost-Sensitive ranking in such domains is of interest.

We also develop new ranking evaluators and algorithms
due to inadequacies in current ranking literature. One solu-
tion to Definition 1 is applying existing IR based Learning
to Rank solutions by mapping an instance to a document
and replacing the relevance y with the numeric impact y. In
Section 2, we will explain two issues of such an approach.
First, they ignore each list’s importance; ranking well in
Storm1’s list in Figure 2 is far more important than rank-
ing well in Storm2 due to a hundred times more customers
losing power. However, existing models can incorrectly con-
sider both storm lists as equally important. Secondly, many
methods assume domain or problem properties that may not
apply to these cost-sensitive domains; one assumption is that
y is IR’s graded relevance that is exponentially increasing,
incorrectly implying that ranking an instance with a y = 51
customer impact first (251 − 1 utility) can be roughly twice
as valuable than ranking a y = 50 customer impact first
(250− 1 utility). Such models distort model value and result
in poor performance, as verified in experiments.

Contributions
We summarize our contributions as follows:

• Section 2: We argue that existing Learning to Rank and
Machine Learning paradigms fail to capture key require-
ments of Cost-Sensitive Learning to Rank.

• Section 3: We develop appropriate Cost-Sensitive Rank-
ing problems of ensuring that a large portion of the total
impact/cost is captured by a ranking model.

• Section 4: We adapt existing ranking model paradigms to
solve such problems.

• Section 5: We run experiments to validate the benefits of
our new solutions on both proprietary and public data sets.

2. Related Work
In this section, we argue that existing Machine Learning
paradigms from Regression and Learning to Rank fail to ad-
dress Definition 1’s goal of ranking to identify many high
cost events. Table 1 lists some notation.

Table 1: Notation Summary
T = {Li}mi=1 A training set of multiple lists.

Li = (Xi, Yi)
A list of multiple instances/items
with features X and impact Y .

Xi = {xi,1, .., xi,ni} xi,j is features of the jth item in Li.
Yi = {yi,1, .., yi,ni} yi,j is the impact/cost for xi,j .

πi(j)
A model π’s position of the jth item
in Li (e.g., πi(j) = 1 if ranked first).

Regression
Regression is a modeling paradigm built to minimize the
deviation between the known risk y and the model’s pre-
dicted risk ȳ, e.g., the RMSE (root mean square error) of√∑

(y−ȳ)2

m . In risk management, regression is widely used
to estimate instances’ risk; for example, the majority of AI
research in outage prevention uses regression to predict the y
magnitude of power loss (Guikema et al. 2014)(Kankanala,
Das, and Pahwa 2014)(Nateghi, Guikema, and Quiring
2014)(Sullivan et al. 2010)(Wanik et al. 2015). Considering
this success, these models could rank instances from highest
predicted risk to lowest predicted risk. Furthermore, argu-
ments for applying Learning to Rank over Regression can
require IR-only assumptions (e.g., (Cao et al. 2007)’s query-
based argument). However, effective regression models may
still not rank well: consider the performance of two mod-
els on Figure 2’s Storm1 where y1,1 = 10000 customers,
y1,2 = 100 customers, and y1,3 = 0. The first model, Model
1, predicts y1,1 = 4999, y1,2 = 5000, and y1,3 = 5001,
achieving a RMSE of 2868.0. This model misranks every
instance so the smallest customer outage is ranked first. The
second model, Model 2, predicts y1,1 = 100000, y1,2 =
5000, and y1,3 = −5000 with an RMSE of 300090.6. Even
though Model 2 has an over hundred times worse RMSE
than Model 1, Model 2 perfectly ranks the instances. An-
other example is Isotonic regression, which imposes a con-
straint that the predicted order is consistent with the known
order in the training data. This hard constraint ignores and
may conflict with a company’s cost-sensitive ranking goal.

Learning to Rank
We first discuss the most popular IR based ranking met-
ric, the Normalized Discounted Cumulative Gain (NDCG),
then generalize. Information retrieval’s training set is a set of
lists where each list Li is associated with a query qi, a docu-
ment set Di, and the relevances Yi = {yi,1, .., yi,ni}, where
yi,j is the graded relevance level of the jth document in the
document list for qi. Typically yi,j is either binary (1, rel-
evant, or 0, irrelevant) or zero out of five scale indicating
the level of relevance. The DCG@k (Discounted Cumula-
tive Gain at k) (Liu et al. 2009) measures the goodness of a
ranking model π at position k defined by

4571

DCG@k(π, Li) =
∑

j:πi(j)≤k

Gi(j) · η(πi(j)). (1)

Gi() is the gain function and η() is a discounting function,
and πi(j) is the ranking position given by π of the jth in-
stance in Li. TheDCG@k represents the cumulative gain of
returning the top k ranked documents with discounts on the
positions;Gi(j) = 2yi,j−1 and η(πi(j)) = 1/log2(πi(j)+
1) are widely used to convey that users’ benefit of accessing
the instance exponentially increases with higher relevance
and the satisfaction of accessing information logarithmically
decreases when the ranked position, πi(j), increases.

