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Abstract

Successful application processing sequential data, such as text
and speech, requires an improved generalization performance
of recurrent neural networks (RNNs). Dropout techniques
for RNNs were introduced to respond to these demands, but
we conjecture that the dropout on RNNs could have been
improved by adopting the adversarial concept. This paper
investigates ways to improve the dropout for RNNs by utiliz-
ing intentionally generated dropout masks. Specifically, the
guided dropout used in this research is called as adversarial
dropout, which adversarially disconnects neurons that are dom-
inantly used to predict correct targets over time. Our analysis
showed that our regularizer, which consists of a gap between
the original and the reconfigured RNNs, was the upper bound
of the gap between the training and the inference phases of the
random dropout. We demonstrated that minimizing our regu-
larizer improved the effectiveness of the dropout for RNNs on
sequential MNIST tasks, semi-supervised text classification
tasks, and language modeling tasks.

Introduction
Many effective regularization methods have been intro-
duced to address the issue of large-scale neural networks
predisposed to overfitting. Among several regularization
techniques (Bishop 1995; Ioffe and Szegedy 2015; Sali-
mans and Kingma 2016), dropout (Srivastava et al. 2014;
Kingma, Salimans, and Welling 2015) has become a common
methodology because of its simplicity and effectiveness. The
dropout randomly disconnects neural units during training
to prevent the feature co-adaptation. Srivastava et al. (Srivas-
tava et al. 2014) interpreted the dropout as an extreme form
of a model ensemble by sharing the extensive parameters
of a neural network. However, the naive application of the
dropout to hidden states of recurrent neural networks (RNNs)
failed to prove performance gains (Zaremba, Sutskever, and
Vinyals 2015) because it interferes with abstracting long-term
information. This issue is caused by the structural differences
between feed-forward neural networks (FFNNs) and RNNs.

Recent works have investigated the applications of the
dropout on the recurrent connections of RNNs. Gal and
Ghahramani (Gal and Ghahramani 2016) suggested the appli-
cation of the dropout on the same neural units through time
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steps, as opposed to dropping different neural units at each
time step. Their approach is similar to the L2 regularization
on the weight parameters in the recurrent connection. After
this suggestion, Semeninuta et al. (Semeniuta, Severyn, and
Barth 2016) and Moon et al.(Moon et al. 2015) explored the
dropout applications within long-short term memory (LSTM)
cells by regulating the gating mechanism. Recently, Merity
et al. (Merity, Keskar, and Socher 2018) proposed the use
of DropConnect (Wan et al. 2013) on the recurrent hidden-
to-hidden weight matrices. This approach also allows the re-
current units to share the same dropout mask. These dropout
techniques for RNNs have shown that recurrent units should
have the same transition metric to process the sequential in-
formation. These results are used in extending the dropout
techniques on RNNs.

Recently, dropout-based ensemble (DE) regularization
(Bachman, Alsharif, and Precup 2015; Ma et al. 2017;
Laine and Aila 2017; Tarvainen and Valpola 2017) has been
established to improve the dropout techniques. DE regular-
ization conceptually consists of two phases: the generation
of the dropout masks and the comparison of the original and
the perturbed networks by the dropout masks. Bachman et al.
(Bachman, Alsharif, and Precup 2015) and Ma et al. (Ma et al.
2017) tried to minimize the distance between the output dis-
tributions of the original network and its randomly perturbed
network. Laine and Aila (Laine and Aila 2017) suggested
self-ensembling models, or the Π model, containing a dis-
tance term between two randomly perturbed networks. Park
et al. (Park et al. 2018) proposed adversarial dropout that
intentionally deactivates neurons that are dominantly used to
predict the correct target. By utilizing the adversarial dropout,
the regularization consists of the distance between the origi-
nal and the adversarially perturbed networks. Additionally,
they proved further improvements for supervised and semi-
supervised image classification tasks. These DE regularizers
are fundamentally developed for all types of neural networks,
but these DE regularizations are not compatible to RNNs
because of the sequential information abstraction.

