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Abstract

The subspace selection problem seeks a subspace that maxi-
mizes an objective function under some constraint. This prob-
lem includes several important machine learning problems
such as the principal component analysis and sparse dictionary
selection problem. Often, these problems can be (exactly or
approximately) solved using greedy algorithms. Here, we are
interested in why these problems can be solved by greedy algo-
rithms, and what classes of objective functions and constraints
admit this property.
In this study, we focus on the fact that the set of subspaces
forms a lattice, then formulate the problems as optimization
problems on lattices. Then, we introduce a new class of func-
tions on lattices, directional DR-submodular functions, to char-
acterize the approximability of problems. We prove that the
principal component analysis, sparse dictionary selection prob-
lem, and these generalizations are monotone directional DR-
submodularity functions. We also prove the “quantum version”
of the cut function is a non-monotone directional DR submod-
ular function. Using these results, we propose new solvable
feature selection problems (generalized principal component
analysis and quantum maximum cut problem), and improve
the approximation ratio of the sparse dictionary selection prob-
lem in certain instances.
We show that, under several constraints, the directional DR-
submodular function maximization problem can be solved
efficiently with provable approximation factors.

1 Introduction
Background and motivation The subspace selection prob-
lem involves seeking a good subspace from data. Mathemati-
cally, the problem is formulated as follows. Let L be a family
of subspaces of Rd, F ⊆ L be a set of feasible subspaces,
and f : L → R be an objective function. Then, the task is to
solve the following optimization problem.

maximize f(X)
subject to X ∈ F . (1.1)

This problem is a kind of feature selection problem, and
contains several important machine learning problems such
as the principal component analysis and sparse dictionary
selection problem.
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In general, the subspace selection problem is a non-convex
continuous optimization problem; hence it is hopeless to ob-
tain a provable approximate solution. On the other hand, such
solution can be obtained efficiently in some special cases.
The most important example is the principal component anal-
ysis. Let L(Rd) be the set of all the subspaces of Rd, F be
the subspaces with dimension of at most k, and f : L → R
be the function defined by

f(X) =
∑
i∈I
‖ΠXui‖2 (1.2)

where {ui}i∈I ⊂ Rd is the given data and ΠX is the projec-
tion to subspace X . Then, problem (1.1) with these L(Rd),
F , and f defines the principal component analysis problem.
As we know, the greedy algorithm, which iteratively selects a
new direction ai ∈ Rd that maximizes the objective function,
gives the optimal solution to problem (1.1). Another impor-
tant problem is the sparse dictionary selection problem. Let
V ⊆ Rd be a set of vectors, called a dictionary. For a subset
S ⊆ V , we denote by span(S) the subspace spanned by S.
Let L(V ) = {span(S) : S ⊆ V } be the subspaces spanned
by a subset of V , and F be the subspaces spanned by at most
k vectors of V . Then, the problem (1.1) with these L(V ), F ,
and f in (1.2) defines the sparse dictionary selection prob-
lem. The problem is in general difficult to solve (Natarajan
1995); however, the greedy-type algorithms, e.g., orthogonal
matching pursuit, yield provable approximation guarantees
depending on the mutual coherence of V .

In this study, we are interested in the following research
question:

Why the principal component analysis and the sparse
dictionary selection problem can be solved by the greedy
algorithms? What classes of objective functions and
constraints have the same property?

Existing approach Several researchers have considered
this research question (see Related Work below). One suc-
cessful approach is employing submodularity. Let V ⊆ Rd
be a (possibly infinite) set of vectors. We define F : 2V → R
by F (S) = f(span(S)). If this function satisfies the submod-
ularity, F (S) +F (T ) ≥ F (S ∪ T ) +F (S ∩ T ), or some its
approximation variants, we obtain a provable approximation
guarantee of the greedy algorithm (Krause and Cevher 2010;
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Das and Kempe 2011; Elenberg et al. 2016; Khanna et al.
2017).

However, this approach has a crucial issue that it cannot
capture the structure of vector spaces. Consider three vectors
a = (1, 0), b = (1/

√
2, 1/
√

2), and c = (0, 1) in R2. Then,
we have span({a, b}) = span({b, c}) = span({c, a});
therefore, F ({a, b}) = F ({b, c}) = F ({c, a}). However,
this property (a single subspace is spanned by different bases)
is not exploited in the existing approach, which yields un-
derestimation of the approximation factors of the greedy
algorithms (see Section 4.2).

Our approach To capture the structure of vector spaces,
we employ Lattice Theory. A lattice L is a partially ordered
set closed under the greatest lower bound (aka., meet, ∧) and
the least upper bound (aka., join, ∨).

