
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Cogra: Concept-Drift-Aware Stochastic
Gradient Descent for Time-Series Forecasting

Kohei Miyaguchi
The University of Tokyo, Tokyo, Japan
kohei miyaguchi@mist.i.u-tokyo.ac.jp

Hiroshi Kajino
IBM Research – Tokyo, Tokyo, Japan

kajino@jp.ibm.com

Abstract
We approach the time-series forecasting problem in the pres-
ence of concept drift by automatic learning rate tuning of
stochastic gradient descent (SGD). The SGD-based approach
is preferable to other concept drift algorithms in that it can be
applied to any model and it can keep learning efficiently whilst
predicting online. Among a number of SGD algorithms, the
variance-based SGD (vSGD) can successfully handle concept
drift by automatic learning rate tuning, which is reduced to an
adaptive mean estimation problem. However, its performance
is still limited because of its heuristic mean estimator. In this
paper, we present a concept-drift-aware stochastic gradient de-
scent (Cogra), equipped with more theoretically-sound mean
estimator called sequential mean tracker (SMT). Our key con-
tribution is that we define a goodness criterion for the mean
estimators; SMT is designed to be optimal according to this
criterion. As a result of comprehensive experiments, we find
that (i) our SMT can estimate the mean better than vSGD’s
estimator in the presence of concept drift, and (ii) in terms of
predictive performance, Cogra reduces the predictive loss by
16–67% for real-world datasets, indicating that SMT improves
the prediction accuracy significantly.

1 Introduction
This work is concerned with online time-series forecasting
in a concept-drifting environment, where a probability distri-
bution generating the data may change over time. Concept
drift is ubiquitous in real-world time-series (Tsymbal 2004;
Gama et al. 2014). For example, the probability distribution
of sensor data will drift when there is a change in the environ-
ment where the sensors are distributed. For another example,
the probability distribution of financial time-series will be
also time-variant reflecting the economic climate. These ap-
plications motivate us to investigate a method to learn from
a concept-drifting environment. In addition, such a learning
algorithm needs to be computationally efficient so that it
can keep learning while forecasting the future. Otherwise,
a trained model will be degraded severely as the environ-
ment changes. Therefore, we are interested in a time-series
forecasting algorithm that can handle concept drift and is
computationally efficient.

There are two research lines towards achieving our grand
goal. The first one is mainly concerned with concept drift

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

adaptation, including instance-based methods (Widmer and
Kubat 1996; Klinkenberg and Joachims 2000; Kolter and
Maloof 2005; Wang and Abraham 2015) and ensemble meth-
ods (Schlimmer and Granger 1986; Street and Kim 2001;
Minku and Yao 2012). The instance-based ones judge
whether a concept drift occurs, and if it does, they retrain their
models using the relevant instances. The ensemble ones keep
training a set of multiple predictive models, and when neces-
sary, replace them with new models trained using the recent
data. Another research line is based on tracking parameter via
stochastic gradient descent algorithms (Almeida et al. 1999;
Kushner and Yin 2003; Baydin et al. 2017). While these al-
gorithms are computationally efficient by their nature, one
of their technical challenges is the learning rate scheduling,
which controls the trade-off between convergence and adap-
tation. When the environment is stationary, the learning rate
should decrease so as to converge to the optimal parameter,
and when the environment changes, the learning rate should
increase so as to adapt to the changing environment.

When these two lines are compared, the SGD-based ones
are preferable in our setting, because it maintains only a
single predictive model without retraining. In particular,
we consider that the variance-based stochastic gradient de-
scent (vSGD) (Schaul, Zhang, and LeCun 2013) is promis-
ing, because vSGD can balance the convergence-adaptation
trade-off without pesky hyperparameter tuning; on the other
hand, other SGDs that can control the trade-off typically
have hyperparameters. vSGD is designed to minimize the
expected loss function EXt [`(θ;Xt)] at each time step t. A
key observation is that the optimal learning rate is given
by η?t = 1

EXt [∇2`(θ;Xt)]

EXt [∇θ`(θ;Xt)]
2

EXt [(∇θ`(θ;Xt))
2]

. This result indi-
cates that the automatic learning rate scheduling problem is
reduced to the adaptive estimation of the first and second
order moments of the per-example gradient, E[∇`(θ;Xt)]

and E[(∇`(θ;Xt))
2
], as well as the curvature of the objective

function, E[∇2`(θ;Xt)]. These statistics are estimated online
by moving averages with adaptive weights that control how
many past observations should be used for estimation; when
the environment is stationary, more observations should be
used, and after concept drift, only the recent observations
should be used. In this way, in the vSGD paradigm, the au-
tomatic learning rate scheduling boils down to the adaptive
control of the weights used for the moment estimation.

4594

A downside of vSGD is that its moment estimator is de-
veloped without any design principle, and sometimes the
estimation fails. As will be shown in Fig. 1, when faced with
a concept drift after a long convergence period, a bias persists
in the estimator, and it fails to estimate the optimal learning
rate η?t . To this end, we set our research objective to develop
a theoretically-sound moment estimator tailored for vSGD.

