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Abstract

Graph Neural Networks (GNN) are a promising technique for
bridging differential programming and combinatorial domains.
GNNs employ trainable modules which can be assembled in
different configurations that reflect the relational structure of
each problem instance. In this paper, we show that GNNs can
learn to solve, with very little supervision, the decision variant
of the Traveling Salesperson Problem (TSP), a highly relevant
NP-Complete problem. Our model is trained to function as
an effective message-passing algorithm in which edges (em-
bedded with their weights) communicate with vertices for a
number of iterations after which the model is asked to decide
whether a route with cost < C exists. We show that such a
network can be trained with sets of dual examples: given the
optimal tour cost C∗, we produce one decision instance with
target cost x% smaller and one with target cost x% larger
than C∗. We were able to obtain 80% accuracy training with
−2%,+2% deviations, and the same trained model can gener-
alize for more relaxed deviations with increasing performance.
We also show that the model is capable of generalizing for
larger problem sizes. Finally, we provide a method for pre-
dicting the optimal route cost within 2% deviation from the
ground truth. In summary, our work shows that Graph Neu-
ral Networks are powerful enough to solve NP-Complete
problems which combine symbolic and numeric data.

Introduction
Deep learning has accomplished much in the last decade,
advancing the state-of-the art of areas such as image recogni-
tion (Krizhevsky, Sutskever, and Hinton 2012; Simonyan and
Zisserman 2014; Li et al. 2015), natural language process-
ing (Cho et al. 2014b; 2014a; Bahdanau, Cho, and Bengio
2014) and reinforcement learning (Mnih et al. 2013; 2015;
Silver et al. 2016; 2017), which has been successfully com-
bined with deep neural networks to master classic Atari
games and yield superhuman performance in the Chinese
boardgame Go (Mnih et al. 2013; 2015; Silver et al. 2016;
2017). However, the application of deep learning to sym-
bolic domains directly, as opposed to their use in rein-
forcement learning agents, is still incipient (d’Avila Garcez,
Lamb, and Gabbay 2009; d’Avila Garcez et al. 2015;
Evans and Grefenstette 2018).
∗Equal contribution
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A promising meta-architecture to engineer models that
learn on symbolic domains is to instantiate neural modules
and assemble them in various configurations, each manifest-
ing a graph representation of a given instance of the problem
at hand (Scarselli et al. 2009). In this context, the neural com-
ponents can be trained to learn to compute messages to send
between nodes, yielding a differentiable message-passing
algorithm whose parameters can be improved via gradient
descent. This technique has been successfully applied to a
growing range of problem domains, although with different
names. Gilmer et al., which apply it to quantum chemistry
problems, adopt the term “neural message passing” (Gilmer
et al. 2017), while Palm et al. refer to “recurrent relational
networks” in an attempt to train neural networks to solve
Sudoku puzzles (Palm, Paquet, and Winther 2017).

A recent review of related techniques chooses the term
graph networks (Battaglia et al. 2018), but we shall refer to
graph neural networks named by Scarselli et al. who were
among the first to propose such a model (Scarselli et al. 2009).
Graph Neural Networks (GNNs) have recently been success-
fully applied to the problem of predicting the boolean satis-
fiability of a CNF formula, a very relevant NP-Complete
combinatorial problem (SAT) (Selsam et al. 2018). Selsam
et al. show that GNNs can be trained to obtain satisfactory
accuracy (approximately 85%) on small instances, and fur-
ther that their performance can be improved by running the
model for more message-passing timesteps. In addition, they
show that satisfying assignments can be extracted from the
network, which is never trained explicitly to produce them.
The promising results of NeuroSAT (as the authors named it)
is an invitation to assess whether other hard combinatorial
problems lend themselves to a simple GNN solution.

In this paper, we investigate whether GNNs can be trained
to solve another NP-Complete problem: the decision vari-
ant of the Traveling Salesperson Problem (TSP), assigned
with deciding whether a given graph admits a Hamiltonian
route with cost no greater than C. The NeuroSAT experiment
from (Selsam et al. 2018) shows that graph neural networks
can be trained to compute hard combinatorial problems, al-
beit for small instances. Nevertheless, SAT is a conceptually
simpler problem, which can be defined purely in terms of
boolean formulas. Thus, an open research question is to inves-
tigate whether GNNs can be trained to solve NP-Complete
problems involving numerical information (edge weights)
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in addition to symbolic relationships (edges or connections).
The traveling salesperson problem in its decision variant
(does graph G admit a Hamiltonian path with cost < C?)
is a promising candidate, as it requires edge weights wi as
well as the “target cost” C to be taken under consideration to
compute a solution.

