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Abstract

ConvNets, through their architecture, only enforce invariance
to translation. In this paper, we introduce a new class of deep
convolutional architectures called Non-Parametric Transfor-
mation Networks (NPTNs) which can learn general invari-
ances and symmetries directly from data. NPTNs are a natu-
ral generalization of ConvNets and can be optimized directly
using gradient descent. Unlike almost all previous works in
deep architectures, they make no assumption regarding the
structure of the invariances present in the data and in that
aspect are flexible and powerful. We also model ConvNets
and NPTNs under a unified framework called Transformation
Networks (TN), which yields a better understanding of the
connection between the two. We demonstrate the efficacy of
NPTNs on data such as MNIST with extreme transformations
and CIFAR10 where they outperform baselines, and further
outperform several recent algorithms on ETH-80. They do so
while having the same number of parameters. We also show
that they are more effective than ConvNets in modelling sym-
metries and invariances from data, without the explicit knowl-
edge of the added arbitrary nuisance transformations. Finally,
we replace ConvNets with NPTNs within Capsule Networks
and show that this enables Capsule Nets to perform even bet-
ter.

Introduction
The Fundamental Problem. One of the central problems
of machine learning, has been supervised classification. A
core challenge towards these problems is the encoding or
learning of invariances and symmetries that exist in the train-
ing data. Indeed, methods which incorporate some known
invariances or promote learning of more powerful invari-
ances for a learning problem perform better in the target task
given a certain amount of data. A number of ways exist to
achieve this. One can present transformed versions of the
training data as in (Niyogi, Girosi, and Poggio 1998), mini-
mize auxiliary objectives promoting invariance during train-
ing as in (Hadsell, Chopra, and LeCun 2006) or pool over
transformed versions of the representation itself as in (Liao,
Leibo, and Poggio 2013; Pal, Juefei-Xu, and Savvides 2016;
Pal et al. 2017).
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Convolutional Networks and Beyond. Towards this
goal, ideas proposed in (LeCun et al. 1998) with the in-
troduction of convolutional neural networks have proved to
be very useful. Weight sharing implemented as convolutions
followed by pooling resulted in the hard encoding of trans-
lation invariances (and symmetries) in the network. This
made it one of the first applications of modelling invariance
through a network’s architecture itself. Such a mechanism
resulted in greater regularization in the form of a structural
or inductive bias in the network. With this motivation in
mind, it is almost natural to ask whether networks which
model more complicated invariances and symmetries per-
form better? Investigating architectures which invoke invari-
ances not implicitly through the model’s functional map but
explicitly through an architectural property seems important.

New Dimensions in Network Architecture. Over the
years, deep convolutional networks (ConvNets) have en-
joyed a wide array of improvements in architecture. It was
observed early on that a larger number of filters (width) in
ConvNets led to improved performance, though with dimin-
ishing returns. (He et al. 2016; Huang et al. 2016) present
another significant milestone with the development and ma-
turity of residual connections and dense skip connections.
Though there have been more advances in network archi-
tecture, many of the improvements have been derivatives of
these two ideas (for instance (Zagoruyko and Komodakis
2016; Chen et al. 2017; Hu, Shen, and Sun 2017)). Recently
however, (Sabour, Frosst, and Hinton 2017) introduced Cap-
sule Nets which presented another potentially fundamental
idea of encoding properties of an entity or an object in an
activity vector rather than a scalar. With the goal of design-
ing more powerful networks, ideas presented in this paper
for modelling general invariances in the same framework as
ConvNets, open up a new and potentially key dimension for
architecture development.

Primary Contribution. In this work, we explore one
such architecture class, called Transformation Networks
(TN) which is a generalization of ConvNets. Additionally,
we introduce a new type of TN using which a new class
of networks can be built called Non-Parametric Transforma-
tion Networks (NPTNs). NPTNs networks have the ability
to learn invariances to general transformations that are ob-
served in the data which are non-parametric in nature (dif-
ficult to express mathematically). They can be easily im-
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Figure 1: (a) Operation performed by a single Transforma-
tion Network (TN) node (single channel input and single
channel output, Non-Parametric Transformation Networks
are a kind of TN). TNs (and NPTNs) are a generalization
of ConvNets towards learning general invariances and sym-
metries. The node has two main components (i) Dot prod-
uct implemented as Convolution due to weight sharing and
(ii) Transformation Pooling. The dot-product between the
input patch (x) and a set of |G| number of filters gw (green)
is computed (this results in convolution when implemented
with spatially replicated nodes). Here |G| = 6 (different
shades of green indicate transformed templates). g indicates
the transformation applied to the template or filter w. The
resultant six output scalars (red) are then max-pooled over
to produce the final output s (black). The pooling opera-
tion here is not spatially (as in vanilla ConvNets) but rather
across the |G| channels which encode non-parametric trans-
formations. The output s is now invariant to the transforma-
tion encoded by the set of filters G. Each plane indicates a
single feature map/filter.