To investigate the effectiveness of the DE regularization
on RNNs, Zolna et al. (Zolna et al. 2018) proposed fraternal
dropout (FD), an RNN version of self-ensembling (Laine and
Aila 2017). Specifically, two randomly perturbed RNNs by
DropConnect are simultaneously supervised from the true
labels while maintaining the distance between their predic-
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Figure 1: A recurrent neural network with dropout noise on
recurrent connections. Each recurrent connection shares the
time-invariant dropout mask, ε, to alleviate the destructive
loss.

tions. They showed further generalization improvements on
the language modeling, considered to be one of the most
demanding applications of RNNs. Their results motivated us
to extend the adversarial dropout to RNNs.

This paper proposes adversarial dropout on recurrent con-
nections to adaptively regularize RNNs. Similar to the adver-
sarial dropout on FFNNs, adversarial dropout for RNNs also
deactivates dominating hidden states to predict the correct tar-
get sequence. In order to adapt the concept of the adversarial
dropout to the RNN structure, first, we analytically showed
that the regularizer, which consists of a gap between the orig-
inal and the perturbed RNNs, is the upper bound of the gap
between the training and the inference phases of the random
dropout on an RNN (Bachman, Alsharif, and Precup 2015;
Ma et al. 2017). Second, we investigated ways to measure
which recurrent neurons are mainly used to predict target se-
quences in using a time-invariant dropout mask. Finally, we
improved the algorithm to find a better adversarial dropout
condition compared to the previous algorithm finding the ad-
versasrial dropout. According to our experiments, adversarial
dropout for RNNs showed the advanced performances on
the sequential versions of MNIST, the semi-supervised text
classification, and the language modeling tasks.

Preliminary
Recurrent neural networks with dropout noise
We denoted simple RNN models for brevity of notation be-
cause derivations for LSTM and GRU follow similarly. Given
input sequence x = {x1, ..., xT } of length T , a simple RNN
model is formed by the repeated application of function fh.
This generates a hidden state ht at time step t by taking xt
and ht−1 as input. For descriptions of the dropout for RNNs,
we denoted d(h, ε) = h� ε/(1− p) as the random dropout
function where h is the dropout target and ε is the dropout
mask, sampled from the Bernoulli distribution with success
probability (1−p). Gal et al. (Gal and Ghahramani 2016) pro-
posed variational dropout to drop the previous hidden state
ht−1 with the same dropout mask for every time steps. The
following is the RNN equation with the variational dropout:

ht = fh(xt,ht−1) = σ(xtW h+d(ht−1, ε)Uh+bh) (1)

whereW h and Uh are parameter matrices that model input-
to-hidden and hidden-to-hidden (recurrent) connections, re-
spectively; bh is a vector of bias terms; and σ is the nonlinear
activation function. We notice that all hidden states share
the time-invariant dropout mask, ε. Figure 1 describes the

dropout noise space on the recurrent connections sharing the
same mask across every time steps. The goal of this paper
is to investigate the effectiveness of adversarial dropout on
RNNs. When we applied the adversarial dropout perturba-
tion to the model, we replaced the dropout mask, ε, with
adversarial dropout mask, εadv.

Inference gap of dropout for recurrent neural
networks
Recent results have shown that there is a gap between objec-
tives for training and testing when using a dropout technique.
This is called the inference gap of dropout(Ma et al. 2017;
Bulò, Porzi, and Kontschieder 2016). Dropout training indi-
cates learning an ensemble of neural networks, but the output
of each network in the ensemble should be averaged to pro-
vide the final prediction. Unfortunately, this averaging over
an exponential number of subnetworks is intractable, and
standard dropout typically implements an approximation by
applying the expectation of the dropout variable to compute
outputs with a deterministic network. However, the approxi-
mation causes the gap between the training and the inference
phase of the dropout techniques.