We present a concept-drift-aware stochastic gradient de-
scent (Cogra), equipped with a theoretically-sound moment
estimator called a sequential mean tracker (SMT). Our contri-
bution is that we introduce a design principle for the moment
estimator. The principle is derived from the fact that the
objective function EXt [`(θ;Xt)] is upper-bounded by the
estimation error of the statistics defining the optimal learning
rate η?t . This indicates that we can use the estimation error as
a goodness of the estimator, i.e., an estimator that minimizes
the estimation error is the best for vSGD. SMT is designed
based on this idea, and we obtain Cogra by substituting SMT
for the existing moment estimator of vSGD.

The effectiveness of our method is empirically validated by
extensive simulations. In specific, we design two experiments
to answer the following questions: (Q1) Does SMT estimate
the moments better than the estimator used in vSGD? (Q2)
Does SMT improve the predictive performance? (Q3) When
does Cogra outperform the other SGDs? The first experi-
ment, answering (Q1), evaluates the estimation error of a
moment on synthetic data. The result shows that SMT de-
creases the error by 60% in total, measured by squared loss,
as compared to vSGD, answering (Q1) in the affirmative.
The second one, answering (Q2) and (Q3), evaluates the pre-
dictive performances on both synthetic and real-world data.
From the results, we conclude that Cogra performs compara-
bly or better than other methods consistently across a wide
range of datasets, and specifically, outperforms the others on
real-world datasets with drastic changes.

2 Problem Setting
We first introduce our problem setting. Let {Xt}∞t=1 be a
stochastic process (Xt ∈ X ⊆ RD). Suppose that at each
time step t = 1, 2, . . . , we observe xt ∈ X , a realization of
Xt. For each t, we wish to learn a probabilistic model online
that well predicts Xt using the past observations, namely,
pθ(Xt | xt−1), where θ ∈ Θ is a model parameter, and
xt−1 def

= x1, x2, . . . , xt−1 is a set of the past observations.
Our key assumption is that the probability distribution gen-

erating the observation may drift over time, and the optimal
parameter at time step t may not be optimal at the next time
step. Therefore, our problem setting is to learn a series of
model parameters θ?1 , θ

?
2 , . . . such that,

θ?t = argmin
θ∈Θ

Lt(θ) (1)

where Lt(θ)
def
= EXt|xt−1 [`(θ;Xt)] ,

`(θ;Xt)
def
= − log pθ(Xt | xt−1),

in an online manner. `(θ;Xt) measures the loss the model
with parameter θ suffers when Xt is observed. In the follow-
ing, we omit Xt from the loss function, and simply denote

it by `t(θ) (the subscript t indicates that the loss is time-
dependent because the distribution of Xt | xt−1 may drift).

3 Existing Method: vSGD
This section briefly reviews the existing method approaching
to our problem setting (1), vSGD (Schaul, Zhang, and LeCun
2013). Their assumption is that the optimal parameter θ?t does
not change so often. This motivates us to define a series of
model parameters based on SGD with an automatic learning-
rate scheduler, because it converges to the optimal parameter
when the objective function is stationary, and otherwise it
can adapt to the changing environment.

In specific, vSGD updates the model parameter as follows:

θt = θt−1 − η?t∇`t(θt−1),

where η?t is chosen to minimize Lt(θ) with respect to the
learning rate for each time step, i.e., η?t = argminη LSGD

t (η),

where LSGD
t (η)

def
= EXt|xt−1 [Lt(θt−1 − η∇`t(θt−1))].

This approach is equivalent to restricting the feasible set
of Problem (1), Θ, to its one-dimensional affine subset
{θt−1 − η∇`t(θt−1) ∈ Θ | η ∈ R}.

They first derive an analytic expression of η?t via quadratic
approximation of the objective function, and then, construct
its estimator that can be computed online.

3.1 Analytic Expression of η?t via Approximation

Their key observation is that if the loss function is approxi-
mated with a quadratic function, η?t is characterized by the
moments of the stochastic gradient.

Assume that the objective `t is Lipschitz smooth and hence
it can be majorized by quadratic functions ˜̀

t. Then, by con-
sidering Problem (1) with ˜̀

t in place of `t, we can safely
assume that `t is quadratic. Also, to simplify the following
analysis, assume Θ is one-dimensional1. Thus, the expected
objective is also quadratic and one-dimensional, Lt(θ) =
ht
2

[
(θ − θ?)2 + σ2

]
. Substituting θ with θt−1−η∇`t(θt−1)

and completing the square with respect to η, we obtain

LSGD
t (η) =

htvt
2

(
η − g2

t

htvt

)2

+ C, (2)

where gt
def
= E[∇`t(θt−1)], vt

def
= E

[
∇`t(θt−1)2

]
, ht

def
=

E
[
∇2`t(θt−1)

]
, and C is a constant. Expression (2) imme-

diately yields the optimal learning rate at time t:

η?t =
g2
t

htvt
. (3)

Since the first and second moments of the stochastic gradient
are not available in general, we need to estimate them using
the past gradients; Problem (1) is now reduced to estimation
of gt, vt and ht in concept-drifting environments.

1This is generalized to multidimensional cases in Section 4.4.