plemented using standard off-the-shelf deep learning frame-
works and libraries. Further, they can be optimized using
vanilla gradient descent methods such as SGD. Unlike other
methods that enforce additional invariances in convolutional
architectures (Teney and Hebert 2016; Wu, Hu, and Kong
2015; Li et al. 2017), NPTNs do not need to transform the
input, activation maps or the filters at any stage of the learn-
ing/testing process. They enjoy benefits of a standard con-
volutional architecture such as speed and memory efficiency
while being more powerful in modelling invariances and be-
ing elegant in their operation. When forced to ignore any
learnable transformation invariances in data, they gracefully
reduce to vanilla ConvNets in theory and practice. However,
when allowed to do so, they outperform ConvNets by cap-
turing more general invariances.

Some properties of NPTNs. The architecture itself of an
NPTN allows it to be able to learn powerful invariances from
data provided the transformations are observable in data (a
single node is illustrated in Fig. 1(a)). NPTNs do not en-

force any invariance that is not observed in the data (al-
though translation invariance can still be enforced through
spatial pooling). Learning invariances from data is different
and more powerful than enforcing known and specific in-
variances as is more common in literature (see Fig. 1(b)).
Networks which enforce predefined symmetries (including
vanilla ConvNets) force the same invariances at all layers
which is a strong prior. More complex invariances are left
for the network to learn using the implicit functional map as
opposed to the explicit architecture. The proposed NPTNs
have the ability to learn different and independent invari-
ances for different layers and in fact for different channel
paths themselves. Vanilla ConvNets enforce translation in-
variance through the convolution operation followed by a
aggregation operation (either pooling or a second convo-
lution layer) and only need to learn the filter instantiation.
However, an NPTN node needs to learn 1) the instantiation
of the filter and 2) the transformation that the particular node
is invariant towards encoded as a set of filters. Each node
learns these entities independently of each other which al-
lows for a more flexible invariance model as opposed to ar-
chitectures which replicate invariances across the network.

Prior Art
Although past applications of incorporating invariances
were more specific and relatively narrow, development of
such methods offers a better understanding of the impor-
tance of the problem. Though in this work we focus on
deep architectures, it is important to note a number of works
on modifications of Markov Random Fields and Restricted
Boltzman Machines to achieve rotational invariance (Kivi-
nen and Williams 2011; Sohn and Lee 2012).

Incorporating known invariances using deep net-
works. Convolutional architectures have seen many ef-
forts to produce rotation invariant representations. (Fasel
and Gatica-Perez 2006) and (Dieleman, Willett, and Dambre
2015) rotate the input itself before feeding it into stacks
of CNNs and generating rotation invariant representations
through gradual pooling or parameter sharing. (Teney and
Hebert 2016; Wu, Hu, and Kong 2015; Li et al. 2017) ro-
tate the convolution filters (a cheaper albeit still expensive
operation) instead of transforming the input followed by
pooling. A similar approach was explored for scale by (Xu
et al. 2014). An interesting direction of research was ex-
plored by (Sifre and Mallat 2013) where the rotation, scale
and translation invariant filters were fixed and non-trainable.
(Cohen and Welling 2016a; Henriques and Vedaldi 2017)
presented methods to incorporate parametric invariances us-
ing groups and warped convolutions. The transformations in
(Henriques and Vedaldi 2017; Cohen and Welling 2016b)
are known apriori and the sample grids and steerable filters
are generated offline. This limits the capability to learn ar-
bitrary and adaptive transformations. NPTNs need no such
apriori knowledge apart that encoded in its architecture, can
learn arbitrary non-parametric transformations and finally
are simpler and perhaps more elegant in implementation.