The family of all subspaces of Rd is called the vector
lattice L(Rd), which forms a lattice whose meet and join
operators correspond to the intersection and direct sum of
subspaces, respectively. This lattice can capture the structure
of vector spaces as mentioned above. Also, the family of
subspaces L(V ) spanned by a subset of V ⊆ Rd forms a
lattice.

Our goal is to establish a submodular maximization the-
ory on lattice. Here, the main difficulty is to seek a “nice”
definition of submodularity. Usually, the lattice submodu-
larity (Topkis 1978), defined by the following inequality, is
considered as a natural generalization of set submodularity.

f(X) + f(Y ) ≥ f(X ∧ Y ) + f(X ∨ Y ). (1.3)

However, this is too strong that it cannot capture the principal
component analysis as shown below.

Example 1. Consider the vector lattice L(R2). Let X =
span{(1, 0)} and Y = span{(1, ε)} be subspaces of R2

where ε > 0 is sufficiently small. Let {vi}i∈I = {(0, 1)}
be the given data, where |I| = 1. Then, function (1.2) satis-
fies f(X) = 0, f(Y ) = ε2/(1 + ε2), f(X ∧ Y ) = 0, and
f(X ∨ Y ) = 1. Therefore, it does not satisfy the lattice sub-
modularity. More seriously, by taking ε→ 0, we can see that
there is no constants α > 0 and δ � f(X) + f(Y ) such that
f(X) +f(Y ) ≥ α(f(X ∧Y ) +f(X ∨Y ))− δ. This means
that it is hopeless to see this function as an approximated
version of a lattice submodular function.

Another commonly used notion of submodularity is the
diminishing return (DR)-submodularity (Soma and Yoshida
2015; Bian et al. 2017b; Soma and Yoshida 2017), which is
originally introduced in the integer lattice ZV . A function
f : ZV → R is DR-submodular if

f(X + ei)− f(X) ≥ f(Y + ei)− f(Y ) (1.4)

for allX ≤ Y (component wise inequality) and i ∈ V , where
ei is the i-th unit vector. This definition is later extended
to distributive lattices (Gottschalk and Peis 2015) and can
be extended to general lattices (see Section 3). However,
Example 1 above is still crucial, and therefore the objective
function of the principal component analysis cannot be an
approximated version of a DR-submodular function.

To summarize the above discussion, our main task is to
define submodularity on lattices that should satisfy the fol-
lowing two properties:
1. It captures some important practical problems such as the

principal component analysis.
2. It admits efficient approximation algorithms on some con-

straints.

Our contributions In this study, in response to the above
two requirements, we make the following contributions:
1. We define downward DR-submodularity and upward

DR-submodularity on lattices, which generalize the DR-
submodularity on the integer lattice and distributive lat-
tices (Section 3).

2. Our directional DR-submodularities are capable of repre-
senting important machine learning problems (Section 4).
• We show that the objective function of the principal

component analysis, and its concave generalization are
directional DR-submodular functions. Using this result,
we propose the generalized principal component anal-
ysis, which can limit the contributions from each data;
hence, it will provide robust solution.

• We show that the objective function of the sparse dictio-
nary selection problem is approximately directional DR-
submodular; where the approximation ratio depends on
the mutual coherence of subspaces. The mutual coher-
ence of subspaces are more robust concept than that
of vectors. Thus, using this result, we can improve the
approximation ratio of the problem for certain instance.

• We show that the “quantum version” of the cut func-
tion of the graph is (non-monotone) directional DR-
submodular function. Using this result, we propose a
new feature selection method, which can be used to
extract meanings of documents.

3. We propose approximation algorithms for maximizing (1)
monotone downward DR-submodular function over height
constraint, (2) monotone downward DR-submodular func-
tion over knapsack constraint, and (3) non-monotone DR-
submodular function (Section 5). These are obtained by
generalizing the existing algorithms for maximizing the
submodular set functions. Thus, even our directional DR-
submodularities are strictly weaker than the strong DR-
submodularity, which is a natural generalization of the
DR-submodularity on the integer lattice (Definition 3); it
is sufficient to admit approximation algorithms.
All the proofs of propositions and theorems are given in

Appendix Ain the supplementary material.

Related Work For the principal component analysis, it is
well known that the greedy algorithm, which iteratively se-
lects the largest eigenvectors of the correlation matrix, solves
the problem (Abdi and Williams 2010).

With regard to the sparse dictionary selection problem,
several studies (Gilbert, Muthukrishnan, and Strauss 2003;
Tropp et al. 2003; Tropp 2004; Das and Kempe 2008) have
analyzed greedy algorithms. In general, the objective function
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for the sparse dictionary selection problem is not submodular.
Therefore, researchers introduced approximated versions of
the submodularity and analyzed the approximation guarantee
of algorithms with respect to the parameter.

