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Abstract

LASSO and `2,1-norm based feature selection had achieved
success in many application areas. In this paper, we first de-
rive LASSO and `1,2-norm feature selection from a proba-
bilistic framework, which provides an independent point of
view from the usual sparse coding point of view. From here,
we further propose a feature selection approach based on the
probability-derived `1,2-norm. We point out some inflexibil-
ity in the standard feature selection that the feature selected
for all different classes are enforced to be exactly the same
using the widely used `2,1-norm, which enforces the joint
sparsity across all the data instances. Using the probability-
derived `1,2-norm feature selection, allowing certain flexibil-
ity that the selected features do not have to be exactly same
for all classes, the resulting features lead to better classifica-
tion on six benchmark datasets.

Introduction
Feature selection is one of important tasks of machine
learning. Selecting useful set of features could improve
many learning algorithms such as classification, regression,
etc. In today’s big data environment, many data has high-
dimensions, e.g., biology datasets with around 10k fea-
tures/genes (Bolón-Canedo et al. 2014) are commonplace.
Selecting a subset of features reduces the data sizes and,
more importantly, simplifies the interpretation of machine
learning results, with many applications in gene-expression
analysis (Dudoit, Fridlyand, and Speed 2002), proteomic
biomarkers discovery (Saeys, Inza, and Larrañaga 2007),
molecular cancer prediction (Gao and Church 2005).

Feature selection has been widely investigated in many
applications with great assistance to practical performance.
The main focus in the literature is on the supervised learning,
which evaluates the relevance between features and class
labels. The evaluation metric divides feature selection al-
gorithms into three main categories (Guyon and Elisseeff
2003), which are filter, wrapper, embedded methods. In-
dependent of any specific models, filter-type methods such
as F-statistic (Ding and Peng 2003) and ReliefF (Robnik-
Šikonja and Kononenko 2003) can quickly select features
which are most correlated with class labels. However, redun-
dant features are usually present in the subset of selected fea-
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tures via aforementioned algorithms. Thus, mRMR (Peng,
Long, and Ding 2005) is proposed to maximize relevance
and minimize redundancy simultaneously, which can effec-
tively overcome the shortage of previous methods and fur-
ther improve the practical performance. On the contrary,
wrapper-type methods such as SVM-RFE (Guyon et al.
2002) are dependent on a specific classifier to iteratively
search the best feature subset, but which has highly expen-
sive computational cost and potential overfitting risk.

Recently, sparse coding based methods (also called em-
bedded methods) become popular in study of feature se-
lection. This approach combines the advantages of above-
mentioned two kinds of methods. The sparse model tries to
find a compromise between loss and sparsity-induced reg-
ularization, e.g., the classic Lasso (Tibshirani 1996) using
`1-norm constraint, also known as sparse coding in dictio-
nary learning. To remove redundant noise features, `1-SVM
(Zhu et al. 2003) is introduced to generate sparse solution for
two-class feature selection. On the other hand, in multi-task
setting, researchers (Argyriou, Evgeniou, and Pontil 2008),
(Liu, Ji, and Ye 2009), (Nie et al. 2010), (Gui et al. 2017) fo-
cus on designing a collaborative model to select class-shared
features via `2,1-norm, which is first proposed in (Ding et al.
2006) as rotational invariant `1-norm for purpose of robust
subspace factorization. Similarly, `1,∞-norm (Quattoni et al.
2009) is proposed to build a set of jointly sparse models,
by means of `1-ball projection (Duchi et al. 2008). Besides,
sparse coding based method is applied to other domains,
such as sparse subspace learning (Gui et al. 2012), sparse
representation based classification (Lu et al. 2013),etc.

A Probabilistic View of LASSO
The `1 based LASSO and the closely related `1,2-norm fea-
ture selection are, in some sense, a prescription using sparse
coding. In this paper, we show they can be derived from a
probability framework, thus provides a strong probabilistic
foundation.

In this paper, we propose to use the probability-derived
`1,2-norm feature selection. In this approach, features se-
lected from different classes are not vigorously enforced to
be exactly same.