Learning unknown invariances from data. In most real
world problems, nuisance transformations present in data
are unknown or too complicated to be parameterized by
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some function. (Anselmi et al. 2013) proposed a theory
of group invariances called I-theory and explored its con-
nection to general classification problems and deep net-
works. Based off the core idea of measuring moments of
a group invariant distribution, multiple works had demon-
strated efficacy of the ideas in more challenging real-world
problems such as face recognition, though not in a neu-
ral network setting. See (Liao, Leibo, and Poggio 2013;
Pal, Juefei-Xu, and Savvides 2016; Pal et al. 2017).

Learning unknown invariances from data using deep
networks. Very few works have explored incorporating un-
known invariances into deep networks. To the best of our
knowledge, SymNets introduced in (Gens and Domingos
2014) was only one other previous study proposed deep net-
works which learn more general transformations. They were
introduced as one of the first to model general invariances
with back propagation. They utilize kernel based interpola-
tion to tie weights enable them to model general symme-
tries. Nonetheless, the approach is complicated and difficult
to scale. (Anselmi et al. 2017) provide sufficient conditions
to enforce the learned representation to have symmetries
learned from data. (Kavukcuoglu et al. 2009) modelled lo-
cal invariances using pooling over sparse coefficients of a
dictionary of basis functions. (Ngiam et al. 2010) achieved
local invariance through complex weight sharing. Optimiza-
tion was carried out through Topographic ICA and only car-
ried out layer wise for deep networks. A separate approach
towards modelling invariances was also developed where a
normalizing transformation is applied to every input inde-
pendently. This approach was applied to transforming auto
encoders (Hinton, Krizhevsky, and Wang 2011) and Spatial
Transformer Networks (Jaderberg et al. 2015).

The Transformation Network Paradigm
A Transformation Network (TN) is a feed forward network
with its architecture designed to enforce invariance to some
class of transformations through pooling. At the core of the
framework is the TN node. A TN network consists of multi-
ple such nodes stacked in layers. A single TN node is analo-
gous to a single convolution layer with single channel input
and single channel output.

Each TN node (single input channel and single output
channel) internally consists of two operations 1) (convolu-
tion) the convolution operation with a bank of filters and
2) (transformation pooling) a max pooling operation across
the set of the resultant convolution feature maps from the
single input channel. Note the pooling is not spatial but
rather across channels originating from the same input chan-
nel (this is different from MaxOut (Goodfellow et al. 2013)
which pools over all input channels1). Fig. 1(a) illustrates
the operation of single TN node with a single input/output
channel for a single patch. The single channel illustrated in
the figure takes in a single input feature map and convolves
it with a bank of |G| filters. Here |G| is the cardinality (or
size) of the set of transformations that the TN node is in-
variant towards, with G being the actual set itself. Next, the

1We discuss deviation from MaxOut in more detail in the sup-
plementary.

transformation max pooling operation max pools across the
|G| feature values to obtain a single TN activation value.
When this node is replicated spatially, standard convolution
layers can be utilized. Formally, a TN node denoted by Υ
acting on a 2D image patch vectorized as x ∈ Rd can be
defined as follows.

Υ(x) = max
g∈G

(〈x, gw〉) (1)

Here, 〈 〉 denotes a dot product and G is formally defined
as a unitary group, i.e. a finite set obeying group axioms
with each element being unitary. w ∈ Rd is the weight or
filter, and gw is the group element g acting on w2. There-
fore, the convolution kernel weights of a TN node are sim-
ply the transformed versions of w as transformed by the uni-
tary group G. The TN node has to, only in theory, transform
weight template w according to G to generate the rest of
the filters to be pooled over during the transformation pool-
ing stage. In practice however, these are simply stored as a
set of templates or filters which only implicitly encode G
through some constraints. For instance, vanilla ConvNets
model the group G to be the translation group by enforc-
ing it through the convolution operation. Thus, a ConvNet
can be exactly modelled by the TN framework when G is the
translation group. Gradient descent updates the filter w for a
single node which immediately specifies the other filters in
that node since they are the translated versions of w.