4595

3.2 Online Estimation of η?t
In vSGD, the moments are estimated by exponential moving
averages with adaptive time constants. Let gt, vt and ht be the
current estimations of gt, vt, and ht, and let us introduce the
current time constant τt. Then, they are updated as follows:

gt = (1− τ−1
t−1)gt−1 + τ−1

t−1∇`t(θt−1),

vt = (1− τ−1
t−1)vt−1 + τ−1

t−1(∇`t(θt−1))2,

ht = (1− τ−1
t−1)ht−1 + τ−1

t−1∇2`t(θt−1),

τt =
(
1− g2

t/vt
)
τt−1 + 1.

3.3 Discussion
vSGD balances the trade-off by adaptively tuning the time
constant τt. When the optimal model parameter is stationary
over time, i.e., θ?t ≈ θ?, the model parameter gathers around
θ?, gt becomes close to 0, and the time constant τt increases
one by one. This makes the moment estimates more accurate
and leads to convergence. When θ?t moves away from θ? after
the convergence, gt also moves away from 0, which sooner
or later moves gt from 0 even if the time constant is large.
This decreases the time constant and leads to adaptation.

Although this time constant update rule intuitively seems
to be reasonable, we find that it sometimes fails to adapt
due to its rather heuristic update rule. We observe that the
longer the convergence period is, the slower the adaptation
becomes. When the convergence period is long, the moment
ratio gt/vt becomes significantly small and τt keeps growing.
This makes gt to be insensitive to the change in the gradient
distribution∇`t. As a result, gt becomes biased for a while.
This phenomenon will be showcased in Figure 1.

4 Proposed Method: Cogra
According to the framework of vSGD, the problem of optimal
learning rate is reduced to the problem of estimating the
moments of the gradients. Thus, our very remaining concern
is how to construct good estimators of the moments.

A technical difficulty in designing a good estimator is that
the underlying distribution may change in our problem set-
ting. We need to decide how many past observations to be
used for estimation; after the underlying distribution changes,
only the recent observations should be used, and when the
distribution is (temporarily) not changing, we should take
more observations into account for more accurate estimation.
As we have shown in Section 3.3, vSGD employs a natu-
ral, but rather heuristic estimator, which sometimes fails to
estimate its target statistic, resulting in a poor performance.

Our idea to deal with this difficulty is to define a good-
ness of the estimator. We derive a goodness criterion using
an upper-bound of the loss we suffer at each time step t,
which coincides with the estimation error of η?t (Sec. 4.1).
Then, we derive an oracle mean estimator based on adap-
tive moving average that sequentially minimizes the estima-
tion error (Sec. 4.2). Then, we present the sequential mean
tracker (SMT), which approximately computes the oracle
estimator. Finally, combining this with vSGD leads to the
concept-drift-aware stochastic gradient descent (Cogra).

4.1 Goodness of the Moment Estimators
Once we substitute ηt for η?t in Eq. (2), the expected loss is
characterized by the estimation error of η?t ,

Eηt
[
LSGD
t (ηt)

]
=
htvt

2
r2(ηt; η

?
t) + C,

where r(ηt; η
?
t) =

√
Eηt(ηt − η?t)2 is RMSE, or risk, of

the estimator ηt. Assuming boundedness of the moments,
|gt|, |gt| ≤ G, vt, vt ∈ [Vmin, Vmax], ht, ht ∈ [λmin, λmax],
the risk of ηt is bounded by individual risks of the moments,

r(ηt; η
?
t) (4)

=

√
Eηt

[
(gt + gt)

htvt
(gt − gt)−

g2t
htvt

vt − vt

vt
−

g2t
htvt

ht − ht

ht

]2
≤

2G · r(gt; gt)
Vminλmin

+ η?t
κ2 · r(vt; vt)

Vmin
+ η?t

κ · r(ht;ht)
λmin

, (5)

where κ = max(Vmax/Vmin, λmax/λmin). This implies that
estimators that minimize the individual risks are favorable
in our case. In particular, among three individual risks, we
focus on minimizing r(gt; gt) because the contribution of the
others can be relatively negligible when SGD is converging.2

4.2 Tracking Mean with Greedy Strategy
We develop a mean estimator that sequentially observes∇t =
∇`t(θt−1), and estimates gt = E[∇t] with small risks. We
consider the following adaptive moving averaging estimator,
g0 = 0, gt = atgt−1 + (1 − at)∇t, where at ∈ R denotes
the forgetting rate of the estimate.

This method has two desirable properties when applied to
our problem setting. First, since gt is defined by recursion, it
can be updated with a finite memory. Second, the forgetting
rate at can adaptively control how many observations are
used for estimation; when the mean gt shifts, by setting at to
be small, the estimator can forget the past and uses the recent
observations for estimation. Thus, the remaining design space
is how to choose at at each time t.

The main claim in this section is that there exists an optimal
forgetting rate, named oracle rate, which greedily minimizes
the risk of gt. The oracle rate is defined as

a?t
def
= argmin

at∈R
r2(gt; gt).

Since the squared risk is convex with respect to at, there
exists the unique minimizer a?t :

a?t =
σ2
t − εt

σ2
t + γ2

t−1 + δ2
t − 2εt

, (6)

where σ2
t = tr Var(∇t), γ2

t = tr Var(gt), δt =∥∥E[gt−1]− gt
∥∥ and εt = tr Cov(gt−1,∇t).