However, most of popular feature selection methods aim
at searching features across all the data instances with joint
sparsity, which then enforces the selected features to be ex-
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actly same for all classes.
Here, we argue that it is better to allowing selected fea-

tures to have certain flexibility, not exactly same. In applica-
tions and real data, different classes could have its own char-
acteristics, e.g., cars and cups have different features. Thus,
using vigorously same set of features is not a natural way to
pre-process/prescreen the data. Motivated by exclusive fea-
ture learning (Zhao, Rocha, and Yu 2009), (Zhou, Jin, and
Hoi 2010), (Kong et al. 2014), (Campbell and Allen 2017),
in this paper we propose a flexible feature selection method
via `1,2-norm regularization. In previous works, `1,2-norm
is used to either capture the negative correlation which cre-
ates competitions between features across all the classes, or
eliminate strongly correlated features in two-class setting.
Thus, our proposed method has a clear difference from them,
that `1,2-norm is enforced on features of each class to se-
lect a subset of features which are most correlated with each
class separately. Using the flexible `1,2-norm feature selec-
tion obtains features that generally perform better in many
real datasets, including images and bio-microarray data.

The main contributions of this paper include: (1) a prob-
abilistic derivation of LASSO and `1,2-norm, and illustrat-
ing how `1,2-norm is used to measure the importance of
a subset of features for each class; (2) an effective algo-
rithm with rigourous convergence analysis is proposed to
compute/select the features using `1,2-norm regularization,
which is a parameter-free method and quickly converges;
(3) experimental results on six benchmark datasets, includ-
ing images and bio-microarray data, show that our proposed
flexible feature selection method has an overwhelmed ad-
vantage over state-of-the-art algorithms.

Notations and Definitions
In this paper, lower-case letters refer to scalars, bold-
face lower-case letters refer to vectors, and boldface cap-
ital letters refer to matrices. n refers to the number of
data instances. d refers to the number of features or data
dimensions. k refers to the number of classes. The i-
th element of vector w is presented by wi. The i-th
row and j-th column of matrix W = (Wi,j) are de-
noted as wi and wj , respectively. Given a matrix W ∈
Rd×k, the Frobenius-norm of matrix W is ‖W‖F =√∑d

i=1

∑k
j=1W

2
ij . In general, the `p,q norm of W is de-

fined as ‖W‖p,q =
(∑k

j=1

(∑d
i=1 |Aij |p

)q/p)1/q
, with

the computational mathematics convention that `p norm on
the first (fastest index) i and `q norm on the second fast
index j. With this convention, the `2,1-norm based feature
selection uses ‖WT ‖2,1 regularization; the `1,2-norm based
feature selection uses ‖W‖1,2 regularization; the exclusive
LASSO uses ‖WT ‖1,2 regularization.

A Probabilistic Derivation of LASSO and
`1,2-Norm Feature Selection

First, the variables of the feature selection model are de-
fined as follows. Training data of n labeled feature vec-
tors are denoted as X ∈ Rd×n = (x1, · · · ,xn), where

xi ∈ Rd. The corresponding class labels are denoted as
Y ∈ Rn×k = (y1, · · · ,yk), where yi ∈ Rk represents
the class label for xi using one-hot vector, i.e., Yij = 1
if xi belongs to j-th class, Yij = 0 otherwise. Weights to
be learnt are denoted as W ∈ Rd×k = (w1, · · · ,wk),
where wi ∈ Rd represents the coefficient correlated with
i-th class’s features.

Our starting point is the LASSO type feature selection for-
malism using `1,2-norm:

min
Ŵ

∥∥∥XTŴ −Y
∥∥∥2
F

+ λ
∥∥∥Ŵ∥∥∥2

1,2
(1)

Here we use Ŵ to distinguish it from the following presen-
tation.

We now present a new derivation of Eq.(1) from a proba-
bilistic selection based on ridge regression. We first expand
Eq.(1) on Ŵ = (ŵ1, · · · , ŵk)

min
Ŵ

k∑
j=1

(∥∥XT ŵj − yj
∥∥2
2

+ λ‖ŵj‖21

)
(2)

Now, we introduce a selection probability vector θj for
class j and propose a selection formalism

min
W,Θ

k∑
j=1

(∥∥∥XT (θ
1
2
j �wj)− yj

∥∥∥2
2

+ λ‖wj‖22

)
s.t. θj ≥ 0,1Tθj = 1, j = 1, · · · , k,

(3)

where Θ = (θ1, · · · ,θk) ∈ Rd×k, 1 is a vector of all 1’s
with appropriate size, and � is a element-wise hadamard
product, i.e., (a� b)i = aibi.