Significance of the Modeling of Transformations as
Unitary Groups. The use of unitary groups to model trans-
formations and invariances has emerged as a prominent the-
oretical tool (Anselmi et al. 2013; Pal et al. 2017). Group
structure allows the computing of invariant objects such as
group integrals. However, the significance of the unitary
group lies in the fact that the vanilla ConvNet is invariant to
translations, which is the simplest unitary group. Any frame-
work that models invariance using the unitary group can be
directly generalized to more complex groups such as rota-
tions (rotation is an unitary transformation). This allows for
seamless integration of the vanilla ConvNet into the theo-
retical framework and provides clear theoretical and practi-
cal connections to the same. Unitary groups in TNs allow
them to exactly model ConvNets while generalizing to more
complex networks invoking more complex invariances. The
unitary group condition thus is only a useful theoretical tool,
however should not be considered as a practical constraint.

Invariances in a TN node. Invariance in the TN node
arises directly due to the symmetry of the unitary group
structure of the filters. The max operation simply measures
the infinite moment of an invariant distribution which in-
vokes invariance (see (Anselmi et al. 2013)). We demon-
strate this in the form of the following simple result3.
Lemma 1. (Invariance Property) Given vectors x,w ∈ Rd,
a unitary group G and Υ(x) = maxg∈G(〈x, gw〉), for any
fixed g′ ∈ G, then Υ(x) = Υ(g′x).

Lemma 1 shows that for any input x (including test in-
puts), the node output is invariant to the transformation

2We use this shorter notation to reduce clutter.
3Proof in the supplementary.
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group G. Note that invariance to test samples arises from two
components. First, the group structure of G provides exact
invariance and second, the unitary condition allows for the
invariance properties to be extended to unseen test samples.
This is interesting, since one does not need to observe any
transformed version of say a test sample x during training
which reduces sample complexity as explored by (Anselmi
et al. 2013). Invariance is invoked for any arbitrary input x
during test time, thereby demonstrating good generalization
properties.

Relaxing towards Non-group and Non-Unitary Struc-
ture in a TN node (Towards NPTNs). Lemma 1 guar-
antees exact invariance perfectly for vanilla ConvNets and
TNs which model G as having a group-structure and the
unitary condition. For methods that do not enforce these
conditions (unitary group conditions) in theory, no test
generalization claim can be made. However, a number of
studies have observed approximate albeit sufficient invari-
ances in practice under this setting (Anselmi et al. 2013;
2017; Pal, Juefei-Xu, and Savvides 2016; Pal et al. 2017;
Liao, Leibo, and Poggio 2013). The main motive for mod-
elling transformations as unitary groups was to provide a
theoretical connection to ConvNets and other methods that
enforce other kinds of unitary invariance such as rotation in-
variance (Li et al. 2017; Wu, Hu, and Kong 2015). However,
real-world data experiences a large array of transformations
acting, which certainly lie outside the span of unitary trans-
formations. Keeping this in mind, constraining the network
to model only unitary transformations limits their ability to
learn these more general invariances which are difficult to
characterize.

In the following section, we introduce a new kind of TN
called the NPTN which is free from the constraints and lim-
itations of unitary modelling, thereby being more expres-
sive. Indeed, in our experiments, we observe that the NPTN
architectures are able to perform better by learning invari-
ance (signified by better test generalization) towards both
1) group structured, unitary and parametric transformations
such as translations and rotations, and also towards 2) gen-
eral non-group structured and non-parametric transforma-
tions (as in general object classification) which are difficult
to characterize. Note that Lemma 1 only serve as a result for
ConvNets and TNs, they do not characterize the invariance
properties on NPTNs and general non-group non-unitary
transformation. Investigation of such properties of NPTNs
under the general setting is arduous and is outside the scope
of this paper. Further, note that developing TNs and relating
the unitary condition is not necessary for the development or
motivation of NPTNs. TNs however provide a more elegant
story and more importantly clarify the connection to vanilla
ConvNets and helps to put our contribution in perspective.