This oracle rate is motivated by its convergence property
shown in Theorem 1.2

Theorem 1. Let Cτ
def
= sup|s−t|≥τ

| tr Cov(∇s,∇t)|
σsσt

. Assume
C1 < 1, limτ→∞ Cτ = 0 and supt σ

2
t < +∞. Then, if

the total variation
∑t
i=1 ‖gi+1 − gi‖ is bounded, we have

limt→∞ r(gt; gt) = 0.
2Both proofs appear in the extended version.

4596

Algorithm 1 Sequential Mean Tracker, SMT

Input: Streaming stochastic gradient {∇t}∞t=1.
Output: Estimates of mean and oracle rate {(gt, at)}∞t=1.
Initialization: a1← 1/2, g1, g1←∇1, g2

1, g
2
1←∇2

1.
for each observation∇t (t = 2, 3, . . .) do

Update adaptive moving averages as Eqs. (9).
Compute second-order estimates as Eqs. (8).
Compute forgetting rate at as Eq. (7).

Theorem 1 says that, if the target is moving slowly in terms
of the total variation, the short-sighted strategy of choosing a?t
makes the risk converge to zero even with potentially strong
interdependence in {∇t}∞t=1. It also guarantees the converg-
ing tendency even with non-converging target {gt}∞t=1. The
risk constantly approaches zero over any time period [t1, t2]

in which
∑t2
t=t1
‖gt+1 − gt‖ is small. This can be easily seen

by that the proof holds for any time shift t 7→ t+ h.
In the next section, we will present a sequential mean

tracker (SMT), which uses an estimate of the oracle rate.
Although Theorem 1 does not directly guarantee the con-
vergence of SMT, it is expected that SMT inherits such a
property from the oracle algorithm. The convergence prop-
erty of SMT as well as its effectiveness when combined with
vSGD will be demonstrated in the experiments.

4.3 Sequential Mean Tracker (SMT)
We demonstrate how to track the means gt sequentially based
on the above greedy strategy. Since the oracle rate a?t is
unknown, we approximate it by plugging empirical moments
in the right-hand side of Eq. (6). Noticing that in our case
εt = Cov(gt−1,∇t) ≈ 0 if we assume mixing of ∇t, we
plug zero into εt, yielding the following estimator,

at
def
=

σ2
t

σ2
t + γ2

t + δ
2

t

. (7)

All of the empirical moments appearing in the above expres-
sion can be estimated as follows:

σ2
t = g2

t − ‖gt‖
2
, γ2

t = g2
t −
∥∥gt∥∥2

, δt =
∥∥gt − gt∥∥ ,

(8)

where we use four recursive moment estimators,

gt = atgt−1 + (1− at)∇t,
gt = at−1gt−1 + (1− at−1)gt,

g2
t = at−1g2

t−1 + (1− at−1) ‖∇t‖2 , (9)

g2
t = at−1g

2
t−1 + (1− at−1) ‖gt‖

2
.

By sequentially updating them, we obtain a series of for-
getting rate {at}∞t=1 online. We call this the sequential mean
tracker (Algorithm 1). We initialize a1 = 1/2, which is opti-
mal if∇1 and ∇2 are i.i.d.

4.4 Cogra
Finally, we present concept-drift-aware stochastic gradient
descent (Cogra), which substitutes SMT for the moment

Algorithm 2 Cogra algorithm

Input: Losses {`t}∞t=1, initial parameter θ0, SMT A.
Output: Parameters {θt}∞t=1.
for each loss function `t (t = 1, 2, . . .) do

Incur loss `t(θt−1)
Update SMT: (gt, at)← push(A,∇`t(θt−1))
Update the rest of the estimates:
vt ← atvt−1 + (1− at)∇`2t (θt−1),
ht ← atht−1 + (1− at)∇2`t(θt−1)
Compute learning rate: ηt ← g2

thtvt
Update parameter: θt ← θt−1 − ηt∇`t(θt−1)

estimators of vSGD. Cogra employs SMT to estimate gt,
vt, and ht. The estimates are plugged into Eq. (3) to yield
the adaptive learning rate ηt, with which the parameters are
updated. The detailed algorithm is presented in Algorithm 2.

We use the same forgetting rate at for gt, vt, ht so that
the estimates be statistics of the same function L̂t(θ) =∑
s≤t
∏
s<i≤t(1−ai)as`s(θ), which is an empirical approx-

imation of the true objective Lt. This makes ηt the optimal
learning rate for L̂t, and therefore, reduces its estimation
error compared to ad-hoc plug-in estimates.

4.5 Multi-dimensional Case
Cogra can be extended to multi-dimensional parameter
spaces in the same way as vSGD, resulting in three vari-
ants. Cogra-local (Cogra-l) runs Algorithm 2 for each scalar
of θ separately. Cogra-block (Cogra-b) ties up the variables
into arbitrary blocks and runs Cogra for each of the blocks.
In each block, the optimal learning rate is estimated by
ηt = ‖gt‖

2
/h

+

t vt, where gt, vt and h
+

t are the SMT es-
timates of E∇`t, E ‖∇`t‖2, and the largest eigenvalue of
E∇2`t, respectively. We compute h

+

t using BBProp (Le-
Cun et al. 2012). As a special case of Cogra-b, Cogra-
global (Cogra-g) ties up all variables into a single block.