Krause and Cevher (Krause and Cevher 2010) showed
that function (1.2) is an approximately submodular func-
tion whose additive gap δ ≥ 0 depends on the mutual co-
herence. They also showed that the greedy algorithm gives
(1− 1/e, kδ)-approximate solution.1

Das and Kempe (Das and Kempe 2011) introduced the sub-
modularity ratio, which is another measure of submodularity.
For the set function maximization problem, the greedy algo-
rithm attains a provable approximation guarantee depending
on the submodularity ratio. The approximation ratio of the
greedy algorithm is further improved by combining with the
curvature (Bian et al. 2017a). Elenberg et al. (Elenberg et al.
2016) showed that, if function l : Rd → R has a bounded
restricted convexity and a bounded smoothness, the corre-
sponding set function F (S) := l(0)−minsupp(x)∈S l(x) has
a bounded submodularity ratio. Khanna et al. (Khanna et
al. 2017) applied the submodularity ratio for the low-rank
approximation problem.

It should be emphasized that all the existing studies ana-
lyzed the greedy algorithm as a function of a set of vectors
(the basis of the subspace), instead of as a function of a sub-
space. This overlooks the structure of the subspaces causing
difficulties as described above.

2 Preliminaries
In this section, we provide standard notion in Lattice Theory;
see (Grätzer 2002) for more details.

A lattice (L,≤) is a partially ordered set (poset) such
that, for any X,Y ∈ L, the least upper bound X ∨ Y :=
inf{Z ∈ L : X ≤ Z, Y ≤ Z} and the greatest lower bound
X∧Y := sup{Z ∈ L : Z ≤ X,Z ≤ Y } uniquely exist. We
often say “L is a lattice” by omitting ≤ if the order is clear
from the context. In this paper, we assume that the lattice has
the smallest element ⊥ ∈ L.

A subset I ⊆ L is a lower set if Y ∈ I then any X ∈ L
with X ≤ Y is also X ∈ I. For Y ∈ L, the set I(Y ) =
{X ∈ L : X ≤ Y } is called the lower set of Y .

A sequence X1 < · · · < Xk of elements of L is a compo-
sition series if there is no Y ∈ L such that Xi < Y < Xi+1

for all i. The length of the longest composition series from
⊥ to X is referred to as the height of X and is denoted by
h(X). The height of a lattice is defined by supX∈L h(X). If
this value is finite, the lattice has the largest element > ∈ L.
Note that the height of a lattice can be finite even if the lattice
has infinitely many elements. For example, the height of the
vector lattice L(Rd) is d.

A lattice L is distributive if it satisfies the distributive law:
(X ∧ Y ) ∨ Z = (X ∨ Z) ∧ (Y ∨ Z). A lattice L is modular
if it satisfies the modular law: X ≤ B ⇒ X ∨ (A ∧ B) =
(X ∨ A) ∧ B. Every distributive lattice is modular. On a
modular lattice L, all the composition series between X ∈ L

1A solution X is an (α, δ)-approximate solution if it satisfies
f(X) ≥ αmaxX′∈F f(X

′)− δ. If δ = 0 then we simply say that
it is an α-approximate solution.

and Y ∈ L have the same length. The lattice is modular if
and only if its height function satisfies the modular equality:
h(X) + h(Y ) = h(X ∨ Y ) + h(X ∧ Y ). Modular lattices
often appear with algebraic structures. For example, the set
of all subspaces of a vector space forms a modular lattice.
Similarly, the set of all normal subgroups of a group forms a
modular lattice.

For a lattice L, an element a ∈ L \ {⊥} is join-irreducible
if there no X 6= a, Y 6= a such that a = X ∨ Y .2 We denote
by J(L) ⊆ L the set of all join-irreducible elements. Any
element X ∈ L is represented by a join of join-irreducible
elements; therefore the structure of L is specified by the
structure of J(L). A join irreducible element a ∈ J(L) is
admissible with respect to an element X ∈ L if a 6≤ X and
any a′ ∈ L with a′ < a satisfies a′ ≤ X . We denote by
adm(X) the set of all admissible elements with respect to
X . A set cl(a | X) = {a′ ∈ adm(X) : X ∨ a = X ∨ a′}
is called a closure of a at X . See Figures 1 and 2 for the
definition of admissible elements and closure. Note that a is
admissible with respect to X if and only if the distance from
the lower set of X to a is one.