To derive the NDCG@k, first this DCG@k is normal-
ized to range between 0% and 100%:

NDCG@k(π, Li) =
1

Gmax,i(k)

∑
j:πi(j)≤k

Gi(j) · η(πi(j)).

(2)
where Gmax,i(k) is the DCG@k for a perfect ranking
model π. For a collection T = {(qi, Li), Yi}mi=1 correspond-
ing to m queries q1, · · · , qm, the overall NDCG@k is the
average NDCG@k of all queries:

NDCG@k(π, T) =
1

|T |
∑
Li∈T

NDCG@k(πi, Li) (3)

One solution for Cost-Sensitive Learning to Rank is to
map each list of instances into a query then apply IR models.
For example, the ith storm can be mapped to an ith query, the
jth network/instance’s properties to the document properties
of the jth instance in Di, and the impact yi,j can be mapped
to a relevance level. However, we argue that the NDCG@k
and other metrics can misjudge model utility due to signif-
icant differences between the information retrieval domain
and common cost-sensitive ranking domains via two issues:

Issue 1: Cost-Insensitive List Importance. Let us con-
sider the two lists (as in, two storms) in Figure 2 and how
the NDCG@k incorrectly judges performance in each list:
Example 1 Suppose that a ranking model, called the πCable
model, ranks the outages by the Cable Length feature, the
NDCG@2 of this model is computed by

NDCG@2(πCable, Storm1) =
(210,000 − 1) +

(2100−1)
log23

(210,000 − 1) +
(2100−1)

log23

= 100%

NDCG@2(πCable, Storm2) =
(20 − 1) +

(21−1)
log23

(2100 − 1) +
(21−1)
log23

≈ 0%

NDCG@2(πCable, T) =(100% + 0%)/2 = 50%

Suppose that another ranking model, called πWind,
ranks the outages by wind speed. It is easy to see
NDCG@2(πWind, T) = 50%. This model has the same
NDCG@2 score as the first model. This is not intu-
itively correct: the first model ranks Storm1 correctly but
ranks Storm2 incorrectly, whereas the second model ranks
Storm2 correctly but ranks Storm1 incorrectly; however,

ranking Storm1 correctly is far more important than rank-
ing Storm2 correctly because of larger impacts in Storm1.
The NDCG@k fails to capture this difference by taking the
average of the normalized score of each list.

Issue 2: Single List Cost-Insensitivity Furthermore, the
NDCG@k fails to capture performance even for a single
list. Recall that yi,j in IR represents the graded relevance
level, and Gi(j) = 2yi,j − 1 models the importance of of
such relevances. For real valued impacts yi,j related to in-
dustrial quantities, such as the number of customers losing
power, 2yi,j − 1 does not capture the importance of impact:

Example 2 Consider a list Li with Yi =
{70, 0, 0, 50, 50, 50} where y represents the number
of customers losing power and there are two models
with k = 3, π1 =<70, 0, 0> (e.g., the instance with
y = 70 customers is ranked first) and π2 =<50, 50, 50>.
Intuitively, π2 predicts more outage impacts than π1.
However, DCG@3(π1) = (270 − 1) and DCG@3(π2) =
(250 − 1)(1 + 1

log2(2) + 1
log2(3)) = (250 − 1) · 2.63,

suggesting that π1 is roughly four hundred thousand times
better than π2. The same holds for NDCG@3, which is the
DCG@3 divided by the constant Gmax,i(3). Therefore, the
DCG and NDCG fail to capture a natural notion of cost
such as the number of customers losing power. In addition,
the NDCG@k is unable to adapt to which ranking is most
useful to a company based on y’s domain context and cost.