Non-Parametric Transformation Networks
A Non-Parametric Transformation Network (NPTN) is a
kind of TN that lacks any constraints on set of weights/filters
w for any particular node. Here the set of filters G has
two relaxations 1) need not have any group structure and
2) need not model any parametric and/or unitary transfor-
mations such as the translations or rotations. The term G in

an NPTN represents simply a set of arbitrary filters mod-
elling arbitrary transformations which are (potentially) non-
parametric. One might think of the analogy from statistics
where the Gaussian distribution is parametric, however for
many real-world distributions a non-parametric tool such as
a histogram is more appropriate. Note that however, there
is no constraint that prevents a NPTN from learning trans-
lation and rotation invariance. In fact, in one of our experi-
ments this is exactly the requirement. Under the two relax-
ations, the invariance invoked to these arbitrary transfor-
mations in an NPTN would only be approximate. Nonethe-
less and consistent with previous work, we find in our ex-
periments that despite the approximation, there is much to
be gained overall and the invariance invoked suffices in
practice as also found by (Liao, Leibo, and Poggio 2013;
Pal, Juefei-Xu, and Savvides 2016).

In an NPTN, both the entities (w,G) are learned, i.e. a
NPTN node is tasked with learning both the filter instantia-
tion w, and the set of transformations G to which the node is
to be invariant towards. Nonetheless and rather importantly,
no generation of transformed filters is necessary during any
forward pass of a NPTN layer since the set G of transformed
filters is always maintained and updated by gradient de-
scent. This significantly reduces computational complexity
compared to some previous works (Teney and Hebert 2016;
Wu, Hu, and Kong 2015). Learning G from data is in sharp
contrast with the vanilla convolutional node in which only
the filter instantiation w is learned and where G is hard
coded to be the translation group which is a parametric trans-
formation (and also arguably the most elementary). Thus,
ConvNets are a kind of Parametric Transformation Net-
works (PTNs) (see Fig. 2(c)). It is also important to note that
however, setting |G| = 1 and incorporating spatial pool-
ing, a NPTN is reduced to a vanilla ConvNet in practice.
Compared to other approaches to learn and model general
invariances such as SymNets (Gens and Domingos 2014),
the NPTN architecture is elegantly simple and also a close
generalization of ConvNets. Further, they can replace any
convolution layer in any architecture making them versatile.
We now describe the NPTN layer in more detail and discuss
its characteristics.

NPTN Layer Structure, Forward Pass and Training.
Fig. 2 illustrates a NPTN layer and compares it to a vanilla
ConvNet layer. The NPTN layer shown has 2 input chan-
nels, 2 output channels and |G| = 3. For a NPTN layer
with M input channels and N output channels, there would
be MN NPTN nodes each identical to the one shown in
Fig. 1(a). There are |G| filters learned for each of the MN
nodes, which each are convolved over the image similar to a
vanilla ConvNet. Consider Fig. 2(b), once the input is con-
volved with the M × |G| filters, the M sets each with |G|
feature maps each are max pooled across the |G| feature
maps. More specifically, each of |G| feature maps from a
single input channel results in one intermediate feature map
after max pooling (across the |G| channels). This is the pri-
mary step that invokes invariances to transformations. Af-
ter this operation there are MN intermediate feature maps
which are transformation invariant. Now, the sum (alterna-
tively the mean) of these M feature maps results in one out-
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(a) Convolution layer
(b) NPTN layer

Transformation Network (TN)

Non-Parametric and 
 non-group structured G

Parametric and 
group structured G

ConvNet NPTN

(c) Relation between ConvNets and NPTNs

Figure 2: Comparison between (a) a standard Convolution layer and (b) a NPTN layer with |G| = 3. Each layer depicted has 2
input (shades of grey) and 2 output channels (shades of blue). The light grey rectangle encloses a single TN node (see Fig. 1(a))
The convolution layer has therefore, 2× 2 = 4 filters, whereas the NPTN layer has 2× 2× 3 = 12 filters. The different shades
of filters in the NPTN layer denote transformed versions of the same filter (same color) which are max pooled over (support
denoted by inverted curly bracket). The + operation denotes channel addition. In our experiments, we adjust the input/output
channels of the NPTN layer to have the same number of parameters as the ConvNet baselines. (c) Shows how ConvNets and
NPTNs are categorized under the TN framework.