Example 2. In the vector lattice L(Rd), each element X ∈
L(Rd) corresponds to a subspace. An element a ∈ L(Rd) is
join-irreducible if and only if it has dimension one. A join-
irreducible element a is admissible toX if a is not a subspace
of X . The closure cl(a|X) is the one dimensional subspaces
contained in X ∨ a independent to X .

3 Directional DR-submodular functions on
modular lattices

In this section, we introduce new submodularities on lattices.
As described in Section 1, our task is to find useful definitions
of “submodularities” on lattices; therefore, this is the most
important section of this paper.

Recall definition (1.4) of the DR-submodularity on the
integer lattice. Then, we can see that X + ei = X ∨ a and
Y + ei = Y ∨ b for a = (Xi + 1)ei and b = (Yi + 1)ei,
where Xi and Yi are the i-th components of X and Y in,
respectively. Here, a and b are join-irreducibles in the integer
lattice, a ∈ adm(X), b ∈ adm(Y ), and a ≤ b. Thus, a
natural generalization of the DR-submodularity on lattices
may be as follows.

Definition 3 (Strong DR-submodularity). A function
f : L → R is strong DR-submodular if, for all X,Y ∈ L
with X ≤ Y and a ∈ adm(X), b ∈ adm(Y ) with a ≤ b, the
following holds.

f(X ∨ a)− f(X) ≥ f(Y ∨ b)− f(Y ) (3.1)

This definition generalizes the DR-submodularity on dis-
tributive lattices (Gottschalk and Peis 2015) to general lat-
tices using join-irreducibility and admissibility. This is itself
non-trivial generalization, and may be useful in some context;

2For the set lattice 2V of a set V , the join-irreducible elements
correspond to the singleton sets, {a} for a ∈ V . Thus, for clarity,
we use upper case letters for general lattice elements (e.g., X or Y )
and lower case letters for join-irreducible elements (e.g., a or b).
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⊥

X

a

b

X ∨ a

X ∨ b

Figure 1: a is admissible with respect to X but b is not be-
cause of the existence of a. The shaded area represents the
lower set of X .

⊥

X a b

X ∨ a = X ∨ b

Figure 2: Both a and b are admissible with respect to X , and
X ∨ a = X ∨ b. Thus b ∈ cl(a|X) and a ∈ cl(b|X).

however, in our purpose, it is too strong because it cannot cap-
ture the principal component analysis; you can confirm this
by Example 1. Thus, here, we do not go into the details of this
definition, and seek a weaker concept of DR-submodularity.

To define a weaker concept, we first review why the strong
DR-submodularity is too strong. Since Y ∨ b = Y ∨ b′ for all
b′ ∈ cl(b|Y ), we have f(Y ∨b)−f(Y ) = f(Y ∨b′)−f(Y ).
Then, the strong DR-submodularity (3.1) is equivalent to the
following: For all X,Y ∈ L with X ≤ Y , b ∈ adm(Y ),
b′ ∈ cl(b|Y ), and a ∈ adm(X) with a ≤ b′, the following
holds.

f(Y ∨ b)− f(Y ) ≤ f(X ∨ a)− f(X). (3.2)

This means that, even if there exists only one bad b′, it does
not satisfy the strong DR-submodularity.

On the other hand, in the standard analysis of the principal
component analysis (Abdi and Williams 2010), we often use
the fact that a new direction can be chosen to be orthogonal
to the existing subspace; it is a relation between a subspace
and “some b′” instead of “all b′”. This observation derives
the following new definition of the DR-submodularity, which
relaxes “for all b′” to “exists b′” as follows.
Definition 4 (Downward DR-submodularity). Let L be a
lattice. A function f : L → R is downward DR-submodular
with additive gap δ if for all X,Y ∈ L with X ≤ Y and
b ∈ adm(Y ), there exists b′ ∈ cl(b|Y ) such that, for all
a ∈ adm(X) with a ≤ b′, the following holds.

f(Y ∨ b)− f(Y ) ≤ f(X ∨ a)− f(X) + δ. (3.3)

The downward DR-submodularity is obtained by focusing
on Y ∨ b in the right-hand side of (3.1). Another definition
is obtained by focusing on X ∨ a in the left-hand side of

(3.1) as follows. By renaming Y ∨ b to Y , the strong DR-
submodularity (3.1) is equivalent to the following: For all
X,Y ∈ L, a ∈ adm(X) with X ∨a ≤ Y , b ∈ L with b ≥ a,
and Y̊ ∈ L with Y = Y̊ ∨ b and X ≤ Y̊ ,

f(X ∨ a)− f(X) ≥ f(Y )− f(Y̊ ). (3.4)

As same as the downward DR-submodularity, we obtain new
definition by relaxing “for all Y̊ ” to “exists Y̊ ” as follows.