Expectation-linearization (EL) regularization (Ma et al.
2017), which is similar to a pseudo-ensemble agreement
(Bachman, Alsharif, and Precup 2015), tries to reduce the
gap by adding a penalty to the objective function. Let ε be the
dropout mask applied to the recurrent connection of RNNs,
and pt(x, ε;θ) be the prediction of the model for the input
sequence x at time t. The EL regularizer can be represented
as a generalized form as shown below:

REL(x; θ) := Eε

[ T∑
t=1

λtD
[
pt(x,Eε[ε];θ)||pt(x, ε;θ)

]]
(2)

where D[·||·] indicates a non-negative function that repre-
sents the distance between two output vectors such as cross-
entropy, ε is a Bernoulli random vector with the probability
p, and λt is a hyperparameter controlling the intensity of the
loss at time t. The goal of the EL regularizer is to minimize
network loss as well as the expected difference between the
prediction from the random dropout mask and the prediction
from the expected dropout mask, which is fully connected.
However, the EL regularizer requires a Monte Carlo (MC) ap-
proximation because calculating the penalty is still intractable
due to the expectation.

FD regularization (Zolna et al. 2018), which is an RNN
version of Π models (Laine and Aila 2017), indirectly re-
duces the inference gap by minimizing the variance of output
distributions caused by random dropout masks. Its regularizer
consists of the distance between two outputs perturbed by
two sampled dropout masks as shown in the following:

RFD(x; θ) := Eε1,ε2
[ T∑
t=1

λtD
[
pt(x, ε

1;θ)||pt(x, ε2;θ)
]]
,

(3)
where ε1 and ε2 are Bernoulli random vectors with the prob-
ability p. Zolna et al. (Zolna et al. 2018) proved that the FD
regularizer is related to the lower bound of the EL regularizer,
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FD(x; θ) ≤ REL(x; θ). To apply the FD regularizer, the
MC approximation is required due to the expectation over
the dropout masks.

We should note that the adversarial dropout for RNNs
consists of the distance between the output distributions per-
turbed by a base dropout mask and an adversarial dropout
mask, εadv. In section 3, we prove that our regularizer is the
upper bound of the EL regularizer without any further MC
approximation.

Adversarial training
Adversarial training is a training process that uses adver-
sarial examples crafted to include a small perturbation in
inputs so as to not classify the perturbed inputs correctly
(Goodfellow, Shlens, and Szegedy 2015; Papernot et al. 2016;
Miyato et al. 2017). The perturbation is a real-valued vector
and is mainly used to generate intentional noisy data. Re-
cently, the concepts of adversarial training has been extended
to sequential modeling tasks. Samanta et al. (Samanta and
Mehta 2017) proposed an algorithm that crafts adversarial
text examples by using gradient-based saliency maps. They
proved that the retraining with the crafted text improves gen-
eralization performance on the text classification task. In addi-
tion to directly crafting the adversarial text examples, Miyato
et al. (Miyato, Dai, and Goodfellow 2016) injected adversar-
ial noise in the word-embedding layer and built a regularizer
including adversarial perturbation. They evaluated adversar-
ial training on semi-supervised text classification tasks and
they achieved state-of-the-art performances. In contrast to the
adversarial perturbation on input space, adversarial dropout
identifies subnetworks misclassifying data even though a few
neurons are deactivated. The successful applications of ad-
versarial training on RNNs become additional motivation to
extend adversarial dropout to RNNs. Additionally, our results
showed that the model, when combining adversarial train-
ing and adversarial dropout, achieved an advanced level of
performance on Internet Movie Database (IMDB).