put feature map or channel. This is repeated for each of the
N output channels4. Note that there is no operation in this
forward pass where the input or the filters need to be trans-
formed on-the-fly, which makes it NPTNs computation-
ally efficient compared to some previous models (Fasel and
Gatica-Perez 2006; Dieleman, Willett, and Dambre 2015;
Teney and Hebert 2016; Wu, Hu, and Kong 2015; Li et al.
2017). In fact, the computation complexity for NPTNs only
increases with the order |G| relative to a vanilla convolu-
tion layer. This is countered in our experiments by decreas-
ing M and N , primarily to preserve the number of param-
eters. The NPTN layer can be trained using standard back-
propagation. Back-propagation updates each of the |G| fil-
ters of the NPTN independently depending on which of the
|G| filters is the ‘winner’ during the channel max pooling op-
eration. Note again that this operation is very different from
MaxOut which pools over inputs from all channels, whereas
here each max operation pools over |G| channels only from
the same input channel5. Since the filters are not constrained
to form any group, we do not expect to see any regular trans-
formations being observed in the filters (for instance, rotated
filters for rotation invariance). This might seem as a slight
hindrance to interpretibility, nonetheless in our experiments,
we find NPTNs perform well in specific applications where
learning invariance from the data is necessary.

Invariance Modelling in NPTNs is Data Driven and
Highly Flexible. It is important to note that though the archi-
tecture of NPTNs allows it to learn invariances, it does not
in fact enforce any particular invariance by itself. NPTNs
can only learn invariances to transformations that are ob-
served in data, and thereby are even more benefited from
data augmentation and natural variation. This is a critical
difference between NPTNs and other works which do en-

4We provide implementation details of NPTNs using standard
libraries in the supplementary.

5We discuss deviation from MaxOut in more detail in the sup-
plementary.
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Figure 3: Test losses on CIFAR10 for the two layered net-
work. Each network listed has the same number of filters.

force specific invariances through design (see under Para-
metric Invariance in Fig. 1(b)). Another important and pow-
erful property that emerges from having independent filter
sets for each of the NPTN nodes in an entire network, is that
each individual node can model invariance to a completely
different transformation. Concretely, a single NPTN layer
with M input channels and N output channels potentially
can model MN different kinds of invariances. This is again
in sharp contrast to ConvNets and other previous works
such as (Teney and Hebert 2016; Wu, Hu, and Kong 2015;
Li et al. 2017) where each layer and in fact each of the chan-
nel paths model exact same invariance, either translation, ro-
tation or scale. NPTNs thus offers immense flexibility in in-
variance modelling.

Empirical Evaluation of NPTNs
Benchmarking against ConvNets on CIFAR10
In our first set of experiments, we benchmark and character-
ize the behavior of NPTNs against the standard ConvNets
augmented with Batch Normalization (Ioffe and Szegedy
2015). The goal of this set of experiments is to observe
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Method Accuracy (%)
ConvNet (Khasanova and Frossard 2017) 80.1
STN (Jaderberg et al. 2015) 45.1
DeepScat (Oyallon and Mallat 2015) 87.3
HarmNet (Worrall et al. 2017) 94.0
TIGradNet (Khasanova and Frossard 2017) 95.1
NPTN (Ours) 96.2

Table 1: Test accuracy on ETH-80. All models including
NPTNs and the ConvNet had roughly the same number of
parameters (about 1.4M). Models followed the architecture
described in (Khasanova and Frossard 2017). Results for
models other than NPTN are cited as is from (Khasanova
and Frossard 2017).

whether learning non-parametric transformation invariance
from complex visual data itself helps with object classifica-
tion. For this experiment, we utilize the CIFAR10 dataset6.
The networks we experiment with are not designed to com-
pete with state-of-the-arts on this data but rather throw light
into the behavior of NPTNs. We therefore utilize a small
network, specifically a two layered network, for these ex-
periments. Each layer block of the baseline ConvNets con-
sist of the convolution layer, followed by batch normaliza-
tion and the non-linearity (PReLU) and finally by a 2 by 2
spatial max pooling layer. Each corresponding NPTN net-
work replaces only the convolution layer with the NPTN
layer. Thus, NPTN is allowed to model non-parametric in-
variance in addition to the typically enforced translation in-
variance due to spatial max pooling. The two layered net-
work baseline ConvNet has channels [3, 48, 16] with a total
of 3×48+48×16 = 912 filters. The NPTN variants in this
experiment keep the total number of filters constant with 48
channels with |G| = 1 denoted by (48 1), 24 channels with
|G| = 2 denoted by (24 2), and so on up until 9 channels
with |G| = 5 (9 5). Fig. 3 shows the testing losses. Each
network experimented with has the same number of param-
eters. We find all NPTN variants which learn a non-trivial
set of transformations (|G| > 1) outperform the ConvNet
baseline significantly, with NPTN |G| = 3 performing the
best.