Both the optimization problems of Eq.(2) and Eq.(3) are
convex and have unique optimal solutions.
Theorem 1. Optimization problems Eq.(2) and Eq.(3) are
equivalent. (A) Once the optimal solution {ŵ∗j} for Eq.(2)
is obtained, the optimal solution for Eq.(3) is given by

Θ∗ij =

∣∣∣Ŵ ∗ij∣∣∣
‖ŵ∗j‖1

,w∗j = (θ∗j )−
1
2 � ŵ∗j (4)

where i = 1, · · · , d is the feature/dimension index. (B) On
the other direction, once {θ∗j ,w∗j} for Eq.(3) is obtained, the
optimal solution for Eq.(2) are given by ŵ∗j = (θ∗j )

1
2 �w∗j .

The proof of this theorem is given in Lemma 2.

LASSO, Nonnegative Garrote and Selective
Ridge Regression

Here we discuss LASSO, selective ridge regression and non-
negative Garrote of Breiman (Breiman 1995).

In optimization problems Eq.(2) and Eq.(3), different
classes are in fact decoupled. Thus we can optimize them
one class at a time. Thus the optimization of Eq.(2) is, in
essence, equivalent to the following form (we ignore the in-
dex j)

min
ŵ

∥∥XT ŵ − y
∥∥2
2

+ λ‖ŵ‖21, (5)

This is LASSO, except the `1 term is squared which does
not affect the sparsity of ŵ.
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Optimization problem Eq.(3) is in essence what we would
call the ”selective” ridge regression

min
w,θ

∥∥∥XT (θ
1
2 �w)− y

∥∥∥2
2

+ λ‖w‖22
s.t. θ ≥ 0,1Tθ = 1.

(6)

This formulation in some sense is close to the nonnegative
Garrote:

min
θ

∥∥XT (θ �w0)− y
∥∥2
2

s.t. θ ≥ 0,1Tθ ≤ h,
(7)

where w0 = arg minw‖XTw − y‖22 is the solution to or-
dinary least squares estimation, and h ≤ 1 is a constant. In
both Eq.(6) and Eq.(7), the selection vector θ has similar
sparsity pattern of the LASSO.
Lemma 2. Optimization problems Eq.(5) and Eq.(6) are
equivalent.

Proof Starting from Eq.(6), we introduce a new variable
ŵ = θ

1
2 �w, then w = θ−

1
2 � ŵ. Thus, the optimization

problem (6) is transformed into

min
ŵ,θ

∥∥XT ŵ − y
∥∥2
2

+ λ
d∑
i=1

(
ŵ2

i

θi

)
s.t. θ ≥ 0,1Tθ = 1.

(8)

When ŵ is fixed, solving problem (8) with respect to θ is

min
θ

d∑
i=1

(
ŵ2

i

θi

)
s.t. θ > 0,1Tθ = 1,

(9)

which can be solved using Lagrangian multiplier. The opti-
mal solution of θ is computed as

θi =
|ŵi|∑d
i′=1 |ŵi′ |

=
|ŵi|
‖ŵ‖1

, (10)

where i = 1, · · · , d is the feature/dimension index. With
the result of Eq.(10), the objective of Eq.(9) becomes∑d
i=1

(
ŵ2

i

θi

)
= ‖ŵ‖21. Problem Eq.(8) is transformed into

a problem identical to problem (5). �
Using Lemma 2, Theorem 1 can be easily proved. Eq.(4)

in Theorem 1 comes from Eq.(10).
The above relationships among LASSO, nonnegative

Garrote and selective ridge regression provides a probability
interpretation of LASSO. To gain further insights, we can
easily prove the following
Theorem 3. The following optimization

min
w,θ

∥∥∥XT (θ
1
2 �w)− y

∥∥∥2
2

+ λ‖w‖22,

s.t. θ ≥ 0,1Tθ ≤ h.
(11)

where 0 < h ≤ 1 is a constant, is identical to

min
ŵ

∥∥XT ŵ − y
∥∥2
2

+ λ
h‖ŵ‖

2
1 . (12)

Once the optimal solution ŵ∗ to problem (12) is found, op-
timal solution to problem (11) is given by

θ∗i =
h |ŵ∗i |
‖ŵ∗‖1

, w∗i = (θ∗i )−
1
2 ŵ∗i , (13)

where i = 1, · · · , d is the feature/dimension index. When
ŵ∗i = 0, w∗i = 0. Note that 1Tθ∗ = h.