Adversarial dropout for recurrent neural
networks

Adversarial dropout (Park et al. 2018) is a novel DE regular-
ization to reduce the distance between two output distribu-
tions of the original network and an intentionally perturbed
network. Specifically, the adversarial dropout generate a per-
turbed network by disconnecting neural units that are domi-
nantly used to predict correct targets. The perturbed network
reconfigured by the adversarial dropout might not classify the
correct target even though few neurons are deactivated from
the full network. Therefore, its learning stimulates the useless
or the incorrectly learned neurons to better contribute to more
accurate predictions. The following is an RNN version of the
adversarial dropout regularizer:

RAdD(x, ε0; θ) :=

T∑
t=1

λtD
[
pt(x, ε

0;θ)||pt(x, εadv;θ)
]

(4)

where εadv := argmax
ε;‖ε−ε0‖2≤δ

T∑
t=1

λtD
[
pt(x, ε

0;θ)||pt(x, ε;θ)
]
. (5)

where δ is the hyperparameter controlling the intensity of the
noise. In this equation, ε0 is the base dropout mask, which

represents a target network that supervises an adversarially
dropped network. For a example, ε0 can be set as 1 vector that
indicates the original network without any dropped neurons.
At each training step, we identified the worst case dropout
condition, εadv, against the current model, pt(x, ε

0;θ), and
trained the model to be robust to such dropout perturbations
by minimizing the regularization term.

We note that the regularization term is equivalent to three
statistical relationships between two output distributions by a
dropout mask, ε0, and its adversarial dropout mask, εadv, as
shown below (proof in the appendix).

Remark 1. Let ε be an i.i.d. dropout mask; pt,i(ε) be a
ith element of pt(x, ε;θ) ∈ RM where M is the size of the
output dimension;RAdD

t (x, ε; θ) be the distance term at time
t in Eq.4; and εadv be an adversarial dropout mask by setting
the base dropout mask as ε when the distance metric is L2
norm. Then,

Eε[RAdD
t (x, ε; θ)] =

(1)︷ ︸︸ ︷∑
i

Vε[pt,i(ε)] +
∑
i

Vε[pt,i(ε
adv)]

− 2

(2)︷ ︸︸ ︷∑
i

Covε[pt,i(ε), pt,i(ε
adv)]

+

(3)︷ ︸︸ ︷∑
i

(
Eε[pt,i(ε)]− Eε[pt,i(ε

adv)]
)2
,

(6)

where Vε is the variance and Covε is the covariance. We
note that εadv depends on the base dropout mask, ε, so its
output, pt(x, ε

adv;θ), contains randomness derived from ε.
Minimizing the regularization in Eq.5 pursues (1) invariant
outputs over random dropout masks and adversarial dropout
masks, (2) positive relationship between the two outputs, and
(3) minimized distance between the means of the two outputs.
The first terms (1) are consistent with the goal of the FD
regularization that minimizes the variance of the output distri-
butions over dropout masks (Zolna et al. 2018). The second
term (2) indicates that outputs move in the same direction
even though dominantly used neurons for the correct predic-
tions are deactivated in the adversarially perturbed network.
If the output of sub-network A is higher than the output of
sub-network B, the output of adversarial sub-network from
A becomes higher than the one from B. This means that a
paired gap between a sub-network and its adversarial sub-
network becomes similar to the other paired gaps caused
by dropping dominantly used neurons. This interpretation
provides the connection between one paired case to the oth-
ers. The third term (3) minimizes the mean of the gaps. This
might increase training error of the base network because the
adversarially perturbed networks have poor performance. On
the other hand, it can improve generalization performance by
preventing the base network from overfitting to training data.
Figure 2 shows a graphical description of the three statistical
relationships.

When comparing our regularizer with the other EL reg-
ularizer, our regularization is the upper bound of the EL
regularization when ε0 = Eε[ε] without the MC approxi-
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Figure 2: Regularization term of adversarial dropout indicates
three statistical relationships between the outputs of randomly
dropped networks and of adversarially dropped networks: (1)
the variances of two outputs, (2) the covariance between two
outputs, and (3) the distance between the means.

mation under the constrained domain space of the dropout
masks, ε and ε0 (proof in the appendix).
Proposition 1. 1

4R
FD(x; θ) ≤ REL(x; θ) ≤

RAdD(x,Eε[ε]; θ) when ε ∈ {ε|‖Eε[ε]− ε‖2 ≤ δ}.
We note that our regularization is also positioned in the up-
per bound of the FD regularization. This result shows that
our regularization has relevance with others. The adversarial
dropout has a largest upper bound, and this suggests the ro-
bustness, yet slow learning. Given a set of regularizers, one
cannot tell which one is a right structure for his/her domain.
Often, researchers just try multiple cases and choose one
experimentally.