Benchmarking against other approaches: ETH-80
We now benchmark NPTNs against other approaches learn-
ing invariances on the ETH-80 dataset (Leibe and Schiele
2003). As our baseline, we follow the experimental setup
and the specifications of the models described in (Khasanova
and Frossard 2017). Note that for this experiment, our goal
is not to attain state-of-the-art results, but rather benchmark
against other related methods under a comparable setting.
The dataset has 80 objects belonging to 8 classes. Each ob-
ject has 41 images taken from a grid of different viewpoints
on a hemisphere. Following (Khasanova and Frossard 2017),

6With standard data augmentation of random cropping after a
4 pixel pad, and random horizontal flipping. Training was for 300
epochs with the learning rate being 0.1 and decreased at epoch 150,
and 225 by a factor of 10.

Rotations 0◦ 30◦ 60◦ 90◦

ConvNet (36) 0.75 1.16 2.05 3.32
NPTN (36, 1) 0.68 1.27 2.01 3.36
NPTN (18, 2) 0.66 1.09 ) 1.72 2.88
NPTN (12, 3) 0.63 1.08 1.71 2.76
NPTN (9, 4) 0.66 1.17 1.83 2.94
Translations 0 pix 4 pix 8 pix 12 pix
ConvNet (36) 0.62 0.95 1.97 7.00
NPTN (36, 1) 0.62 0.88 1.84 7.22
NPTN (18, 2) 0.74 0.75 1.70 6.26
NPTN (12, 3) 0.66 0.70 1.58 6.20
NPTN (9, 4) 0.64 0.76 1.59 6.37

Table 2: Test error on progressively transformed MNIST
with (a) random rotations and (b) random pixel shifts.
NPTNs can learn invariances to arbitrary transformations
from the data itself without any a priori knowledge. All mod-
els have same number of parameters.

we resize the images to 50 × 50 and train on 2,300 im-
ages and test on the rest. The isometric transformations in
the dataset present a good challenge for approaches to in-
voke invariance in a real-world setting. For this experiment,
we compare against standard ConvNets, Spatial Transformer
Networks (Jaderberg et al. 2015), DeepScat (Oyallon and
Mallat 2015), HarmNet (Worrall et al. 2017) and TIGrad-
Net (Khasanova and Frossard 2017). The NPTN architec-
ture was chosen to by replacing the convolution layers in
the ConvNet architecture in (Khasanova and Frossard 2017)
with NPTN layers while setting |G| = 3 and reducing
the number of channels to preserve the number of parame-
ters. All models in this experiment (including NPTNs) have
about 1.4M parameters. Table 1 presents the test accuracy on
ETH-80. We find that NPTN outperforms these other high-
performing algorithms on this task with an accuracy of 96.2
%. Thus, NPTNs despite having much simpler architecture
and the same number of parameters, is able to perform well
in a task where the primary nuisance transformation is due
to varying 3D pose of the objects.

Learning Unknown Transformation Invariances
from Data
We now demonstrate the ability of NPTN networks to learn
invariances directly from data without any apriori knowl-
edge. For this experiment, we augment MNIST with extreme
a) random rotations b) random translations, both in train-
ing and testing data thereby increasing the complexity of the
learning problem itself. For each sample, a random instan-
tiation of the transformation was applied. For rotation, the
angular range was increased, whereas for translations it was
the pixel shift range. Table 2 presents these results. All net-
works in the table are two layered and have the exact same
number of parameters. As expected, NPTNs match the per-
formance of vanilla ConvNets when there were no additional
transformations added (0◦ and 0 pixels)7. However, as the

7NPTNs perform slightly better than ConvNets for 0◦ rotations
because for all rotation experiments, small translations up to 2 pix-
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Figure 4: Test errors on MNIST for Capsule Nets aug-
mented with NPTNs. (128) denotes a Capsule Network
with a vanilla ConvNet. Other labels are NPTNs with
(channels, |G|). The number of filters from left to right is
{4224, 4160, 4074, 4128}. NPTNs significantly outperform
ConvNets in Capsule Nets with fewer filters.