The performance of Cogra depends on the grouping strat-
egy due to the trade-off between the adaptivity and estimation
errors. As the block becomes smaller, we can assign different
learning rates to the parameters with different properties, but
at the same time, the estimation errors increase due to the
learge degree of freedom, and as the block becomes larger, the
opposite happens. In general, we recommend to use Cogra-b,
regarding each vectoral parameter as a block.

4.6 Discussion
Cogra has no hyperparameter other than the grouping strategy
as with vSGD. The major difference is that the derivation of
at in Cogra is more theoretically-grounded than τt in vSGD.
We empirically validate in the experiments that this difference
is critical in moment estimation and prediction performances.
Still, we should note that at is based on some heuristics (9),
where the forgetting rate at is reused to estimate the statistics
necessary for estimating at itself. However, it is reasonable
since all of the statistics gt, g2

t and g2
t are functions of ∇t,

and they are likely to share the oracle rate a?t .

4597

9800 9900 10000 10100 10200 10300 10400 10500

time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sq
u

ar
ed

es
ti

m
at

io
n

er
ro

r

Cogra

vSGD

Figure 1: Estimation errors of gt. The dotted vertical lines
show the start and end of the change. Cogra (blue solid)
achieves smaller errors than vSGD (orange dashed).

5 Related Work

This section reviews the automatic learning rate scheduling
methods and clarifies our contribution to the literature.

A decent amount of studies have leveraged SGD for
learning time-varying environments. Most of them deal
with non-stationarity by continuously changing the learn-
ing rate using meta SGD (AdaptiveSA (Kushner and Yang
1995), Almeida (Almeida et al. 1999), and Hypergradient-
Descent (Baydin et al. 2017)). The main drawback is that
the learning rate of meta SGD is highly sensitive to data and
models, and we still need hyper-hyperparameter tuning.

AdaGrad (Duchi, Hazan, and Singer 2011), RM-
SProp (Tieleman and Hinton 2012), and ADAM (Kingma
and Ba 2014) are ones of the most widely adopted meth-
ods for controlling the learning rates adaptively. While these
methods are designed mainly to accelerate convergence in
a stationary environment, we empirically observe that some
of them can adapt to a changing environment. Their main
drawback is that one needs to carefully optimize their hyper-
parameters depending on data and models. vSGD (Schaul,
Zhang, and LeCun 2013), on the other hand, is designed to
be free of hyperparameters. While vSGD is also designed for
stationary environments, its capability with concept drift has
been investigated using a toy example in the original paper.

Our contributions are that (i) we develop Cogra by re-
fining vSGD so as to handle the non-stationarity more ac-
curately, and that (ii) we conduct extensive experiments to
study whether Cogra as well as the methods described above
can handle the non-stationarity.

6 Experiments

So far, we have enhanced vSGD by replacing its mean estima-
tor with SMT. In this section, we aim to empirically confirm
the questions (Q1), (Q2), and (Q3) raised in Sec. 1. For this
purpose, we design two experiments. First, we compares the
errors of estimated means of SMT with those of vSGD to an-
swer (Q1). Second, we compare the predictive performance
of Cogra against the existing methods listed in Sec. 5 to an-
swer (Q2) and (Q3). These experiments will clarify when
and why Cogra performs better than the other methods.

Predictive Model. We employ vector autoregression,
VAR(p) (Lütkepohl 2005), whose conditional density is given
by p(xt|xt−1;µ,W,Σ) = N [µ + W vec(zt),Σ], xt ∈ Rd,
where zt = (xt−1, xt−2, . . . xt−p) ∈ Rd×p is lagged obser-
vations, µ ∈ Rd is the bias, W ∈ Rd×dp is the autoregressive
coefficients, and Σ ∈ Sd+ is the noise covariance. Model pa-
rameters to be learned are W and µ (thus, θ = {W,µ} in
Problem (1)), and Σ is fixed to the identity matrix. We refer
to VAR as AR if d = 1.

Note that the loss function of VAR is quadratic, and hence,
it satisfies all of the assumptions made by the SGDs we
compare in our experiments; if some of the assumptions were
violated, it would make it harder to study the experimental
results, because the performance difference can be attributed
to the violation, not to the SGDs.

6.1 SMT Performance
To see that the ability of SMT to track the mean of gradi-
ents, we compute the difference between the estimated and
true first moments, namely, ‖gt − E[∇`t]θ=θt−1

‖22 using a
synthetic dataset. We generate a one-dimensional time-series
of length 20,000 using AR(0) with time-varying mean µt.
Initially, µt is set to −1, and is linearly varied from −1 to 1
from time 10,000 to 10,100, and is set to 1 afterward. As for
the predictive model, we also employ AR(0).

Figure 1 shows that, while the estimation error of vSGD is
persistent even after hundreds steps from the end point of the
change, that of Cogra rapidly decreases immediately after the
change ends. This result indicates that SMT works correctly
and achieves lower risk than vSGD, as expected from our
theoretical analysis, answering (Q1) in the affirmative.