Finding adversarial dropout masks for recurrent
neural networks
In order to identify εadv, we needed to minimize the distance
term in Eq.4 with respect to ε. However, exact minimization
is intractable for modern neural networks because of non-
linear activations of the network and the discrete domain of
ε. This challenge led us to approximate the worst case of
the dropout masks by applying the following two steps: (1)
identifying the influences of the recurrent neurons and (2)
applying a greedy algorithm based on the influence scores
(Park et al. 2018).

The influences of the recurrent neurons should be time-
invariant because the recurrent neurons are repeatedly applied
over every time step. Fortunately, we can derive the influences
by using a gradient of the distance term with respect to the
dropout mask because the recurrent neurons have a time-
invariant dropout mask. To get the influences, we first relax
the discrete domain of ε ∈ {0, 1}D to the continuous domain,
ε̃ ∈ [0, 1]D, then we calculate the gradients with respect to ε̃.
We named the gradient values as influence map (IM) because
they indicated the influences of the recurrent neurons.

Letht(ε̃) and ĥt(ε̃) be a hidden state and a dropped hidden
state by ε̃ at time t, and Dt(ε̃) = D[pt(x, ε

0;θ)||pt(x, ε̃;θ)].
The IM can be calculated as follows:

IMi(ε
s) :=

∂
∑T
t=1 λtDt(ε̃)

∂ε̃i

∣∣∣
ε̃=εs

=

T∑
t=1

λt
∂Dt(ε

s)

∂ĥt(εs)

{ t−1∑
u=1

∂ĥt(ε
s)

∂ĥu,i(εs)
hu,i(ε

s)
}
,

(7)

where εs is the initial dropout mask of ε̃. In the equation,
hu,i(ε̃) and ĥu,i(ε̃) are the ith components of ht(ε̃) and
ĥt(ε̃) respectively. The equation on the right shows an alter-
native view of the IM without any Jacobian matrices with
respect to ε̃. The equation contains the gradient propagation,
∂ĥt(ε

s))/∂ĥu,i(ε
s)), which is calculated by the backpropa-

gation of the recurrent directions from time u to time t. This
alternative equation shows that the IM provide the degree of
the influence of the recurrent units over time. Additionally,
the IM depends on the initial values of the dropout mask,
εs. It is important to note that the initial dropout mask, εs,
should be different from ε0 because the same conditions of
dropout mask cause the zero values of the gradient if there
is no another stochastic process in the model. In this paper,
we initialized εs by randomly flipping a element of the base
dropout mask ε0 to set a initial dropout mask εs. Calculated
IM values indicate the relations between the recurrent neu-
rons and the distance term.

After calculating the IM, the adversarial dropout mask,
εadv, should be identified under the constraint, ‖εadv−ε0‖2 ≤
δ. For the worst case dropout conditions, the neuron with a
positive IM value should be activated and the neuron with a
negative IM value should be deactivated. Park et al. (Park et
al. 2018) proposed a greedy algorithm to find the worst case
of the dropout mask utilizing the IM. The algorithm estimates
IM values once and iteratively flips a dropout element shown
to be highly effective to the distance term in view of the IM.
The adversarial dropout with the greedy algorithm is shown
below:

εadv = Flip‖εs−ε0‖2≤δ
(
εs, IM(εs)

)
, (8)

where we introduce a flip function, which changes elements
of the dropout mask, εs, in the descending order of (1 −
2εs)� IM(εs) until the constraint ‖εs−ε0‖2 ≤ δ is satisfied
(detail algorithm in appendix). In the flip function, (1−2εs)�
IM(εs) indicates the influence of flipping a dropout element
because the relation estimated by the IM depends on the state
of the current dropout mask, εs. This approach is simple but
can be improved because IM values are unstable when an
element is flipped.