The remainder of the paper is structured as follows. Next,
we introduce a Graph Neural Network that shall be used in
our TSP modelling. We then show how the proposed model
learns to solve the Decision TSP and describe the experiments
which validate the proposed model. Finally, we analyse the
results and point out further research directions.

A GNN Model for the Decision TSP
Graph neural networks assign a multidimensional embed-
ding ∈ Rd to each vertex in the graph representation of the
problem instance at hand and perform a given number of
message-passing iterations – in which a neural module com-
putes a message from each embedding and sends it along its
adjacencies. Each vertex accumulates its incoming messages
by adding them up (or aggregating them through any other op-
eration) and feeding the resulting Rd vector into a Recurrent
Neural Network (RNN) assigned with updating the embed-
ding of said vertex. The only trainable parameters of such a
model are the message computing modules and the RNN, so
that conceptually what we have is a message-passing algo-
rithm in which messages and updates are computed by neural
networks.

Given a TSP instance X = (G, C) composed of a graph
G = (V, E) and a target cost C ∈ R, we could assign an em-
bedding to each vertex and send messages alongside edges,
but all information about edge weights would be lost this
way. Instead, we additionally assign embeddings to edges,
which can be fed with their corresponding weights (edge
embeddings in GNNs have shown promise in many applica-
tions (Battaglia et al. 2018)). In this context, we replace the
vertex-to-vertex adjacency matrix A ∈ {0, 1}|V|×|V|, by an
edge-to-vertex adjacency matrix EV ∈ {0, 1}|E|×|V|, which
connects each edge ei = (s, t, w) to its source and target
vertices. Because the model also needs to know the value of
the target cost, we decided to feed C to each edge embedding
alongside with its corresponding weight: given a target cost
C, for each edge ei = (s, t, w) we concatenate w and C to
obtain a 2d vector ∈ R2. This vector is fed into a Multilayer
perceptron (MLP) which expands it into E(1)[i] ∈ Rd, the
initial embedding for edge ei. Following this initialization,
the model undergoes a given number of iterations in which
vertices and edges exchange messages and refine their embed-
dings, until finally the refined edge embeddings are fed into
an MLP which computes a logit probability corresponding to
the model’s prediction of the answer to the decision problem.
In summary, upon training our proposed model learns seven
tasks:
1. To produce a single Rd vector, which will be used to

initialize all vertex embeddings
2. A function Einit : R2 → Rd to compute an initial edge

embedding given the edge weight w and the route cost C
(MLP)

3. A function Vmsg : Rd → Rd to compute a message to
send to edges given a vertex embedding (MLP)

4. A function Emsg : Rd → Rd to compute a message to
send to vertices given an edge embedding (MLP)

5. A function Vu : R2d → R2d to compute an updated vertex
embedding (plus an updated RNN hidden state) given the
current RNN hidden state and a message

6. A function Eu : R2d → R2d to compute an updated edge
embedding (plus an updated RNN hidden state) given the
current RNN hidden state and a message

7. A function Evote : Rd → R1 to compute a logit probabil-
ity given an edge embedding (MLP)

Algorithm 1 briefly summarizes the proposed GNN-based
procedure to solve the decision TSP. In the sequel, we shall
illustrate how the model is used in learning route costs and
validate our architecture.

Algorithm 1 Graph Neural Network TSP Solver
1: procedure GNN-TSP(G = (V, E), C)
2:
3: // Compute binary adjacency matrix from edges to

source & target vertices
4: EV[i, j]←1 iff (∃v′|ei=(vj , v

′, w))| ∀ei∈E , vj∈V
5:
6: // Compute initial edge embeddings
7: E(1)[i]← Einit(w,C) | ∀ei = (s, t, w) ∈ E
8:
9: // Run tmax message-passing iterations

10: for t = 1 . . . tmax do
11: // Refine each vertex embedding with messages

received from edges in which it appears either as a source
target vertex

12: V
(t+1)
h ,V(t+1)←Vu(V(t)

h ,EVT× E
msg

(E(t)))

13: // Refine each edge embedding with messages
received from its source and its target vertex