6.2 Predictive Performance
To see whether SMT contributes to the performance of SGDs
in terms of time-series forecasting, we compare Cogra with
existing SGDs including vSGD in terms of their predictive
performance. We conduct two lines of experiments: one with
synthetic datasets, in which we inspect the performance of
SGDs on a wide variety of datasets, and the other with real-
world datasets, in which we verify if our theoretical idea is
useful in real environments.

Methods Compared. We compare Cogra with AdaGrad,
ADAM, Almeida, RMSProp, and vSGD. For AdaGrad,
ADAM, and RMSProp, we employ multiple initial learn-
ing rates, fixing the other hyperparameters to be as recom-
mended as in the original papers. The initial learning rates
are searched over {10−x}3x=0. For RMSProp, we add 10−4

in the real-world experiments so as to show that the best rate
resides inside the search space, not on its boundary.

Almeida requires careful tuning of the initial learning rate
and the hyper learning rate. We fix the hyper-learning rate as
10−3, 10−2, and 10−1, and we search the initial learning rate
so that the model parameters do not diverge.

For vSGD, we slightly modify the algorithm so that mem-
ory size τt does not fall below threshold τmin = 2. This
modification is necessary to avoid from τt being stuck to 1,
which happens after the data distribution radically changes.

4598

ADAM(0.001)

ADAM(0.01)

ADAM(0.1)

ADAM(1.0)

AdaGrad(0.001)

AdaGrad(0.01)

AdaGrad(0.1)

AdaGrad(1)

Almeida(0.001)

Almeida(0.01)

Almeida(0.1)

Almeida(1.0)

RMSProp(0.001)

RMSProp(0.01)

RMSProp(0.1)

RMSProp(1.0)

vSGD

Cogra

100 101

bias

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
re

la
ti

ve
cu

m
ul

at
iv

e
lo

ss

(a) Vary bias µ (d = 1, T = 0).

102

transition period

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

re
la

ti
ve

cu
m

ul
at

iv
e

lo
ss

(b) Vary transition period T (d = 1, µ = 5).

100 101

dim

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

re
la

ti
ve

cu
m

ul
at

iv
e

lo
ss

(c) Vary dimension d (T = 0, µ = 5).

Figure 2: Performance dependency on dataset parameters. The vertical axes show relative cumulative loss.

Table 1: Predictive performance with real-world datasets. For each table, the first and second row describe methods and
hyperparameters to be tuned, and the third to the seventh rows show relative cumulative predictive losses.

Stationary SGD AdaGrad (initial LR) ADAM (initial LR) RMSProp (initial LR)

0.001 0.01 0.1 1.0 0.001 0.01 0.1 1.0 0.0001 0.001 0.01 0.1 1.0

A(1) 324 4.58 1.26 6.77 12.1 2.47 7.68 174 101 9.82 4.19 253 2.53e+4
A(2) 169 3.00 1.17 4.90 6.55 2.06 8.37 146 54.3 5.38 2.72 129 1.29e+4
A(3) 312 5.38 1.32 6.92 13.0 2.73 7.09 91.2 98.5 10.4 3.37 158 1.59e+4
EEG 56.1 2.25 3.32 258 9.18 3.41 32.3 3.14e+3 69.1 7.09 105 1.04e+4 1.04e+6
GAS 10.4 3.68 1.19 57.0 7.30 2.21 4.72 341 10.9 6.40 9.39 824 8.24e+4

Non-stationary SGD Almeida (initial LR, hyper-LR) vSGD (LR sharing strategy) Cogra (LR sharing strategy)

(1e-9,1e-3) (1e-9,1e-2) (1e-9,1e-1) block global local block global local

A(1) 4.24 3.82 2.53 1.00 2.32e+5 5.76 0.797 5.96e+6 0.903
A(2) 2.93 2.66 1.90 1.00 2.20e+5 6.34 0.839 3.31e+6 1.14
A(3) 4.35 3.96 2.72 1.00 4.12e+5 9.87 0.800 6.04e+6 0.938
EEG 1.61 1.61 1.60 1.00 6.50e+6 9.44e+17 0.612 1.47e+9 4.32e+4
GAS 1.26e+85 1.16e+66 2.05e+20 1.00 5.81e+7 3.66e+18 0.328 2.48e+10 7.87e+6

Experimental Procedure. We repeat the following proce-
dure for each time step of a time-series; the model predicts
the next data point, receives the observation, computes the
loss, and updates the model parameters using SGD.

We measure the predictive performance by the cumulative
loss relative to the benchmark cumulative loss. For synthetic
data, we use the theoretical lower-bound of the cumulative
loss as the benchmark one. For real-world data, we use the
cumulative loss of vSGD-b as the benchmark one.

Performance on Synthetic Datasets
In order to investigate when Cogra performs better than the
other SGDs, we vary three parameters of a time-series and
compare the performance of each of SGDs. Throughout this
experiment, we employ VAR(4) as a predictive model.

Datasets. We design a synthetic dataset containing one
change point. It has three parameters: dimension d, transi-
tion period T ∈ Z+, and bias µ ∈ Rd. T controls the type
of changes; if T = 0, the data distribution changes abruptly,
which we call an abrupt change, and if T is large, the data dis-
tribution changes gradually, which we call a gradual change.