We constructed a straightforward way to extend the greedy
algorithm. Specifically, we modified the greedy algorithm to
update IM values multiple times, as shown here:

εadv,(0) = εs,

εadv,(k+1) = Flip‖εadv,(k+1)−ε0‖2≤ k+1
K

δ

(
εadv,(k), IM(εadv,(k))

)
,

(9)

where K is the maximum number of the iteration. For a
better approximation of the worst-case dropout mask, the IM
values are updated using the current dropout mask and the
bound of the constraint is increased through the iterations.
There is a trade-off between the better approximation and
the computational cost. The large number of the iteration,
K, leads to a better approximation, but it also increases the
computational cost proportionately. In our experiment, we
tested cases of K=1 and K=2 to investigate performance
improvement obtained by sacrificing the computational cost.
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Table 1: Test error rates of supervised learning on sMNIST
and pMNIST. Each setting is repeated ten times.

Model sMNIST pMNIST

Unregularized 1.018 (±0.165) 9.924 (±0.307)
VD (2016) 0.721 (±0.111) 5.218 (±0.132)
FD (2018) 0.720 (±0.061) 5.121 (±0.121)
AD (K=1) 0.705 (±0.047) 5.046 (±0.067)
AD (K=2) 0.644 (±0.046) 5.030 (±0.065)

Figure 3: Test accuracies of the perturbed RNNs by random
dropout and adversarial dropout masks.

Experiments
Sequential MNIST
Sequential MNIST tasks, also known as pixel-by-pixel
MNIST, process each image one pixel at a time and pre-
dicts the label of the image. The tasks can be categorized by
the order of the pixels in a sequence: sMNIST in scanline
order and pMNIST in a fixed random order. Because the size
of an MNIST image is 28 × 28, the length of the sequence
becomes 784.

Our baseline model included a single LSTM layer of 100
units with a softmax classifier to produce a prediction from
the final hidden state. For the settings for the dropout, we
set the dropout probability as 0.1 for the baseline models. In
the case of the adversarial dropout, we adapted ε0 = Eε[ε],
which indicates the expectation of the dropout mask, and
δ = 0.03, which represents the maximum changes from
the base dropout mask as 3%. These hyperparameters of
the baseline models as well as our models were retrieved in
the validation phase. All models were trained with the same
optimizer (detail settings in appendix).

Table 1 shows the test performances of the dropout-based
regularizations. When applying variational dropout on the
recurrent connections, the performance was improved from
the unregularized LSTM. By adding regularization terms, the
performance on the test dataset was improved in the following
order: FD, and adversarial dropout (K=1, 2).

Figure 4: Averages of the adversarial dropout masks over the
test dataset through the training iterations.

In order to investigate how adversarial dropout training
affects the accuracy distribution of the dropped subnetworks,
we sampled random dropout masks and adversarial dropout
masks respectively 500 times and tested the performance of
the subnetwork reconfigured by the sampled dropout masks.
Figure 3 (a) shows the histogram of the results. In this analy-
sis, we applied the dropout probability, p=0.03, and the hy-
perparameters, δ=0.03 and K=2, to the adversarial dropout.
In the case of the variational dropout, we can see that the test
performances of adversarially dropped networks were worse
than the test performance of randomly dropped networks. By
adding the regularization term of the FD, the performances
of adversarially dropped networks were improved and caused
the performance distribution of randomly dropped networks
to move the right and its variance to reduce. That is, regu-
larization of the FD indirectly improved the performance of
the subnetwork in its worst case scenario. On the other hand,
adversarial dropout directly controlled the sub-network in
the worst case scenario. As a result, the performances of the
base subnetwork and the adversarially perturbed networks
were improved more than the performances in the case of FD
regularization.