Other ranking approaches also suffer from Issue 1 or 2.
Many evaluators are ‘normalized” akin to the NDCG@k
so each list contributes equally to performance, implying Is-
sue 1. This includes the Mean Average Precision (Liu et al.
2009), the average Kendall Tau Correlation Coefficient (Liu
et al. 2009), or the many adaptions of the NDCG@k (e.g.,
(Bian et al. 2010)’s approach of different queries relying on
different NDCG@k settings). For Issue 2, current ranking
metrics similarly ignore essential properties of cost-sensitive
ranking. For example, Positional Metrics only depend on the
ranking position πi(j) (e.g., the κ-NDCG@k (Niu et al.
2012)), Pairwise Metrics (Liu et al. 2009) only consider if
pairs are ranked correctly and not the gap between the yi,j
values within pairs (linked to Classification for Imbalanced
Data (Maimon and Rokach 2005)(Liu et al. 2009) for binary
yi,j), and Multiple Instance Ranking (Bergeron et al. 2008)
is a problem of predicting which instance has the highest
yi,j value in a list (e.g., the store that sells the most products
in a region); all these methods ignore the exact yi,j impacts
of an outage/event and how it relates to cost. For this rea-
son, Multiple Instance Ranking and the κ-NDCG@k both
incorrectly prefer Example 2’s worst model, π1, and equally
prefer πCable and πWind in Example 1, for example.

Similar arguments apply to other ranking methods that are
not built with a notion of cost-saving interpretable to a com-
pany. For example, Wang et al.’s work measures how con-
sistently a ranking model outperforms IR ranking baselines
(Wang et al. 2016), which does not apply for non-IR do-
mains. (Xu et al. 2006) associates a misranking cost for ev-
ery pair of IR’s graded relevances, which is IR specific and
appears disconnected from risk management domains where

4572

costs savings arise from real-world resource deployment to
a small portion of ranked items.

3. Cost-Sensitive Ranking Definitions
We address these issues via two new cost-sensitive rank-
ing evaluators and problem definitions: the Cost-Sensitive
Learning to Rank problem, that solves Issue 1 and Issue 2,
and the Cost-Reweighted Learning to Rank problem, that
solves only Issue 1.

To fix Issue 2, we set a cost-sensitive ranking evaluatorR
for a single list assuming domain-specific properties:

• Cost(xi,j , yi,j): this is the cost saved or gained from al-
locating resources to the jth instance in the list Li given
its features x and y impact. The specification of Cost is
domain specific; in the outage problem, BC Hydro sets
Cost as proportional to the number of customers that lose
power (e.g., Cost() = yi,j).

• k: we assume a user can only act on some top-k instances
in a ranked list due to resource limitations.

• Pr(πi(j)): this is the Bernoulli probability of a company
acting on the jth instance in the list Li according to the
rank given by the model π, i.e., πi(j), as derived from a
user’s resource allocation policies. For the outage rank-
ing problem, BC Hydro preferred the linear decreasing
probability Pr(πi(j)) = max(1− πi(j)−1

k , 0) over other
options. This function achieves a probability of 100% for
the first ranked instance, when πi(j) = 1, then linearly
decreases until a ranking position of k + 1, with a 0%
probability.

This defines the Cost-Sensitive ranking evaluator R@k
for a given ranking model π and a list Li:

R@k(π, Li) =

∑
j:πi(j)≤k Cost(xi,j , yi,j) · Pr(πi(j))

IdealR@k(Li)
(4)

where IdealR@k(Li) is the highest possible numerator for
the perfect ranking model.

Intuitively, R@k(π, Li) is the percentage of expected
gain or cost saved by acting on the top-k ranked list pro-
duced by π. Note that Eq. (2)’s NDCG@k is in fact R
with cost set to the gain function of Gi(j) = 2yi,j − 1 and
the probability set to the discounting function η(πi(j)) =
1/log2(πi(j) + 1). Nonetheless, Cost and Pr are inter-
pretable in non-information retrieval domains and so is R,
as a cost-saving percentage. This fixes Issue 2:

Example 3 With the outage domain’s R@k settings above
(Cost(xi,j , yi,j) = yi,j and Pr(πi(j)) = max(0, 1 −
πi(j)−1

k)), consider the two ranking models π1 =<
70, 0, 0 > and π2 =< 50, 50, 50 > of the list with Yi =
{70, 50, 50, 50, 0, 0, 0} again. IdealR@3 is the constant
70 + 0.66 · 50 + 0.33 · 50 = 120. The R@3 of π1 is 70

120

and the R@3 of π2 is 50(1+0.66+0.33)
120 = 100

120 . Thus R@3
correctly favors π2 over π1.

Similar examples apply to other problems: the appropriate
cost-sensitiveR prefers the more cost effective model.