Definition 5 (Upward DR-submodularity). Let L be a lattice.
f : L → R is upward DR-submodular with additive gap δ if
for all X,Y ∈ L and a ∈ adm(X) with X ∨ a ≤ Y , b ∈ L
with b ≥ a, there exists Y̊ ∈ L such that Y = Y̊ ∨ b and
X ≤ Y̊ , the following holds.

f(X ∨ a)− f(X) ≥ f(Y )− f(Y̊ )− δ. (3.5)

If a function f is both downward DR-submodular with
additive gap δ and upward DR-submodular with additive gap
δ, then we say that f is bidirectional DR-submodular with
additive gap δ. We say directional DR-submodularity to refer
these new DR-submodularities.

The strong DR-submodularity implies the bidirectional
DR-submodularity, because both downward and upward
DR-submodularities are relaxations of the strong DR-
submodularity. Interestingly, the converse also holds in dis-
tributive lattices.

Proposition 6. On a distributive lattice, the strong DR-
submodularity, downward DR-submodularity, and upward
DR-submodularity are equivalent.

Proof. See Appendix A.

This implies that the directional DR-submodularities are
required to capture the structure of non-distributive lattices
such as the vector lattices.

At the cost of generalization, in contrast to the lattice
submodularity (1.3) and the strong DR-submodularity (3.1),
the downward and upward DR-submodularity are not closed
under addition, because the elements selected by “exists” in
the above definitions can depend on the objective function.

4 Examples
In this section, we present several examples of directional
DR-submodular functions to show that our concepts can
capture several machine learning problems.

4.1 Principal component analysis
Let {ui}i∈I ⊂ Rd be the given data. We consider the vector
lattice L(Rd) of all the subspaces of Rd, and the objective
function f defined by (1.2). Then, the following holds.

Proposition 7. The function f : L(Rd) → R defined by
(1.2) is a monotone bidirectional DR-submodular function.

Proof. See Appendix A.

This provides a reason why the principal component anal-
ysis is solved by the greedy algorithm from the viewpoint of
submodularity (see also Theorem 15 below).
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The objective function can be generalized further. Let ρi :
R→ R be a monotone non-decreasing concave function with
ρi(0) = 0 for each i ∈ I . Let

fρ(X) =
∑
i∈I

ρi(‖ΠXui‖2). (4.1)

Then, the following holds.
Proposition 8. The function fρ : L(Rd) → R defined by
(4.1) is a monotone bidirectional DR-submodular function.

Proof. See Appendix A.

Proposition 8 indicates a new feature selection problem,
called the generalized principal component analysis, which
maximizes the function (4.1) instead of the function (1.2) in
(1.1) with the height (dimension) constraint. In this problem,
we can ignore the contributions from very large vectors be-
cause, if ui is already well approximated by X , there is less
incentive to seek larger subspace for ui due to the concavity
of ρi. Hence, it will produce a robust solution.

We verified this idea by conducting numerical experiments
on a synthetic dataset; see Appendix C.
Remark 9. Strictly speaking, Proposition 7 does not ex-
plain the reason why the principal component analysis can
be solved “exactly” using the greedy algorithm, i.e., it only
explains the approximate maximization. In Appendix B, we
will explain the exact maximization using the concept of the
curvature suited for the vector lattices.

4.2 Sparse dictionary selection
Let V ⊆ Rd be a set of vectors called a dictionary. We con-
sider L(V ) = {span(S) : S ⊆ V } of all subspaces spanned
by V , which forms a (not necessarily modular) lattice. The
height of X ∈ L(V ) coincides with the dimension of X .
Let {ui}i∈I ⊂ Rd be the given data. Then the sparse dictio-
nary selection problem is formulated by the maximization
problem of f defined by (1.2) on this lattice under the height
constraint.

In general, the function f is not a directional DR-
submodular function on this lattice. However, we can prove
that f is a downward DR-submodular function with a prov-
able additive gap. We introduce the following definition.
Definition 10 (Mutual coherence of lattice). Let L be a lat-
tice of subspaces. For ε ≥ 0, the lattice has mutual coher-
ence ε, if for any X ∈ L, there exists X ′ ∈ L such that
X ∧X ′ = ⊥, X ∨X ′ = >, and for all unit vectors u ∈ X
and u′ ∈ X ′, |〈u, u′〉| ≤ ε. The infimum of such ε is called
the mutual coherence of L, and is denoted by µ(L).