We additionally investigated the adversarial dropout con-
dition changes throughout the training phase. We calculated
Etest[ε

adv] on every training epoch. Figure 3 (b) shows the
visualized adversarial dropout masks. As can be seen, the
adversarial dropout condition is equally spread over the test
dataset in the case of adversarial dropout training, whereas
the other cases show that a certain number of elements are se-
lected more frequently for the adversarial dropout condition.
These results show that adversarial dropout training stimu-
lates the useless or the incorrectly learned neurons to better
contribute to a more accurate prediction.

Semi-supervised text classification
The text classification task is one of the most important tasks
utilizing RNN architecture. We evaluated our method on two
text datasets, IMDB and Elec. IMDB is a standard benchmark
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Table 2: Test error rates (%) on the IMDB and Elec classification tasks. All models were pre-trained by neural language models.
Our experiments were repeated five times.

Method IMDB Elec

R
ep

or
te

d One-hot CNN (Johnson and Zhang 2015; 2016) 6.05 5.87
One-hot bi-LSTM (Johnson and Zhang 2016) 5.94 5.55
Adversarial training (Miyato, Dai, and Goodfellow 2016) 6.21 5.61
Virtual adversarial training (Miyato, Dai, and Goodfellow 2016) 5.91 5.54
Adversarial + virtual adversarial training (Miyato, Dai, and Goodfellow 2016) 6.09 5.40

O
ur

ex
pe

ri
m

en
t

Our base model
LSTM 7.164 (±0.070) 6.155 (±0.092)

Input perturbation on embeddings
Adversarial training 6.296 (±0.115) 5.652 (±0.064)
Virtual adversarial training 5.914 (±0.051) 5.610 (±0.045)

Dropout perturbation on hidden states
Variational dropout 7.042 (±0.059) 6.114 (±0.074)
Expectation-Linearization dropout 6.358 (±0.065) 5.734 (±0.052)
Fraternal dropout 6.349 (±0.060) 5.785 (±0.085)
Adversarial dropout on the last hidden state 6.471 (±0.058) 5.784 (±0.064)
Adversarial dropout on the recurrent connection (K=1) 6.155 (±0.053) 5.622 (±0.051)
Adversarial dropout on the recurrent connection (K=2) 6.005 (±0.043) 5.603 (±0.049)

Input and dropout perturbations
Adversarial dropout (K=1) + virtual adversarial training 5.715 (±0.081) 5.638 (±0.044)
Adversarial dropout (K=2) + virtual adversarial training 5.687 (±0.068) 5.621 (±0.058)

movie review dataset for sentiment classification(Maas et al.
2011). Elec is a dataset on electronic product reviews from
Amazon (Johnson and Zhang 2015). Both datasets consist
of labeled text data and unlabeled text data. In Elec, we
removed some duplicated examples in labeled and unlabeled
training dataset. We describe the detail summarization in the
appendix.

Following previous studies on these datasets, we imple-
mented a pre-training phase through neural language mod-
eling and a training phase using the classification model.
Most experiment settings are similar to (Miyato, Dai, and
Goodfellow 2016) (detail settings in the appendix). Our im-
plementation code will be available at https://github.com/
sungraepark/adversarial dropout text classification.

Table 2 shows the test performance on IMDB and Elec with
each training method. The base LSTM achieved a 7.164%
error rate on IMDB and 6.155% error rate on Elec with only
embedding dropout. By adding variational dropout on the
hidden states with the time-invariant dropout mask, the error
rate was slightly reduced to 7.042% and 6.114%, respec-
tively. When we tested EL regularizers, that are marked as
the dropout perturbation in the table, the performance was
improved in the following order: EL, FD, and adversarial
dropout (K=1, 2). In the results, we found that adversarial
dropout improved performance more than the FD. This might
be caused by the fact that the regularization term of adver-
sarial dropout is the upper bound of the regularization term
of the FD. When comparing from adversarial dropout on the
last hidden state, aka. original adversarial dropout, we found
that applying adversarial dropout at the recurrent connections

was more effective. Additionally, our iterative algorithm with
K=2 provided the further performance gains. Furthermore,
we evaluated a jointed method of adversarial dropout, which
is dropout perturbation on hidden states, and virtual adver-
sarial training, which is a linear perturbation on embedding
space. As a result, we found that the jointed method achieved
an impressive performance of 5.687% on IMDB.