With a suitable R, we define the cost-sensitive evalua-
tor RCS for a set of lists T . To address Issue 1, we weight
R(π, Li) by the cost-saving of the perfect model for Li:

RCS@k(π, T) =

∑
Li∈T IdealR@k(Li) · R@k(π, Li)∑

Li∈T IdealR@k(Li)
(5)

The numerator is the model π’s expected cost saved summed
over every list while the denominator is the best achievable
cost saved; in contrast to the multiple list NDCG@k and
other approaches, a ranking model’s performance in each list
is correctly proportional to the total cost that could be saved
by ranking within that list. This fixes Issue 1:

Example 4 In Example 1, the NDCG@2 suffers from
equally favoring πCable and πWind model though the for-
mer has a larger impact on cost saving than the latter.
However, the RCS@2 correctly favors πCable that has a
larger impact/cost because the contribution of each list’s
IdealR@k(Li), 10050 for Storm1 and 100.5 for Storm2,
reflects each list’s potential cost-saving:

R@2(πCable, Storm1) =
10000 · 1 + 100 · 0.5

10050
= 100%

R@2(πCable, Storm2) =
0 + 1 · 0.5

100.5
= 0.5%

RCS@2(πCable, T) =
10050 · 1 + 100.5 · 0.014

10050 + 100.5
= 98.5%

R@2(πWind, Storm1) =
0 + 100 · 0.5

10050
= 0.5%

R@2(πWind, Storm2) =
100 · 1 + 1 · 0.5

100.5
= 100%

RCS@2(πWind, T) =
10050 · 0.005 + 100.5 · 1

10050 + 100.5
= 1.5%

We then useRCS to fully define the Cost-Sensitive Learn-
ing to Rank problem:

Definition 2 (Cost-Sensitive Learning to Rank (Final))
Given a training set TTraining = {Li}mi=1, where
Li = (Xi, Yi), Xi as the features of instances, and
Yi = {yi,1, · · · , yi,ni

} as numeric-valued impacts
where yi,j ≥ 0, find a ranking model π that maximizes
RCS@k(π, T) on future T drawn from the same underlying
distribution as TTraining .

In general, the future data T is not available, so a com-
mon practice is to reserve some lists of TTraining , denoted
by TTesting, to simulate the future data, and find a ranking
model with high cost savings for TTesting.

We also develop a weaker cost-sensitive ranking prob-
lem, Cost-Reweighted Learning to Rank, that only fixes Is-
sue 1 but not Issue 2. This formulation will be leveraged
by our Cost-Reweighted algorithm in Section 4 to adapt ex-
isting ranking models to be more cost-sensitive. The Cost-
Reweighted objective RCR@k is similar to RCS except
the model π is evaluated with a different ranking evaluator
R′@k(π, Li):

4573

RCR@k(π, T) =
∑
Li∈T

IdealR@k(Li) · R′@k(π, Li)∑
Li∈T IdealR@k(Li)

(6)
For example, R′ could be the single-list NDCG@k

and R@k(π, Li) could be the outage domain appropriate
R@k motivated earlier. Under this setting, the “weight”

IdealR@k(Li)∑
Li∈T IdealR@k(Li)

is the cost proportion of Li, the per-

centage of total cost saving achievable in Li (e.g., for k = 2,
Storm1’s weight is 99.5% while Storm2’s is 0.5%). Even
ifR′@2 does not solve Issue 2 in Example 1, the reweighted
evaluatorRCR would nonetheless better judge performance;
for example, theRCR@2 of πCable is 99.0% and πWind’s is
0.1%, reflecting a power company’s preferences.

The Cost-Reweighted Learning to Rank problem with the
RCR objective is:

Definition 3 (Cost-Reweighted Learning to Rank) Given
the training set T in Definition 2, we find a ranking model
π that maximizes RCR@k(π, T) on future T drawn from
the same underlying distribution as TTraining .

4. Algorithms
We next propose solutions to the Cost-Sensitive (CS) and the
Cost-Reweighted (CR) Learning to Rank problems.

Cost-Sensitive Model Search
We can exactly optimize the Cost-Sensitive Ranking prob-
lem by adapting LambdaMART (Burges 2010), Coordi-
nate Ascent (Friedman 2001), and AdaRank (Xu and Li
2007) into Cost-Sensitive MART (CS-MART), Cost Sensi-
tive Coordinate Ascent (CS-C. Ascent), and Cost-Sensitive
AdaRank (CS-AdaRank). This is done by replacing the
model’s original objective with our cost-sensitive goalRCS .

Cost-Sensitive MART. The original LambdaMART is a
gradient ascent method that guides model search by the fol-
lowing difference of the NDCG@k between the original
model π (with parameters θ) and a new model π(θi,j):

Zi,j =NDCG@k(π(θi,j), TTraining)
−NDCG@k(π(θ), TTraining)

Intuitively, π(θi,j) specifies the hypothetical model obtained
from the model specified by θ by swapping the positions
of the ith ranked document with the jth ranked document.
We adapt LambdaMART by replacing NDCG@k with our
cost-sensitiveRCS in Zi,j .