14: E
(t+1)
h ,E(t+1)←Eu(E

(t)
h ,EV× V

msg
(V(t)))

15: // Translate edge embeddings into logit probabilities
16: Elogits ← Evote

(
E(tmax)

)
17: // Average logits and translate to probability (the

operator 〈〉 indicates arithmetic mean)
18: prediction← sigmoid(〈Elogits〉)

Training the Model
In order to train the GNN model, one has to provide it with
four inputs: matrices S,T ∈ {0, 1}|E|×|V|, the edge weights
D, a target cost C ∈ R; the model is then trained with
Stochastic Gradient Descent (SGD), more specifically by
using TensorFlow’s Adam (Kingma and Ba 2014) implemen-
tation, to minimize the binary cross entropy loss between its
prediction and the ground-truth (a boolean value indicating
whether the answer to the decision problem is YES or NO).

To speed up training, it is convenient to perform SGD on
batches with multiple instances. This can be achieved by
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performing the disjoint union between all graphs in the batch,
yielding a “batch” graph with n disjoint subgraphs. Because
subgraphs are disjoint, messages will not traverse through any
pair of them, and there will be no change to the embedding
refinement process as compared to a single run. There will
be logit probabilities computed for each edge in the batch
graph, which can be averaged among individual instances to
compute a prediction for each one of them. The binary cross
entropy can then be computed between these predictions and
the corresponding decision problem solutions.

We produce training instances by sampling n ∼ U(20, 40)
random points on a

√
2
2 ×

√
2
2 square and filling a distance

matrix D ∈ Rn×n with the euclidean distance computed
between each pair of points. These distances, by construction,
are ∈ [0, 1]. We also produce a complete adjacency matrix
A ∈ {0, 1}n×n, and solve the corresponding TSP problem
using the Concorde TSP solver (Hahsler and Hornik 2007)
to obtain optimal tour costs. A total of 220 such graphs were
produced, from which we sample a total of 1024 per epoch to
ensure that the probability of the model seeing the same graph
twice at training time is kept low. Finally, for each graph G
with optimal tour cost C∗ we produce two decision instances
X+ = (G, 1.02C∗) and X− = (G, 0.98C∗) for which the
answers are by construction YES and NO respectively. In
doing so we effectively train the model to predict the decision
problem within a 2% positive or negative deviation from the
optimal tour cost.

The model is instantiated with 64-dimensional embeddings
for vertices and edges and three-layered (64,64,64) MLPs
with ReLU nonlinearities as the activations for all layers
except for the last one, which has a linear activation. The
model is run for Tmax = 32 time steps of message-passing.

Experimental Results and Analyses
Upon 2000 training epochs, the model achieved 80.16% ac-
curacy averaged over the 221 instances of the training set,
having also obtained 80% accuracy on a testing set of 2048
instances it had never seen before. Instances from training
and test datasets were produced with the same configura-
tion (n ∼ U(20, 40) and 2% percentage deviation). Figure 1
shows the evolution of the binary cross entropy loss and ac-
curacy throughout the training process. Note that it is much
easier to train the model with more relaxed deviations from
the optimal cost, as Figure 2 shows.

Extracting Route Costs
Now that we have obtained a solver for the decision TSP,
we can exploit it to yield route cost predictions within a
reasonable margin from the optimal cost. Figure 3 shows
how the model behaves when it is asked to solve the decision
problem for varying target costs. From its characteristic S-
shape we can learn that the model feels confident that routes
with too small costs do not exist and also confident that routes
with too large costs do exist. Between these two regimes,
the prediction undergoes a phase transition, with the model
becoming increasingly unsure as we approach zero deviation
from the optimal cost. In fact, this “acceptance curve” plotted
for varying instance sizes is reminiscent of phase transitions
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Figure 1: Evolution of the binary cross entropy loss (down-
ward curve in red) and accuracy (upward curve in blue)
throughout a total of 2000 training epochs on a dataset of 220
graphs with n ∼ U(20, 40). Each graph with optimal TSP
route cost C∗ is used to produce two instances to the TSP
decision problem – “is there a route with cost < 1.02C∗?”
and “is there a route with cost < 0.98C∗?”, which are to
be answered with YES and NO respectively. Each epoch is
composed of 128 batches of 16 instances each (please note
that at each epoch the network sees only a small sample of
the dataset, and the accuracy here is computed relative to it).

on hard combinatorial problems such as SAT (Dudek, Meel,
and Vardi 2016) and, along with a large number of NP-
Hard problems, the TSP itself has been shown to exhibit
phase transition phenomena (Kirkpatrick and Toulouse 1985;
Zhang 2004).