Word-level language models
We investigated the performance of our regularization model
in language modeling for two benchmark datasets, the Penn
Treebank (PTB)(Mikolov et al. 2010) and WikiText-2 (WT2)
dataset(Merity et al. 2017). We preprocessed both datasets:
for PTB as specified by Mikolov et al. (Mikolov et al. 2010)
and for WT2 as specified by Koehn et al. (Koehn et al. 2007).
In this experiment, we used AWD-LSTM 3-layer architec-
ture that was introduced by Merity et al.(Merity, Keskar,
and Socher 2018). Specifically, the architecture contains one
400 dimensional embedding layer and three LSTM layers
whose dimensions are 1150 for first two layers and 400
for the third layer. The embedding matrix and the weight
matrix of the last layer for predictions were tied (Merity,
McCann, and Socher 2017). In the training phase, Merity
et al.(Merity, Keskar, and Socher 2018) applied DropCon-
nect to improve model performances. In this experiment, we
left a vast majority of hyperparameters used in the baseline
model, i.e. embedding and hidden sizes, learning rate, and
so on. Instead, we controlled the hyperparameters, δ and K,
related to the adversarial dropout. We did not use the addi-
tional regularization terms except for the L2 norm for weight
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Table 3: Perplexity on word-level language modeling on Penn Treebank and WikiText-2.

PTB WikiText-2

Model Param. Val. Test Param. Val. Test

Variational dropout (Gal and Ghahramani 2016) 51M 71.1 68.5 28M 91.5 87.0
5-layer RHN (Melis, Dyer, and Blunsom 2018) 24M 64.8 62.2 24M 78.1 75.6
AWD-LSTM (Merity, Keskar, and Socher 2018) 24M 60.0 58.3 34M 68.6 65.8
Fraternal dropout (Zolna et al. 2018) 24M 58.9 56.8 34M 66.8 64.1

Adversarial dropout 24M 58.7 ±0.3 56.4 ±0.2 34M 66.5 ±0.1 63.4 ±0.2

parameters. Our implementation code will be available at
https://github.com/sungraepark/adversarial dropout lm.

Previous results with LSTM showed that fine-tuning is
important to achieve state-of-the-art performances (Merity,
Keskar, and Socher 2018; Li et al. 2018), so we fine-tuned
model parameters once without regularization after learning
was over with our regularization term. Table 3 shows the
perplexity on both the PTB and WikiText-2 validation and
test datasets. Our approach showed an advanced performance
compared to existing benchmarks.

Conclusion
The improvement of generalization performance in RNNs
is required for the successful application of sequential data
processing. The existing methods utilizing the dropout de-
pend on the random dropout mask without considering a
guided sampling on the dropout mask. In contrast, we de-
veloped an RNN version of adversarial dropout, which is a
deterministic dropout technique to find a subnetwork inferior
to target predictions. Specifically, we proved that the regu-
larizer with the adversarial dropout is the upper bound of
the EL and FD regularizers. Additionally, we found a way
to measure which recurrent neurons are mainly used for tar-
get predictions. Furthermore, we improved the algorithm to
find the adversarial dropout condition. In our experiments,
we showed that the adversarial dropout for RNNs improved
generalization performance on the sequential MNIST tasks,
the semi-supervised text classification tasks, and word-level
language modeling tasks. More importantly, we achieved a
highly advanced performance of 5.687% on IMDB when
applying an adversarial perturbation on word embeddings
and an adversarial dropout perturbation, together.
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