Cost-Sensitive Coordinate Ascent. Coordinate Ascent
starts with a random model parameter vector, θ, and sug-
gests a new model parameter vector, θnew, and computes
the NDCG@k improvement

δ(θnew, θ, TTraining) =NDCG@k(π(θnew), TTraining)
−NDCG@k(π(θ), TTraining)

If the improvement is positive and above a given threshold,
it sets θ to θnew, otherwise, θ remains the same. This process

is then repeated until θ converges. Exact details can be found
in (Friedman 2001). We adapt this algorithm by substituting
the NDCG@k with theRCS .

Cost-Sensitive AdaRank. AdaRank (Xu and Li 2007)
uses boosting to optimize the sum of a per-list evaluator
E(π, Li) over multiple lists:

AdaRank(π, TTraining) =
∑

Li∈TTraining

E(π, Li)

where E must range between -1 and 1, otherwise,
convergence is not guaranteed. Generally, E is set to
NDCG@k(π, Li) to maximize the average NDCG@k
over multiple lists in Eq. (3); AdaRank thus inherits the
NDCG’s limitations in Section 2.

For our new solution, CS-AdaRank, we re-
place the objective E with the per-list objective

R@k(π,Li)∑
Li∈TTraining

IdealR@k(Li)
. The new objective is in

fact proportional to ourRCS objective.

Cost-Reweighted Model Search
General ranking models cannot be easily adapted to op-
timize an arbitrary cost-sensitive objective: for example,
methods such as ListNet (Cao et al. 2007) are hard-coded
to only support the NDCG@k’s exponential graded rele-
vance y values and that each list contributes equally to per-
formance. Similarly, ranking methods that adjust a set of
models to a new ranking objective are only built for existing
metrics and their assumptions (e.g., (Wu et al. 2010)’s Mean
Average Precision optimization). Adapting these methods
would thus require significant redevelopment.

Instead, we optimize Definition 3’s Cost-Reweighted
Ranking problem, a weaker cost-sensitive problem that ad-
dresses only Issue 1 by preferring models that perform well
on lists that contribute the most to cost-saving. Our Cost-
Reweighted model search optimizes this problem by adapt-
ing a class of gradient ascent methods with a per-list loss
function Loss(π, Li); this means we can adapt many mod-
ern ranking methods, such as ListNet (Cao et al. 2007),
LambdaMART (Burges 2010), Coordinate Ascent (Fried-
man 2001), RankNet (Burges 2010), LambdaRank (Burges
2010), and the many modifications and derivatives of the
listed approaches. To explain this adaption, first recall that
gradient ascent ranking methods assume:

• The model π’s goal is to optimize the average
R′@k(π, Li) over every list in TTraining . For example,
if R′@k = NDCG@k (Eq. (2)) then π optimizes the
overall NDCG@k (Eq. (3)).

• Since R′@k(π, Li) does not have a “smooth” gradi-
ent, the method uses the substitute function Loss(π, Li)
where optimizing Loss(π, Li) optimizesR′@k(π, Li).

• Over many iterations, π’s model parameters are updated
via this loss function and the corresponding gradient.

To optimize the Cost-Reweighted RCR@k(π, T), we
reweight the Loss for each list by its cost importance or
“weight”, IdealR@k(Li)∑

Li∈T IdealR@k(Li)
:

4574

LossCR(Li) =
IdealR@k(Li)∑

Li∈T IdealR@k(Li)
· Loss(π, Li)

.
The new gradient for this LossCR is the original Loss’s
gradient multiplied by the same cost-reweighted con-
stant. By gradient ascent properties with multiplication
by a constant, this method trivially optimizes the average

IdealR@k(Li)∑
Li∈T IdealR@k(Li)

·R′@k(π, Li) over all Li, which is pro-

portional to Eq. (6)’s RCR. We will note the simplicity of
this adaption: it is easy to find the gradient update code then
multiply it by the per-list constant.

In experiments, we apply this Cost-Reweighted adaption
to ListNet and RankNet. Both these models use anR′@k of
the NDCG@k. In more detail:

Cost-Reweighted ListNet. The original ListNet opti-
mizes the NDCG@k with a loss function based on the
cross entropy between the permutation probability of the
given ranking model versus the permutation probability of
a perfect model. For example, the permutation probability
of the jth instance in Li being the top-ranked instance is

eyi,j∑ni
j′=1

e
y
i,j′ (Cao et al. 2007). By considering this proba-

bility for all instances, the authors define a distribution used
for the cross-entropy. Cost-Reweighted ListNet replaces this
loss function with the reweighted version LossCR(Li).

Cost-Reweighted RankNet. RankNet’s loss is based on
cross-entropy of the probability that each pair of instances
in a list are ranked correctly to optimize the NDCG@k
(Burges 2010). This cross-entropy loss function is replaced
with the cost-reweighted version, LossCR(Li).