Theorem 3 implies that when we wish to select less num-
ber of features using a smaller h < 1, we need to increase
the regularization, see Eq.(12).

A Ranking Method
Strictly speaking, in order to use LASSO to select m fea-
tures, one has to set λ appropriately to a value λm so that
exactly m features in optimal solution ŵ∗ are nonzero. The
less number of features we desire, the stronger regularization
we need to apply — consistent with Theorem 3. We will call
this method as strict λm method. This strict λm method is
computationally expensive.

The probability derivation of LASSO of Theorems 1 and
3, as the selection vector θ from the selective ridge regres-
sion, naturally provides a ranking scheme of the features.
Once we computed the solution to the LASSO problem
Eq.(5), from Eq.(10), the importance of feature i is propor-
tional to |ŵ∗i |. In other words, we rank the importance of
features according to (|ŵ∗1 |, · · · , |ŵ∗d|), and select the top m
ranked features from the sorted order. This ranking selection
method is fast in practice.

These two selection methods usually lead to different se-
lected feature sets. In our experiments and from reading
many research publications by other researchers, the feature
set selected from ranking method generally performs better
than the feature set selected via the strict λm method. A sim-
ple explanation is that the strict λm method usually leads
to a larger λm as compared to the λ used in the ranking
method. The larger λm used in LASSO usually penalized
the regression too severely and thus altered the structural re-
lation among the features. In the ranking method, a smaller λ
is used which does not alter the relation among the features.
This explanation is further strengthened from the point of
view of the selection vector θ in selective ridge regression.

Beyond The Linear Regression Loss
In formulations Eqs.(1,6,11), the error/loss term uses linear
regression. But they can be any other forms of loss E(W).
The proofs of Theorems 1 and 3 only depend on the regu-
larization term, and thus hold without any change. In other
words, the process from the `2 regularization to the `1,2 reg-
ularization is purely due the transformation of probabilistic
selection.

Feature Selection Using `1,2-Norm
From here on, we use W to replace Ŵ in Eq.(1) for nota-
tional simplicity.

As explained earlier, flexible feature selection does not
enforce rigourously that features selected for every class are
exactly same. This is naturally done in the `1,2 regularization
based selection we propose in this paper, written explicitly
here for clarity,

‖W‖21,2 =

k∑
j=1

(
d∑
i=1

|Wij |

)2

. (14)

As regularization strength parameter λ goes large, different
elements in

∑d
i=1 |Wij | for a fixed class j compete with
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each other, and only a few elements (corresponding to dif-
ferent features) will survive (be nonzero), i.e., these features
being selected for class j.

To the best of our knowledge, however, flexible feature
selection has not been thoroughly investigated so far. The
main trend in feature selection is using `2,1-norm based for-
malisms (Argyriou, Evgeniou, and Pontil 2008), (Liu, Ji, and
Ye 2009), (Nie et al. 2010), (Gui et al. 2017), selecting rows
of weight matrix W.

We note that the competition and survival property ex-
plained above for ‖W‖21,2 also happens in exclusive lasso
of Zhou et al. (Zhou, Jin, and Hoi 2010). Their formulation
is different from our approach here. They use the regulariza-
tion ∥∥WT

∥∥2
1,2

=

d∑
i=1

 k∑
j=1

|Wij |

2

. (15)

As regularization strength parameter λ goes large, different
elements in

∑k
j=1 |Wij | for a fixed feature i compete with

each other, i.e., they are mutually exclusive, and only a few
elements (corresponding to different classes) will survive
(be nonzero), i.e., feature i being selected for these classes.
This competition and survival property is the prominent fea-
ture of ”exclusive LASSO”. In Kong et al (Kong et al. 2014),
they use exclusive group norm,

∑
g ‖wg‖21 (where g is the

group index) which is very similar to exclusive lasso, except
only 2-class case is considered there.