Our mutual coherence of a lattice is a generalization of
the mutual coherence of a set of vectors (Donoho and Elad
2003). For a set of unit vectors V = {u1, . . . , uN} ⊂ Rd, its
mutual coherence is defined by µ(V ) = maxi6=j |〈ui, uj〉|.
The mutual coherence of a set of vector is extensively used in
compressed sensing to prove the uniqueness of the solution in
a sparse recovery problem (Eldar and Kutyniok 2012). Here,
we have the following relation between the mutual coherence
of a lattice and that of a set of vectors, which is the reason
why we named our quantity mutual coherence.

Lemma 11. Let V = {u1, . . . , uN} be a set of unit vectors
whose mutual coherence is µ(V ) ≤ ε. Then, the lattice L(V )
generated by the vectors has mutual coherence µ(L(V )) ≤
dε/(1− dε).

Proof. See Appendix A.

This means that if a set of vectors has a small mutual
coherence, then the lattice generated by the vectors has a
small mutual coherence. Note that the converse does not
hold.
Example 12. Consider V = {u1, u2, u3} ⊂ R2 where u1 =

(1, 0)>, u2 = (1/
√

1 + ε2, ε/
√

1 + ε2)>, and u3 = (0, 1)>

for sufficiently small ε. Then the mutual coherence µ(V ) of
the vectors is 1/

√
1 + ε2 ≈ 1; however, the mutual coherence

µ(L) of the lattice generated by V is ε/
√

1 + ε2 ≈ ε.
If a lattice has a small mutual coherence, we can prove

that the function f is a monotone downward DR-submodular
function with a small additive gap.
Proposition 13. Let V = {u1, . . . , uN} ⊆ Rd be normal-
ized vectors and L(V ) be a lattice generated by V . Suppose
that L(V ) forms a modular lattice. Let {vi}i∈I ⊂ Rd. Then,
the function f defined in (4.1) is a downward DR-submodular
function with additive gap at most 3ερ′(0)

∑
j ‖vj‖2/(1−ε2)

where ε = µ(L(V )).

Proof. See Appendix A.

Example 12 and Proposition 13 imply that, even set of
vectors V contains some correlated vectors, the function f
defined on the lattice can be an approximate submodular
function with a small additive gap. On the other hand, if we
consider the function defined on the subsets of V , it must have
a large additive gap. These implies that (1) there is a situation
that the lattice DR-submodularity improves the theoretical
approximation guarantee of the greedy algorithm; (2) the
lattice formulation is more robust against the contamination
of highly correlated vectors. These are strong advantage of
considering the lattice instead of the set of vectors.

4.3 Quantum cut
Finally, we present an example of a non-monotone bidirec-
tional DR-submodular function. Let G = (V,E) be a di-
rected graph, and c : E → R≥0 be a weight function. The
cut function is then defined by g(S) =

∑
(i,j)∈E c(i, j)1[i ∈

S]1[j ∈ S̄] where 1[i ∈ S] is the indicator function of i ∈ S
and S̄ is the complement of S. This is a non-monotone sub-
modular function. Maximizing the cut function has applica-
tion in feature selection problems with diversity (Lin, Bilmes,
and Xie 2009).

We extend the cut function to the “quantum” setting. We
say that a lattice of vector spaces L is ortho-complementable
if X ∈ L then X⊥ ∈ L where X⊥ is the orthogonal comple-
ment of X . Let {ui}i∈V ⊂ Rd be vectors assigned on each
vertex. For an ortho-complementable lattice L, the quantum
cut function f : L → R is defined by

f(X) =
∑

(i,j)∈E

c(i, j)‖ΠX(ui)‖2‖ΠX⊥(vj)‖2. (4.2)
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If ui = ei ∈ RV for all i, where ei is the i-th unit vector,
and L is the lattice of axis-parallel subspaces of RV , func-
tion (4.2) coincides with the original cut function. Moreover,
it carries the submodularity.
Proposition 14. The function f defined by (4.2) is a bidirec-
tional DR-submodular function.

Proof. See Appendix A.

Proposition 14 indicates a new feature selection problem,
called quantum maximum cut problem, which is the problem
of maximizing the function (4.2) as similar to the maximum
cut based feature selection as mentioned above.

This problem will be useful in, e.g., natural language pro-
cessing as follows. Suppose that we have the set of words,
which are embedded into latent vector space Rd (Mikolov et
al. 2013). We are given a document, which is a set of words.
The task is to summarize the document. Usually, we summa-
rize the document using a subset of words; hence, we can use
the maximum cut problem. However, since the “meanings” of
the words are encoded in the vector space as subspaces (Kim
and de Marneffe 2013), it will be also promising to select a
subspace in the latent space.