µ controls the magnitude of the change, and d controls the
number of parameters to be estimated.

We synthesize d-dimensional VAR(4) by concatenating d
AR(4), xt = µt +

∑4
i=1 ai,txt−i + εt (εt ∼ N (0, 1)). We

prepare two AR(4) parameters:

µt = −µ, at = (0.85,−0.26, 0.0335,−0.0015), (10)
µt = µ, at = (0.25, 0.07,−0.0115,−0.0015), (11)

where we denote at
def
= (a1,t, a2,t, a3,t, a4,t). For each

AR(4), we first generate a time-series of length 10,000 with
parameter (10). Then, we generate a time-series of length T
by linearly varying parameters from (10) to (11), and gener-
ate a time-series of length 10,000 with parameter (11).

We define the reference parameter set as d = 1, T = 0,
µ = 5.0. We vary each of the parameters while fixing the
other two to see the performance dependency on each pa-
rameter. The parameters are varied as d ∈ {20, 21, . . . , 26},
T ∈ {0, 20, 50, 100, 200, 500}, and µ ∈ {1.0, 5.0, 10.0}.
For each setting, we run the experiment ten times and re-
port its mean.

4599

Results. Figure 2 shows the performance dependency on
the dataset parameters. We obtain the following three insights
on the performance of each SGD. First of all, we observe
Cogra performs consistently better than vSGD in almost all
settings. This validates our idea to substitute SMT for the
moment estimator of vSGD. Second, while AdaGrad(0.1)
performs the best in Figures 2(a) and 2(b), its performance
severely degrades as the dimension increases as Figure 2(c)
shows; on the other hand, Cogra performs more robustly
than AdaGrad(0.1). This property is essential in our problem
setting, because often we are not able to foresee the data
properties before we encounter it. Third, from Figures 2(a),
2(b), and 2(c), we observe that Cogra has less dependency
on the magnitude of a change and the dimension, and its
performance slightly improves when the change is gradual.

In summary, we conclude that, in most cases, Cogra per-
forms better than vSGD (thus, answering (Q2) in the affir-
mative), the performance of Cogra is much less sensitive to
the dataset parameters than the other SGDs including vSGD,
and thanks to the insensitivity, Cogra performs better than
the others when the magnitude of a change is large and/or the
transition period is large, which answers (Q3).

Performance on Real-world Datasets
Finally, we verify the performance of Cogra with real-world
datasets. We employ VAR(3) as a predictive model and use
three datasets from the UCI repository (Lichman 2013).

Datasets. The activity recognition dataset records three di-
mensional acceleration data (Casale, Pujol, and Radeva 2012).
Each participant is engaged in seven activities, and there-
fore, this dataset is considered to contain abrupt changes. We
downsample the original data from 52 Hz to 5.2 Hz, and we
employ the first three participants’ data (A(1)–A(3)) because
the other participants’ data result in similar results. The EEG
eye state dataset records 14 dimensional EEG measurements.
Since the eye state (whether open or close) is correlated with
the EEG distribution, this dataset is considered to contain
abrupt changes. The gas sensor array dataset (Fonollosa et al.
2015) collects the recordings of 18 chemical sensors exposed
to the gas mixture with dynamically-varying concentrations.
The gas concentrations are increased, decreased, or set to zero
at random times, and therefore, this dataset is considered to
contain gradual changes. We use the first 50,000 data points.

Results. Table 1 shows the relative cumulative losses. For
all of the datasets, Cogra-b outperforms the other methods.
This confirms Cogra’s capability of adjusting learning rate
in response to real-world concept drifts. In the following,
we discuss why the block estimation (Cogra-b and vSGD-b)
performs better than the local and global estimations, and
why Cogra-b outperforms the other SGDs.

The global estimation (Cogra-g and vSGD-g) fails because
of the significant difference of the scales of the Hessians of
W and µ. For example, the Hessian ofW is larger than that of
µ by more than a factor of 106 in the activity dataset. Hence,
estimating them with one global parameter results in the poor
estimation of η?t . The local estimation (Cogra-l and vSGD-
l) fails specifically on the EEG and gas datasets. Since the

dimensionality of these datasets are relatively high, 14 and
18, there are huge degrees of freedom in the local Hessian
estimation, D = 602 and 990 respectively, while that of
the activity dataset is only 30. This makes the estimation of
η?t unstable, affecting the predictive performance negatively.
The block estimation (Cogra-b and vSGD-b) estimates the
Hessians of µ and W separately, but using one parameter for
each regardless of the dimensionality of data. Therefore, it
does not much suffer either from the difference of the scale
of Hessians or from the high-dimensional time-series.

We notice that Cogra-b outperforms the others more clearly
on the EEG and gas datasets. Based on the study on the syn-
thetic dataset, we consider that this is because both datasets
contain larger changes than the activity dataset. The mean of
the EEG dataset is about twice as large as that of the activity
dataset, requiring us to adapt to the mean at the beginning.
The values of the gas dataset change much more drastically
than the others, which requires us to adapt to the drastic
changes repeatedly. We have expected that Almeida should
be able to handle such drastic changes, but it does not, es-
pecially on the gas dataset. This is mainly because its initial
learning rate is highly sensitive.