In summary, both our proposed `1,2-norm based feature
selection ‖W‖21,2 and the exclusive LASSO

∥∥WT
∥∥2
1,2

have
the competition and survival property (the ”exclusive” prop-
erty), and can be used for flexible feature selection. How-
ever, `2,1-norm based feature selection

∥∥WT
∥∥
2,1

is not suit-
able for flexible feature selection.

Efficient Algorithms
We wish to solve the `1,2-norm based feature selection and
the exclusive lasso (eLASSO). They are expressed as

E(W) =
∥∥XTW −Y

∥∥2
F
, (16)

J12(W) = E(W) + λ‖W‖21,2, (17)

JeLASSO(W) = E(W) + λ
∥∥WT

∥∥2
1,2
. (18)

We use an iterative algorithm to solve the problem. Let
W0,W1, · · · ,Wt,Wt+1, · · · be the solutions at differ-
ent stages. Our task here is (A) derive an update algo-
rithm Wt+1 = f(Wt), and (B) prove its convergence:
J(Wt+1) ≤ J(Wt).

We use the auxiliary function approach widely adapted
in nonnegative matrix factorization (Lee and Seung 1999),
(Lee and Seung 2000), (Ding, Li, and Jordan 2010) to de-
rive an efficient algorithm. A function G(W,W̃) is the
auxiliary function of J(W), if it satisfies condition (C1)
J(W) ≤ G(W,W̃),∀W,W̃ and condition (C2) J(W) =
G(W,W),∀W.

The key step is finding the auxiliary function for the ob-
jective J12(W) and JeLASSO(W). We have

Theorem 4. An auxiliary function for J12(W) is

G12(W,Wt)

= E(W) + λ
∑k
j=1

(∑d
i=1

W 2
ij

|W t
ij |

)
‖wt

j‖1
= E(W) + λ

∑k
j=1 wT

j Djwj ,

(19)

where

Dj = ‖wt
j‖1diag(1/|W t

1j |, · · · , 1/|W t
dj |). (20)

An auxiliary function for JeLASSO is

GeLASSO(W,Wt)

= E(W) + λ
∑d
i=1

(∑k
j=1

W 2
ij

|W t
ij |

)
‖(wi)t‖1

= E(W) + λ
∑d
i=1 wiHi(w

i)T ,

(21)

where

Hi = ‖(wi)t‖1diag(1/|W t
i1|, · · · , 1/|W t

ik|), (22)

and wi is a row vector.

The proof of this theorem is given below.
In the following, we focus on deriving the update algo-

rithm of `1,2-norm based feature selection using J12(W).
Algorithm for JeLASSO(W) can be obtained in identical
fashion.

The Update Algorithm
Using Theorem 4, the update algorithm is given by

Wt+1 = arg min
W

G12(W,Wt). (23)

This is solved by setting ∂G12(W,Wt)
∂W = 0. The solution is

wt+1
j = (XXT + λDj)

−1(Xyj), (24)

where j = 1, · · · , k is the class index, and Dj is de-
fined in Eq.(20). Eq.(24) is the updating equation. Since
G12(W,Wt) is a strict convex function in W, wt+1

j ob-
tained is the global optimal solution.

Algorithm 1 Efficient algorithm for solving the `1,2-norm
based feature selection.

1: Input: Data matrix X ∈ Rd×n, labels Y ∈ Rn×k.
2: Output: W ∈ Rd×k, Dj ∈ Rd×d, j = 1, · · · , k.
3: Set t = 0.
4: Initialize Wt.
5: repeat
6: for each class j ∈ {1, · · · , k} do
7: Compute Dj via Eq.20.
8: Compute wt+1

j via Eq.24.
9: end for

10: Set t = t+ 1.
11: until Converges

This is a convergent update algorithm, because we have
J12(W

t+1) ≤ G12(W
t+1,Wt) ≤ G12(W

t,Wt) = J12(W
t).

The first inequality is due to the condition (C1) for the aux-
iliary function. The second inequality comes from the fact
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that Wt+1 is the global optimal solution for Eq.(23). The
third equality comes from auxiliary function condition (C2).

In summary, we have derived the update algorithm out-
lined in Algorithm 1 and proved its convergence.
Proof of Theorem 4.