More importantly, we know from theoretical results that
the average TSP tour length for a set of n random (uniform)
points on a plane is asymptotically proportional to

√
n with

the two-dimensional “TSP constant” β(2) as a proportional-
ity factor (Beardwood, Halton, and Hammersley 1959). As
a corollary, large instances allow for proportionally shorter
routes than small instances1, a fact that, we believe, is man-
ifest in the curves of Figure 3: for deviations close to zero,
the model feels more confident that a route exists the larger
the instance size is. As a result, the critical point (the devi-
ation at which the model starts guessing YES) undergoes a
left shift as the instance size increases, as seen in the curves’
derivatives in Figure 3.

In addition, all acceptance curves are above the 50% line
for deviation = 0, from which we conjecture that the trained
model guesses by default that a route does exist and proceeds
to disprove this claim throughout message-passing iterations.
Interestingly, this behavior is opposite to that of the GNN
SAT-solver NeuroSAT (Selsam et al. 2018), which guesses
UNSAT by default and changes its prediction only upon
finding a satisfiable assignment. The factors determining

1 lim
n→∞

C∗n/n = lim
n→∞

β(2)
√
n/n = 0 where C∗n is the optimal

tour cost for a n-city instance
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Figure 2: The larger the deviation from the optimal cost,
the faster the model learns: we were able to obtain > 95%
accuracy for 10% deviation in 200 epochs. For 5%, that per-
formance requires double the time. For 2% deviation, two
thousand epochs are required to achieve 85% accuracy.

which strategy the model will learn remain an open question,
but we are hopeful that it is possible to engineer a training
set to enforce that the model learns a negative-by-default
algorithm.

To the best of our knowledge, the curves in Figure 3
become arbitrarily close to zero as we progress towards
smaller deviations, but unfortunately the model starts to
lose confidence that a route exists when it is fed with large
target costs (≈ 100% deviation). This is probably due to
the fact that, being trained with −2%,+2% deviations, the
model has never seen target costs that large. Fortunately this
can be corrected by re-training it for a single epoch with
−2%,+2%,+100%,+200%,+1000% deviations, which is
done with no significant effect to the test accuracy.

Intuitively, if we know nothing about the optimal cost, we
can assume that we are closest to its value when the model’s

Algorithm 2 Binary Search
1: procedure BINARY-SEARCH(G = (V, E), p, δ)
2: // Choose an initial guess for the optimal route cost.
wn− and wn+ are the sets of the costs of the n edges
∈ E with smallest / largest costs respectively.

3: Cmin ←
∑
wn−

i

4: Cmax ←
∑
wn+

i
5: C ∼ U(Cmin, Cmax)
6: while Cmin < C(1− δ) ∨ C(1 + δ) < Cmax do
7: if GNN-TSP(G, C) < p then
8: Cmin ← C
9: else

10: Cmax ← C

11: C ← (Cmin + Cmax)/2

return C
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Figure 3: Average prediction obtained from the model as
a function of the deviation between the target cost and the
optimal cost for varying instance sizes (the pink band indi-
cates the [−2%,+2%] interval). As expected, the curve is
S-shaped, signalling that the model is very confident that
routes with sufficiently large/small costs do/do not exist. The
average prediction undergoes a phase transition as we tra-
verse from negative to positive deviations. Larger instances
exhibit smaller critical points, as evidenced by the left shifts
on the derivatives of the acceptance curves in the bottom
subfigure. The prediction for each deviation is averaged over
1024 instances.

predictions are closest to 50%. We can therefore guess an
initial cost and perform a binary search on the x-axis of
Figure 3. The procedure is detailed in Algorithm 2.

Instantiated with δ = 0.01 and using the weights after the
training and the single epoch of training for greater deviations,
Algorithm 2 is able to predict route costs with on average
1.5% absolute deviation from the optimal, running for on
average 8.9 iterations on the test dataset (1024 n-city graphs
with n ∼ U(20, 40)).