7 Conclusion and Future Work
We have considered online forecasting of streaming data in
concept-drifting environments. As suggested by vSGD, this
problem can be reduced to estimating moments of stochastic
gradients. Our finding is that moment estimators of vSGD are
heuristically designed and can yield a bias, which also exerts
a negative impact on the predictive performance in our prob-
lem setting. To this end, we have developed a moment estima-
tor called sequential mean tracker (SMT). SMT is designed
to minimize the estimation error greedily and is guaranteed
to converge. By substituting SMT for the moment estimator
of vSGD, we have obtained an adaptive SGD without any
hyperparameters, namely Cogra. Through the comprehensive
experiments, we have obtained three results. First, the esti-
mation error of SMT converges to zero much faster than that
of vSGD. Second, Cogra is robust to the properties of the
dataset. Third, Cogra outperforms a number of existing SGDs
with a wide range of real-world datasets, specifically on radi-
cally changing data. These three results strongly support the
effectiveness of Cogra in concept-drifting environments.

One future direction is to investigate the applicability of
Cogra to more complex objective functions. Although we
have validated the effectiveness of Cogra using VAR, it is
still open whether the same holds for more complex models
such as RNNs. Thus, it is valuable to clarify the applicability
by extensive experiments and/or to extend our framework by
relaxing the assumptions on the objective function.

Another direction is to apply Cogra to reinforcement learn-
ing. For example, when learning the action-value functions
in SARSA, the objective function tends to be highly non-
stationary because the policy is updated during learning.
Cogra is expected to handle such non-stationarity well and
achieve faster and stabler learning of policies.

Acknowledgments This work was supported by JST
CREST Grant Number JPMJCR1304, Japan.

4600

References
Almeida, L. B.; Langlois, T.; Amaral, J. D.; and Plakhov, A.
1999. Parameter adaptation in stochastic optimization. In
On-Line Learning in Neural Networks. Cambridge University
Press. 111–134.
Baydin, A. G.; Cornish, R.; Rubio, D. M.; Schmidt, M.;
and Wood, F. 2017. Online learning rate adaptation with
hypergradient descent. arXiv preprint arXiv:1703.04782.
Casale, P.; Pujol, O.; and Radeva, P. 2012. Personaliza-
tion and user verification in wearable systems using biomet-
ric walking patterns. Personal and Ubiquitous Computing
16(5):563–580.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
Journal of Machine Learning Research 12:2121–2159.
Fonollosa, J.; Sheik, S.; Huerta, R.; and Marco, S.
2015. Reservoir computing compensates slow response of
chemosensor arrays exposed to fast varying gas concentra-
tions in continuous monitoring. Sensors and Actuators B:
Chemical 215:618–629.
Gama, J. A.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; and
Bouchachia, A. 2014. A survey on concept drift adaptation.
ACM Comput. Surv. 46(4):44:1–44:37.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Klinkenberg, R., and Joachims, T. 2000. Detecting concept
drift with support vector machines. In ICML, 487–494.
Kolter, J. Z., and Maloof, M. A. 2005. Using additive expert
ensembles to cope with concept drift. In Proceedings of the
22nd international conference on Machine learning, 449–456.
ACM.
Kushner, H. J., and Yang, J. 1995. Analysis of adaptive step-
size sa algorithms for parameter tracking. IEEE Transactions
on Automatic Control 40(8):1403–1410.
Kushner, H., and Yin, G. G. 2003. Stochastic approxima-
tion and recursive algorithms and applications, volume 35.
Springer Science & Business Media.
LeCun, Y. A.; Bottou, L.; Orr, G. B.; and Müller, K.-R. 2012.
Efficient backprop. In Neural networks: Tricks of the trade.
Springer. 9–48.
Lichman, M. 2013. UCI machine learning repository.
Lütkepohl, H. 2005. New introduction to multiple time series
analysis. Springer Berlin Heidelberg.
Minku, L. L., and Yao, X. 2012. Ddd: A new ensemble
approach for dealing with concept drift. IEEE transactions
on knowledge and data engineering 24(4):619–633.
Schaul, T.; Zhang, S.; and LeCun, Y. 2013. No more pesky
learning rates. In Proceedings of the 30th International Con-
ference on Machine Learning.
Schlimmer, J. C., and Granger, R. H. 1986. Incremental
learning from noisy data. Machine learning 1(3):317–354.
Street, W. N., and Kim, Y. 2001. A streaming ensemble
algorithm (sea) for large-scale classification. In Proceedings
of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, 377–382. ACM.

Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning
4(2):26–31.
Tsymbal, A. 2004. The problem of concept drift: definitions
and related work. Computer Science Department, Trinity
College Dublin 4(C):2004–15.
Wang, H., and Abraham, Z. 2015. Concept drift detection
for streaming data. In Neural Networks (IJCNN), 2015 Inter-
national Joint Conference on, 1–9. IEEE.
Widmer, G., and Kubat, M. 1996. Learning in the presence
of concept drift and hidden contexts. Machine Learning
23(1):69–101.

4601