Auxiliary function condition (C1): J12(Wt+1) ≤
G12(Wt+1,Wt). Let the difference between left-hand-side
and right-hand-side of above inequality defined as ∆ =
LHS− RHS. We obtain the following

∆ =

(
k∑
j=1

∥∥wt+1
j

∥∥2
1

)
−

(
k∑
j=1

(
wt+1
j

)T
Dj

(
wt+1
j

))

=
k∑
j=1

[(
d∑
i=1

∣∣W t+1
ij

∣∣)2−( d∑
i=1

|W t+1
ij |2
|W t

ij|

)(
d∑
i=1

∣∣W t
ij

∣∣)]

=
k∑
j=1

[(
d∑
i=1

AijBij

)2
−
(

d∑
i=1

A2
ij

)(
d∑
i=1

B2
ij

)]
≤ 0

(25)

where Aij =
|W t+1

ij |√
|W t

ij|
, Bij =

√∣∣W t
ij

∣∣. The last inequality

in Eq.(25) is obtained according to the Cauchy-Schwarz1 in-
equality, which proves condition (C1).

Auxiliary function condition (C2): G12(Wt,Wt) =
J12(Wt). From the Eq.19, we obtain the following

G12(Wt,Wt)

= E(Wt) + λ
∑k
j=1

(∑d
i=1

(W t
ij)

2

|W t
ij |

)
‖wt

j‖1
= E(Wt) + λ

∑k
j=1 ‖wt

j‖21
= J12(Wt),

(26)

which proves condition (C2). Thus, Theorem 4 is proved. �
During the computation, many of the elements Wij be-

come zero due to sparsity. We therefore replace 1/|Wij | by
1/(|Wij |+ ε) where ε is a small number 1e−7.

Experiment
For purpose of verifying the effectiveness of our flexible fea-
ture selection method via `1,2-norm, extensive experiments
on six benchmark datasets are conducted in comparison with
six state-of-the-art algorithms.

Description of Benchmark Datasets
In our experiments, six benchmark datasets including im-
ages and bio-microarray data are used to study the perfor-
mance of feature selection methods on classification. The
description of all datasets are given as follows.

Image dataset: there are three image datasets, including
MNIST2 (Lecun et al. 1998), BinAlpha3, AT&T4. Each in-
stance is represented by a vector with all the pixel values in

1Given any two vectors x and y, the Cauchy-Schwarz in-
equality states, in the inner product space, it is always true that
(
∑

i xiyi)
2 ≤ (

∑
i x

2
i )(

∑
i y

2
i ).

2In MNIST, one hundred samples are randomly chosen out of
each class to form a smaller dataset in our experiments.

3https://cs.nyu.edu/∼roweis/data.html
4http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.

html

an image. In MNIST, handwritten digits from 0 to 9 are col-
lected as samples. On the other hand, samples in BinAlpha
are composed of handwritten letters from A to Z. Both dig-
its and letters have been size-normalized and centered in a
fixed-size image. AT&T, also known as the ORL database of
faces, is the widely used face recognition dataset, in which
images were taken at different times varying the lighting,
facial expressions, and facial details.

Microarray dataset: there are three microarray datasets,
including Carcinomas (Su et al. 2001), (Yang et al. 2006),
Lung (Bhattacharjee et al. 2001), TOX5 (Kwon et al. 2012).
Each instance is represented by a vector with all the genes
expression values. Under the first-generation molecular clas-
sification scheme, both Carcinomas and Lung are con-
structed to identify gene subsets whose expression typifies
each cancer class, and quantify the extent to which genes are
related to specific tumor type. In another hand, TOX focuses
on discovering the time-course of changes in adipocyte mor-
phology, adipokines and the global transcriptional landscape
in visceral white adipose tissue, during the development of
diet-induced obesity.

As compared to image dataset, microarray dataset usually
involves a relatively small number of data instances but fol-
lowing with a extremely high dimension of features.

The detail of benchmark datasets is summarized in Ta-
ble 1.

Dataset #Classes #Instances #Features
MNIST 10 1000 784

BinAlpha 26 1014 320
AT&T 40 400 644

Carcinomas 11 174 9182
Lung 5 203 3312
TOX 4 171 5748

Table 1: Summary descriptions of dataset.