transformation intensity (range) is increased, NPTNs per-
form significantly better than ConvNets. Trends consistent
with previous experiments were observed with the highest
performance observed with NPTN (|G| = 3). This high-
lights the main feature of NPTNs, i.e. their ability to model
arbitrary transformations observed in data without any apri-
ori information and without changes in architecture whatso-
ever. They exhibit better performance in settings where both
rotation invariance and stronger translation invariance is re-
quired (even though ConvNets are designed specifically to
handle translations). This ability is something that previous
deep architectures did not possess nor demonstrate.

NPTNs with Capsule Networks
Capsule Networks with dynamic routing were recently intro-
duced as an extension of standard neural networks (Sabour,
Frosst, and Hinton 2017). Since the original architecture
is implemented using vanilla convolution layers, invariance
properties of the networks are limited. Our goal for this ex-
periment is to replace Convolution Capsule Nets with NPTN
Capsules. We replace the convolution layers in the Primary
Capsule layer of the published architecture with NPTN lay-
ers while maintaining the same number of parameters (by
reducing number of channels and increasing |G|). Our base-
line is the proposed CapsuleNet with 3 layers using a third
party implementation in PyTorch8. The baseline convolution
capsule layer had 128 output channels. The NPTN variants
progressively decreased the number of channels as |G| was
increased. All other hyperparameters were preserved. The
networks were trained on the 2-pixel shifted MNIST for 50
epochs with a learning rate of 10−3. The performance statis-
tics of 5 runs are reported in Fig. 4. We find that for roughly
the same number of kernel filters (and parameters), Capsule
Nets have much to gain from the use of NPTN layers (a sig-
nificant test error decrease from 1.90 to 0.78 for 1

3 of the
baseline number of channels and |G| = 3). The learning of

els were applied only in training.
8https://github.com/dragen1860/CapsNet-Pytorch.git

invariances within each capsule significantly increases effi-
cacy and performance of the overall architecture.

Current Limitations
We observed that NPTNs and the idea of learning general
non-parametric invariances form the data itself has poten-
tial and merits further investigation as a component in more
broader studies. Nonetheless, our current implementation
of NPTN in PyTorch suffers from high memory usage and
high computation time partly due to channel shuffling. Given
our limited computation resources as this time, the size and
depth of the networks that we can train is subsequently lim-
ited. We therefore focus more on a systematic and thor-
ough investigation and benchmarking of a smaller network
on multiple tasks and experiments rather than larger scale
experiments. Such studies will be within scope once more
efficient function routines for specific tasks are available in
deep learning packages.

Discussion
It is clear that the success of ConvNets is not the whole story
towards solving perception. Studies into different aspects of
network design will prove to be paramount in addressing the
complex problem of not just visual but general perception.

The development of NPTNs offer one such design as-
pect, i.e. learning non-parametric invariances and symme-
tries directly from data. Through our experiments, we found
that NPTNs can indeed effectively learn general invariances
without any apriori information. Further, they are effective
and improve upon vanilla ConvNets even when applied to
general vision data as presented in CIFAR10 and ETH-80
with complex unknown symmetries. This seems to be a crit-
ical requirement for any system that is aimed at taking a step
towards general perception. Assuming detailed knowledge
of symmetries in real-world data (not just visual) is imprac-
tical and successful models would need to adapt accordingly.

In all of our experiments, NPTNs were compared to
vanilla ConvNet baselines with the same number of filters
(and thereby more channels). Interestingly, the superior per-
formance of NPTNs despite having fewer channels indicates
that better modelling of invariances is a useful goal to pur-
sue during design. Explicit and efficient modelling of invari-
ances has the potential to improve many existing architec-
tures. Indeed, we outperform several state-of-the-art algo-
rithms on ETH-80. In our experiments, we also find that
Capsule Networks which utilized NPTNs instead of vanilla
ConvNets performed much better. This motivates and justi-
fies more attention towards architectures and other solutions
that efficiently model general invariances in deep networks.
Such an endeavour might not only produce networks per-
forming better in practice, it also promises to deepen our
understanding of deep networks and perception in general.
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