5 Algorithms
We provide algorithms for maximizing (1) a monotone
downward-DR submodular function on the height constraint
(Section 5.1), (2) a monotone downward DR-submodular
function on knapsack constraint (Section 5.2), and (3) a
non-monotone bidirectional DR-submodular function (Sec-
tion 5.3). Basically, these algorithms are extensions of the
algorithms for the set lattice. This indicates that our defi-
nitions of directional DR-submodularities are natural and
useful.

Below, we always assume that f is normalized, i.e.,
f(⊥) = 0.

5.1 Height constraint
We first consider the height constraint, i.e., F = {X ∈ L :
h(X) ≤ k}. This coincides with the cardinality constraint
when L is the set lattice. In general, this constraint is very
difficult to analyze because h(X ∨ a) − h(X) can be ar-
bitrary large. Thus, we assume that the height function is
p-incremental, i.e., h(X ∨ a) − h(X) ≤ p for all X and
a ∈ adm(X). Note that p = 1 if and only if L is modular.

We show that, as similar to the set lattice (Nemhauser,
Wolsey, and Fisher 1978), the greedy algorithm (Algorithm 1)
achieves 1 − e−1/p approximation for the downward DR-
submodular maximization problem over the height constraint.
Theorem 15. Let L be a lattice whose height function
is p-incremental, and f : L → R be a downward DR-
submodular function with additive gap δ. Then, Algorithm 1
finds (1− e−bk/pc/k, δ(1− e−bk/pc/k)k)-approximate solu-
tion of the height constrained monotone submodular max-
imization problem.3 In particular, on modular lattice with
δ = 0, it gives 1− 1/e approximation.

3Algorithm 1 requires solving the non-convex optimization prob-
lem in Step 3. If we can only obtain an α-approximate solution

Algorithm 1 Greedy algorithm for monotone height con-
strained problem.

1: X = ⊥
2: for i = 1, . . . , k do
3: Let ai ∈ argmax

a∈adm(X),X∨a∈F
f(X ∨ a)

4: X ← X ∨ ai
5: end for
6: return X

Algorithm 2 Greedy algorithm for monotone knapsack con-
strained problem.

1: X = ⊥
2: for i = 1, 2, . . . do
3: Let ai ∈ argmax

a∈adm(X)

(f(X ∨a)−f(X))/(c(X ∨a)−

c(X))
4: if c(X ∨ a) ≤ B then X ← X ∨ aj
5: end for
6: a ∈ argmaxa∈adm(⊥):c(a)≤B f(a)

7: return argmax{f(X), f(a)}

Proof. See Appendix A.

This result characterizes the approximate solvability of the
(generalized) principal component analysis and the sparse dic-
tionary selection problem since the objective function (1.2)
is a monotone downward DR-submodular function (Proposi-
tions 7, 8, and 13) and the height constraint coincides with
the dimension constraint and the cardinality constraint on
these lattices.

5.2 Knapsack constraint
Next, we consider the knapsack constrained problem. A knap-
sack constraint on a lattice is specified by a nonnegative mod-

in Step 3, the approximation ratio of the algorithm reduces to
(1− e−αbk/pc/k, δ(1− e−αbk/pc/k)k).

Algorithm 3 Double-greedy algorithm for non-monotone
unconstrained problem.

1: A = ⊥, B = >
2: while A 6= B do
3: B̊ ← argminB̊f(B) − f(B̊) where B̊ runs over
A < B̊ < B and h(B̊) + 1 = h(B)

4: a← argmaxa∈adm(A),a≤B f(A ∨ a)− f(A)

5: if f(A∨a)−f(A) ≥ f(B̊)−f(B) thenA← A∨a
else B ← B̊

6: end while
7: return A
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ular function (cost function) c : L → R≥0 and nonnegative
number (budget) B ∈ R such that the feasible region is given
by F = {X ∈ L : c(X) ≤ B}.

In general, it is NP-hard to obtain a constant factor ap-
proximation for a knapsack constrained problem even for a
distributive lattice (Gottschalk and Peis 2015). Therefore, we
need additional assumptions on the cost function.

We say that a modular function c : L → R is order-
consistent if c(X ∨ a) − c(X) ≤ c(Y ∨ b) − c(Y ) for all
X,Y ∈ L, a ∈ adm(X), b ∈ adm(Y ), and a ≤ b. The
height function of a modular lattice is order-consistent, be-
cause c(X ∨a)−c(X) = 1 for allX ∈ L and a ∈ adm(X);
therefore it generalizes the height function. Moreover, on
the set lattice 2V , any modular function is order-consistent
because there is no join-irreducible a, b ∈ 2V such that a < b
hold; therefore it generalizes the standard knapsack constraint
on sets.