5. Experiments
Methodology
In experiments, we validate two claims:

• Claim 1: Section 4’s Cost-Sensitive adapted algorithms
outperform their baselines from Learning to Rank liter-
ature. In particular, we consider the following pairs of al-
gorithms presented in Section 4: CS-MART and Lamb-
daMART, CS-C. Ascent and Coordinate Ascent, CS-
AdaRank and AdaRank, CR-RankNet and RankNet, and
CR-ListNet and ListNet.

• Claim 2: The best Cost-Sensitive algorithm outperforms
the best regression based ranking method. We consider
three regression algorithms, Random Forests, MART, and
Linear Regression. We will note that Random Forests was
the best competitor in some outage-related problems (e.g.,
(Nateghi, Guikema, and Quiring 2014)).

RankLib (https://sourceforge.net/p/lemur/wiki/RankLib/)
is used for all baselines. All algorithms are evaluated by
RCS@k in Eq. (5) with an appropriate cost-sensitive rank-
ing evaluator R@k. Testing uses five-fold cross-validation
via LETOR’s separation of data with three folds used for
training, one for validation, and one for testing (Qin et al.
2010). Each fold has a roughly equal number of lists.

Data Sets and Cost-Setting
We consider two proprietary outage data sets and three pub-
lic UCI data sets. Each data set is partitioned into lists based
on separations of geography (e.g., crimes in the same state)
and/or time (forest fire damage in the same month, outage
damage in the same storm, or a concrete batch’s strength of
batches produced on the same day) with a goal of ranking to
identify instances with high y values in each list. Attributes
and details on each data set are provided in Table 2.

The two outage problems cover storms from 2010 to 2015
in BC Hydro’s operating region in British Columbia: High-
Risk Outages’s data is from areas with a high risk of outages
and Customers Outages’ is from a set of networks that sup-
ply many customers in urban areas. There are 85 attributes in
these data sets: 59 properties of the network/region (e.g., to-
tal cable length in the network, the number of poles, and the
percentage of cables underground), 25 weather properties
(e.g., average wind speed, maximum wind speed, rainfall,
humidity, and the density of nearby vegetation determined
from satellite readings) from NOAA’s North American Re-
gional Reanalysis readings and NASA’s global remote sens-
ing records, and the y impact is the number of customers that
lose power from outages in that area.

Table 2: Data Set details (e.g., number of attributes).
RankLib does not support missing values or categorical at-
tributes so we removed any attribute with missing values and
convert each categorical attribute with C categories into C
binary attributes. This modifies Crime’s 123 attributes to 103
attributes.

Data Set Instances #Att. # Lists Impact (Y)
High-Risk

95,849 85 333 Storms
Customers

Outages Losing Power
Customers

122,030 85 302 Storms
Customers

Outages Losing Power
Crime 1994 103 46 States Crimes in District

Forest Fire 517 12 12 Months Forest Fire Area
Concrete 1030 8 14 Ages Concrete Strength

The cost-sensitive evaluator RCS@k is set to Section 3’s
outage domain setting, Cost() as a linear cost and Pr()
as a linearly decreasing probability. We consider this set-
ting reasonable for the non-outage domains as well; it is
domain-appropriate for a company/organization to rank such
that the largest portion of crime, forest fire burnt acreage,
or strongest concrete are identified. For the two outage data
sets, we use ks of 10 and 50, based on domain knowledge
on how many networks may be strengthened before a storm
given a 24 hour lead time. For the other data sets, we use two
ks: a low k (12.5% of the average number of instances in a
list) and a more medium k (25% of the average list length).

Detailed Results
Table 3’s results validate our claims. Note that CR-ListNet
and ListNet have incomplete entries due to numeric calcu-
lation issues related to these methods’ cross-entropy calcu-
lation; as discussed in Section 4, this cross-entropy involves

4575

Table 3: Our new Cost-Sensitive and Cost-Reweighted methods, noted with a diamond, achieve better cost-savings than com-
petitors: the bolded top-3 algorithms in each problem setting (column) are the new methods in all but one data set. The best CS
method has statistically significant improvements over competitors (p-value < 0.05) except for in Forest Fires and Concrete.