Model Performance on Larger Instances
The model was trained on instances with no more than
n = 40 cities, but we wanted to know to what extent the
learned algorithm generalizes to larger problem sizes. We av-
eraged the trained model accuracy over test datasets of 1024
instances for varying values of n, for which the results are
shown in Figure 4. We found that the model is able to sustain
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> 80% accuracy throughout the range of sizes it was trained
on, but loses performance progressively for larger problem
sizes until it reaches the baseline of 50%. Also, as expected
given the acceptance curves in Figure 3, the model performs
better for larger deviations (5%, 10%) and worse for smaller
ones (1%). Do note as well that a problem of double the
size would require 2n more time to compute by traditional
algorithms, and thus such a rapid decay in accuracy is to be
expected.
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Figure 4: Accuracy of the trained model evaluated on datasets
of 1024 instances with varying numbers of cities (n). The
model is able to obtain > 80% accuracy for −2%,+2%
deviation on the range of sizes it was trained on (painted
in pink), but its performance degenerates progressively for
larger instance sizes before reaching the baseline of 50%
at n ≈ 75. Larger deviations yield higher accuracy curves,
with the model obtaining > 95% accuracy for −10%,+10%
deviation even for the largest instance sizes.

Generalizing to Larger Deviations
Both the acceptance curves in Figure 3 and the accuracy
curves in Figure 4 suggest that the model generalizes to
larger deviations from the optimal tour cost than the 2% it
was trained on. In fact, these curves suggest that the model
becomes more confident the larger the deviation is, which is
not surprising given that the corresponding decision instances
are comparatively more relaxed. Figure 5 shows how the
accuracy increases until it plateaus at ≈ 100% for increasing
deviations and Table 1 depicts these results in the validation
test sets.

Baseline Comparison
We chose to train the model on decision instances with
−2%,+2% deviation from the optimal tour cost not because

Deviation Accuracy (%)

1 66
2 80
5 98
10 100

Table 1: Test accuracy averaged over 1024 n-city instances
with n ∼ U(20, 40) for varying percentage deviations from
the optimal route cost.
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Figure 5: Accuracy of the trained model evaluated on the
same test dataset of 1024 n-city instances with n ∼ U(20, 40)
for varying deviations from the optimal tour cost. Although
it was trained with target costs −2%,+2% from the optimal
(dashed line), the model can generalize for larger deviations
with increasing accuracy. Additionally, it could still obtain
accuracies above the baseline (50%) for instances more con-
strained than those it was trained on, with 65% accuracy at
−1%,+1%.

this was our intended performance, but because 2% was the
smallest deviation for which the network could be trained
within reasonable time (≤ 2000 epochs). For this reason, we
do not know initially how the trained model compares with
other methods. Although our goal is not to produce a state-
of-the-art TSP solver but rather to demonstrate that neural
networks can learn to solve this problem with very little super-
vision (two bits: one bit for a positive solution and one bit for
a negative one), we want to evaluate whether our model can
outperform simple heuristics. We compare our model with (1)
a Nearest Neighbor (NN) route construction and (2) a Simu-
lated Annealing (SA) routine (Kirkpatrick, Gelatt, and Vecchi
1983). NN is arguably the simplest TSP heuristic, generally
yielding low quality solutions. SA can generally produce
good routes for the euclidean TSP, if the meta-parameters
are calibrated correctly. We calibrate the SA’s initial tem-
perature T , cooling rate α and stopping temperature Tmin

with the irace automatic algorithm configuration package
(López-Ibáñez et al. 2016).

Figure 6 compares the True Positive Rate (TPR) of the
trained model with the frequency in which these two heuris-
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tics could produce routes within a given deviation from the
optimal route cost. This frequency can be thought as the
TPR obtained by converting these methods into a predictor
for the decision variant of the same problem (guess YES
whenever you can constructively prove that a route within
the target cost exists and NO otherwise). For the test dataset
(1024 n-city graphs with n ∼ U(20, 40)), Nearest Neighbor
obtains on average routes 20.2% more expensive than the op-
timal, while Simulated Annealing brings that number down
to 6.7%. Nevertheless, for all tested deviations, the trained
GNN model outperforms both methods, obtaining > 90%
TPR from deviations 4% and above.
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Figure 6: Nearest Neighbor (NN) and Simulated Annealing
(SA) do not yield a prediction for the decision variant of the
TSP but rather a feasible route. To compare their performance
with our model’s, we evaluate the frequency in which they
yield solutions below a given deviation from the optimal route
cost and plot alongside with the True Positive Rate (TPR)
of our model for the same test instances (1024 n-city graphs
with n ∼ U(20, 40)).