For a knapsack constraint with an order-consistent nonneg-
ative modular function, we obtain a provable approximation
ratio.

Theorem 16. Let L be a lattice, F = {X ∈ L : c(X) ≤ B}
be a knapsack constraint where c : L → R≥0 be an order-
consistent modular function, B ∈ R≥0, and f : L → R be a
monotone downward DR-submodular function with additive
gap δ. Then, Algorithm 2 gives ((1− e−1)/2, δh(X∗)(1−
e−1)/2) approximation of the knapsack constrained mono-
tone submodular maximization problem.

Proof. See Appendix A.

In the set lattice, the knapsack constrained problem is
solved in approximation ratio of 1− 1/e (Sviridenko 2004).
The algorithm first guesses the three largest elements in the
optimal solution, then performs the greedy algorithm for the
remaining elements. Generalizing this algorithm for general
lattices is non-trivial because there are many ways to rep-
resent the optimal solution; thus, it is not clear that what
should be guessed. Thus, finding an algorithm with better
approximation ratio is a future work.

5.3 Non-monotone unconstrained maximization
Finally, we consider the unconstrained non-monotone maxi-
mization problem.

In the set lattice and distributive lattices, the double greedy
algorithm (Buchbinder et al. 2015; Gottschalk and Peis 2015)
achieves the deterministic 1/3 and randomized 1/2 approxi-
mation ratio for the unconstrained non-monotone submodular
maximization problem. We generalize the deterministic ver-
sion of the double greedy algorithm to lattices. We assume
that the lattice has a finite height. This is needed to terminate
the algorithm in a finite step. We also assume both down-
ward DR-submodularity and upward DR-submodularity, i.e.,
bidirectional DR-submodularity. Finally, we assume that the
lattice is modular. This is needed to analyze the approxima-
tion guarantee. Then, we obtain the following result.

Theorem 17. Let L be a modular lattice of finite height,
F = L, and f : L → R≥0 be non-monotone bidirectional

DR-submodular function with additive gap δ. Then, Algo-
rithm 3 gives (1/3, δh(L)) approximate solution of the un-
constrained non-monotone submodular maximization prob-
lem.

Proof. See Appendix A.

Generalizing the randomized algorithms, which attain the
approximation ratio of 1/2, is non-trivial because lemmas
used in the analyses are difficult to generalize for (modular)
lattices. Very recently a deterministic optimal 1/2 approxima-
tion algorithm has been proposed (Buchbinder and Feldman
2018); however, it is also non-trivial to generalize this algo-
rithm for lattices. Proposing an algorithm with the optimal
approximation ratio is a promising future work.

6 Conclusion
In this paper, we formulated the subspace selection prob-
lem as optimization problem over lattices. By introducing
new “DR-submodularities” on lattices, named directional
DR-submodularities, we successfully identified the solvable
subspace selection problem in terms of the submodularity. In
particular, we found the objective functions of the principal
component analysis and sparse dictionary selection problem
are directional DR-submodular functions in their lattices.
Also, we found a “quantum” version of the cut function is
a directional DR-submodular function. These results moti-
vate new feature selection problems, generalized principal
component analysis and quantum maximum cut problem,
and improves the approximation ratio for sparse dictionary
problem in certain instances. We proposed approximation
algorithms for maximizing directional DR-submodular func-
tions on several constraints.

There are several interesting future directions. First, in the
knapsack constraint problem and the non-monotone uncon-
strained problem, our results on general lattices have worse
approximation ratios than the results on the integer lattice or
distributive lattices. Filling these gaps are the most promising
future works.

Second, in the set lattices case, a matroid constraint is
considered as an important setting. Thus, it will promis-
ing to establish the lattice counterpart of this constraint;
here, the difficulty may appear how to define matroid in
general lattice (Barnabei, Nicoletti, and Pezzoli 1998). Re-
lated with this direction, in the set lattice case, the contin-
uous relaxation-type algorithms play fundamental role in
various constraints, including the matroid constraint (Cali-
nescu et al. 2011; Vondrák, Chekuri, and Zenklusen 2011;
Hassani, Soltanolkotabi, and Karbasi 2017; Bian et al. 2017a).
Generalizing this technique to lattice will connect submodu-
lar maximization and the CAT(0) space theory, which is re-
cently discussed in submodular minimization area (Hamada
and Hirai 2017).

Finally, it is also an interesting direction to look for ma-
chine learning applications of the directional DR-submodular
maximization other than the subspace selection problem. The
possible candidates include the subgroup selection problem
and the subpartition selection problem, which may be natu-
rally formulated as optimization problems on lattices.
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