RCS@k for Different Data Sets.
High-Risk Outages Customers Outages Crime Forest Fires Concrete

Algorithm Low k Mid k Low k Mid k Low k Mid k Low k Mid k Low k Mid k
(k=10) (k=50) (k=10) (k=50) (k=6) (k=11) (k=6) (k=11) (k=10) (k=19)

♦ CS-MART 11.3% 27.2% 19.2% 25.3% 96.9% 98.2% 19.1% 18.3% 91.0% 94.3%
LambdaMART 8.5% 22.4% 6.0% 12.4% 83.9% 87.1% 9.8% 25.2% 90.5% 93.6%
♦ CS-C. Ascent 10.5% 26.6% 17.0% 26.2% 97.6% 98.2% 24.0% 28.4% 91.0% 92.7%

C. Ascent 7.2% 21.6% 10.0% 17.2% 46.8% 44.1% 20.2% 26.8% 88.7% 91.1%
♦ CS-AdaRank 9.7% 25.1% 13.8% 25.9% 97.9% 97.2% 29.4% 38.4% 84.0% 87.6%

AdaRank 7.3% 23.0% 1.7% 4.7% 17.4% 37.4% 14.9% 22.8% 87.9% 86.3%
♦ CR-RankNet 7.0% 23.2% 10.5% 20.4% 75.9% 79.4% 20.4% 33.7% 89.4% 87.6%

RankNet 3.1% 11.8% 5.9% 16.2% 75.1% 77.7% 19.5% 30.8% 84.0% 87.0%
♦ CR-ListNet - - - - - - 25.5% 34.5% 77.6% 80.0%

ListNet - - - - - - 9.7% 21.6% 75.6% 81.6%
Linear Regression 0.8% 8.1% 5.6% 13.0% 85.7% 87.2% 21.2% 29.6% 90.4% 93.2%

Random Forests 8.1% 24.7% 11.9% 20.6% 92.5% 94.3% 21.0% 27.9% 90.0% 92.2%
MART 9.0% 23.2% 11.3% 19.4% 83.6% 85.9% 14.3% 23.6% 83.6% 85.8%

terms such as eyi,j∑
j′ e

y
i,j′ (Cao et al. 2007) where yi,j can be

greater than 10,000, resulting in numeric overflow issues.

For Claim 1, our Cost-Sensitive Learning to Rank meth-
ods overwhelmingly outperform their corresponding Learn-
ing to Rank baseline: in 81 of 84 tests the new method out-
performs its paired baseline. For example in the Customers
Outages data set, CS-MART’sRCS@k objective prioritized
ranking well in major storms with high impact outages (e.g,
thousands/tens of thousands of customers lose power), espe-
cially related to high surrounding vegetation in urban areas.
In contrast, LambdaMART’s NDCG@k focuses on more
frequent minor storms where only tens or hundreds of cus-
tomers lose power since a good performance in many storms
is more important for the NDCG@k. Admittedly, in Con-
crete most algorithm improvements over their baseline are
marginal. We find that this problem is relatively easy be-
cause concrete strength is most heavily correlated with only
a few attributes so most algorithms are able to extract similar
models with similar performances.

For Claim 2, the bolded results, the top-3 performers, are
overwhelmingly Cost-Sensitive or Cost-Reweighted meth-
ods. The best Cost-Sensitive method is better than the best
baseline, which is statistically significant in Customers Out-
ages, High-Risk Outages, and Crime via a p-value < 0.05.
The difference in performance arises from how models
leverage attributes, which we explored in Outages Cus-
tomers where CS-MART achieves 19.2% while Random
Forest achieves 11.9%. CS-MART tended towards model
splits based on humidity and vegetation, that were heavily
correlated with which networks will have high cost failures
in the same storm. In contrast, Random Forests’ models pri-
marily split on wind speed and rainfall because these at-
tributes results in a higher risk of outages and are linked to a
low root mean square error due to this correlation; however,
these attributes are not as useful for ranking since most net-

Table 4: Both our contributions are beneficial since a method
that only fixes Issue 1 via the Cost-Reweighted adaption is
outperformed by the Cost-Sensitive algorithms that fix both
issues. Note that AdaRank cannot be Cost-Reweighted be-
cause it is not a gradient ascent method.

RCS@k for Outage Data Sets
High-Risk Outages Customers Outages

Algorithm k=10 k=50 k=10 k=50
CS-MART 11.3% 27.2% 19.2% 25.3%
CR-MART 8.7% 25.1% 12.8% 21.9%

CS-C. Ascent 10.5% 26.6% 17.0% 26.2%
CR-C.Ascent 8.1% 23.7% 11.2% 19.5%

work areas are exposed to the same storm and therefore very
similar wind/rainfall conditions. Regression’s ignorance of
the ranking goal can thus lead to poor performance.

We also test whether our two fixes in Section 2 and 3 both
contribute to performance: in Table 4, our Cost-Sensitive al-
gorithms outperform the Cost-Reweighted version that ad-
dresses only Issue 1 (the cost or importance of each list) but
does not address Issue 2 (individual list cost-sensitivity) as
intended. Similar results apply to the other data sets.

We will stress that the effectiveness of our Cost-Sensitive
approach is measured by comparing the new CS or CR al-
gorithm with its original counterpart in each pair; the large
variance across different pairs is caused by the relevant ben-
efits of each search strategy.