Classification Result and Analysis
Baseline methods: our `1,2-norm based flexible feature
selection method is compared to six state-of-the-art algo-
rithms, including feature selection via `2,1-norm (Argyriou,
Evgeniou, and Pontil 2008), (Liu, Ji, and Ye 2009), (Nie et
al. 2010), feature selection via `1,∞-norm (Quattoni et al.
2009), exclusive lasso (eLASSO) (Zhou, Jin, and Hoi 2010),
mRMR (Peng, Long, and Ding 2005), F-statistic (Ding
and Peng 2003), ReliefF (Robnik-Šikonja and Kononenko
2003). Towards a fair comparison, the hyperparameter λ in
regression models, e.g., `1,2 and `2,1, is adjusted to achieve
the same number of nonzero elements in weight matrix W.

Classifiers: k-nearest neighbor (KNN), support vector
machine (SVM), and linear regression (LR) with five-fold
cross validation are used to evaluate the performance of fea-
ture selection on classification. The average of classification
performance on different five folds are reported as the fi-
nal accuracy. The parameter k in KNN is set as 3. LIBSVM

5http://featureselection.asu.edu/datasets.php
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(a) KNN (b) SVM (c) LR

Figure 1: `1,2 versus state-of-the-arts on MNIST dataset.

(a) KNN (b) SVM (c) LR

Figure 2: `1,2 versus state-of-the-arts on BinAlpha dataset.

(a) KNN (b) SVM (c) LR

Figure 3: `1,2 versus state-of-the-arts on AT&T dataset.

(Chang and Lin 2011) is used as practical implementation of
SVM, in which the kernel is set as linear and C = 1.

Analysis of experimental results: As it can be seen in
Fig. 1−6 that the classification using aforementioned seven
feature selection methods is performed on six benchmark
datasets. From left to right in each figure, employed clas-
sifiers are KNN, SVM, and LR respectively. The number
of selected features for each method ranges from 10 to 80,
which is marked as the scale of x-axis. The y-axis shows the
averaged accuracy of five-fold cross validation.

Among these methods, the simplest F-statistic has the
worst performance overall. Compared to F-statistic, another
two filter-type methods, such as mRMR and ReliefF, im-
prove the classification accuracy greatly. Moreover, mRMR
can even beat sparse coding based methods such as `2,1-
norm or `1,∞-norm in some cases.

However, filter-type methods are inferior to sparse coding
based methods in general. Feature selection via `2,1-norm
performs very close to feature selection via `1,∞-norm when

classifying not only images but also bio-microarray data,
since both methods share the same property that aims at
searching a subset of class-shared features across all the data
instances. Only the results obtained on AT&T dataset, `2,1 is
obviously better than `1,∞ around 5.0%. Among sparse cod-
ing based methods, eLASSO is an outstanding one which se-
lects exclusive features as the main purpose, only perform-
ing slightly lower than our `1,2-norm based method around
1.0% on BinAlpha and AT&T. Nevertheless, when the di-
mension of features becomes very large, eLASSO has a rel-
atively bad results on microarray datasets.

Most importantly, our flexible feature selection method
via `1,2-norm achieves the best results on all six benchmark
datasets compared to state-of-the-arts. No matter which clas-
sifier is used here, `1,2 has an overwhelmed advantage over
six baseline methods. Besides, `1,2 has a stable performance
without huge degradation, when using any feature subsets.
Contrarily, most of baseline methods have a deteriorated per-
formance in different degrees, when the number of selected
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(a) KNN (b) SVM (c) LR

Figure 4: `1,2 versus state-of-the-arts on Carcinomas dataset. F-statistic using top 10 and 20 features is not plotted in the figure,
since the classification accuracy is way below the scale of y-axis.

(a) KNN (b) SVM (c) LR

Figure 5: `1,2 versus state-of-the-arts on Lung dataset.

(a) KNN (b) SVM (c) LR

Figure 6: `1,2 versus state-of-the-arts on TOX dataset.

features is relatively small. However, `1,2 is better than oth-
ers around 5%-10% using top 10 or 20 features. In summary,
experimental results on benchmark datasets verify that `1,2
based flexible selection is a more nature way to measure the
importance of features than class-shared selections.

Conclusion
In this paper, we derive LASSO and `1,2-norm feature selec-
tion from a probabilistic framework. In addition, we further
propose a feature selection approach based on `1,2-norm, al-
lowing flexibility that selected features do not have to be
exactly same for all classes. The resulting features lead to
significantly better classification than state-of-the-arts algo-
rithms on six benchmark datasets, including images and bio-
microarray data.
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