6. Acknowledgments

Our thanks to Canada’s NSERC for PGS-D and CRD fund-
ing, BC Hydro’s Tom Gutwin and Darcy Dommer, and the
National “111” Project of China (Project No. B08036).

4576

7. Conclusion
Experiments validate our Cost-Sensitive Learning to Rank
paradigm. Our suite of Cost-Sensitive and Cost-Reweighted
solutions outperform existing ranking methods which ignore
a company’s use case: ranking to guide the prevention of
costly damage. This solution is thus useful in diverse risk
management domains, such as power outage prevention.

References
Bergeron, C.; Zaretzki, J.; Breneman, C.; and Bennett, K. P.
2008. Multiple instance ranking. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08,
48–55. New York, NY, USA: ACM.
Bian, J.; Liu, T.-Y.; Qin, T.; and Zha, H. 2010. Ranking with
query-dependent loss for web search. 141–150.
Bukaty, R. F. 2013. Thousands in Maine remain without
power, nearly a week after massive ice storm - The Boston
Globe.
Burges, C. J. 2010. From ranknet to lambdarank to lamb-
damart: An overview.
Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; and Li, H. 2007.
Learning to rank: from pairwise approach to listwise ap-
proach. In Proceedings of the 24th international conference
on Machine learning, 129–136. ACM.
Friedman, J. H. 2001. Greedy function approximation: a
gradient boosting machine. Annals of statistics 1189–1232.
Guikema, S. D.; Nateghi, R.; Quiring, S. M.; Staid, A.;
Reilly, A. C.; and Gao, M.-L. 2014. Predicting hurricane
power outages to support storm response planning. Access,
IEEE 2:1364–1373.
2017. Insured losses for Europe’s storm Zeus estimated at
US$200m: Perils.
Kankanala, P.; Das, S.; and Pahwa, A. 2014. Adaboost: An
ensemble learning approach for estimating weather-related
outages in distribution systems. Power Systems, IEEE Trans-
actions on 29(1):359–367.
Lawrence Berkeley National Laboratory 2004. Understand-
ing the cost of power interruptions to U.S. electricity con-
sumers.
Liu, T.-Y., et al. 2009. Learning to rank for information re-
trieval. Foundations and Trends R© in Information Retrieval
3(3).
Maimon, O., and Rokach, L. 2005. Data mining for imbal-
anced datasets: An overview. In Data Mining and Knowl-
edge Discovery Handbook.
Nateghi, R.; Guikema, S. D.; and Quiring, S. M. 2014. Fore-
casting hurricane-induced power outage durations. Natural
Hazards 74(3):1795–1811.
CBC News 2015. B.C. storm: 22,000 customers remain
without power - British Columbia - CBC News.
Niu, S.; Guo, J.; Lan, Y.; and Cheng, X. 2012. Top-k learn-
ing to rank: labeling, ranking and evaluation. In Proceed-
ings of the 35th international ACM SIGIR conference on Re-
search and development in information retrieval, 751–760.
ACM.

Qin, T.; Liu, T.-Y.; Xu, J.; and Li, H. 2010. LETOR: A
benchmark collection for research on learning to rank for
information retrieval. Information Retrieval 13(4):346–374.
Sullivan, M. J.; Mercurio, M. G.; Schellenberg, J. A.; and
Eto, J. H. 2010. How to estimate the value of service relia-
bility improvements. 1–5.
Wang, J.; Song, Y.; Leung, T.; Rosenberg, C.; Wang, J.;
Philbin, J.; Chen, B.; and Wu, Y. 2014. Learning fine-
grained image similarity with deep ranking. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1386–1393.
Wang, X.; Bendersky, M.; Metzler, D.; and Najork, M. 2016.
Learning to rank with selection bias in personal search.
In Proceedings of the 39th International ACM SIGIR con-
ference on Research and Development in Information Re-
trieval, 115–124. ACM.
Wanik, D.; Anagnostou, E.; Hartman, B.; Frediani, M.; and
Astitha, M. 2015. Storm outage modeling for an electric
distribution network in northeastern usa. Natural Hazards
79(2):1359–1384.
Wu, Q.; Burges, C. J.; Svore, K. M.; and Gao, J. 2010.
Adapting boosting for information retrieval measures. In-
formation Retrieval 13(3):254–270.
Xu, J.; Cao, Y.; Li, H.; and Huang, Y. 2006. Cost-sensitive
learning of svm for ranking. In European conference on
machine learning, 833–840. Springer.
Xu, J., and Li, H. 2007. Adarank: a boosting algorithm
for information retrieval. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and de-
velopment in information retrieval, 391–398. ACM.

4577