Generalizing to Other Distributions
Although the model was trained on two-dimensional eu-
clidean graphs, it can generalize, to some extent, to more
comprehensive distributions. To evaluate this, we considered
two families of graphs obtained from uniformly random dis-
tance matrices: in the first distribution (“Rand.” in Table 2),
edge weights are simply sampled uniformly at random; in
the second (“Rand. Metric” in Table 2), edge weights are first
sampled uniformly at random and then the metric property
is enforced by replacing edge weights by the shortest path
distance between the corresponding vertices. For 2% devia-
tion from the optimal tour cost, the model was able to obtain
64% accuracy on the random metric instances (versus 80%
on euclidean), but the performance is better for more relaxed
deviations, with 82% at 5% and 96% at 10% deviation from
the optimal route cost. The model was unable to achieve per-
formance above the 50% baseline for non-metric instances.
We also evaluated the model with real world instances gath-

ered from the Tsplib95 dataset (Reinelt 1995), for which the
results obtained for the trained model with Algorithm 2 are
reported in Table 3. In general, the model underestimates the
optimal route cost, which is expected given the discussion in
subsection on Extracting route costs above. When the abso-
lute relative deviation is considered, the GNN outperforms
the SA routine for 6 out of 9 instances.

Deviation Accuracy (%)
Euc. 2D Rand. Metric Rand.

1 66 57 50
2 80 64 50
5 98 82 50
10 100 96 50

Table 2: Test accuracy averaged over 1024 n-city instances
with n ∼ U(20, 40) for varying percentage deviations from
the optimal route cost for differing random graph distribu-
tions: two-dimensional euclidean distances, “random metric”
distances and random distances.

Implementation and Reproducibility
The reproducibility of machine learning studies and experi-
ments is relevant to the field of AI given the myriad of param-
eters and implementation decisions one has to make. With
this in mind, we summarize here the instantiation parameters
of our model. The embedding size was chosen as d = 64,
all message-passing MLPs are three-layered with layer sizes
(64, 64, 64) with ReLU nonlinearities as the activation of
all layers except the last one, which has a linear activation.
The edge embedding initialization MLPs are three-layered
with layer sizes (8, 16, 32) (we tried different architectures
but have only obtained success with increasing layer sizes
and a small initial layer). The kernel weights are initialized
with TensorFlow’s Xavier initialization method described in
(Glorot and Bengio 2010) and the biases are initialized with
zeroes. The recurrent unit assigned with updating embed-
dings is a layer-norm LSTM (Ba, Kiros, and Hinton 2016)
with ReLU as its activation and both with kernel weights
and biases initialized with TensorFlow’s Glorot Uniform Ini-
tializer (Glorot and Bengio 2010), with the addition that the
forget gate bias were increased by 1. The number of message-
passing timesteps is set at tmax = 32. For each graph in-
stance, a pair of decision instances was created: a negative
instance with target cost 2% smaller than the optimal and a
positive instance with target cost 2% greater than the optimal.
The training instances can be randomized but it is important
that these pairs remain together in the same batch. Each train-
ing epoch is composed by 128 Stochastic Gradient Descent
operations on batches of 16 instance pairs (with a positive
and with a negative deviation) each, randomly sampled from
the training dataset.

Since we have the liberty of generating our own training
instances and to mitigate overfitting effects, we produced 220

n-city graphs with n ∼ U(20, 40). Instances can be batched
together by performing a disjoint union on a set of n graphs,
producing a graph with n connected components in which
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Instance Size Relative Deviation (%)
GNN SA

ulysses161 16 −22.80 +1.94
ulysses221 22 −27.20 +1.91

eil51 51 −18.37 +18.07
berlin52 52 −8.73 +21.45

st70 70 −11.87 +14.47
eil76 76 −13.91 +19.24

kroA100 100 −2.00 +30.73
eil101 101 −9.93 +20.46
lin105 105 +6.37 +17.77

1 These instances had their distance matrix com-
puted according to Haversine formula (great-
circle distance).

Table 3: The relative deviations from the optimal route cost
are compared for the prediction obtained from the trained
model with Algorithm 2 (GNN) and the Simulated Annealing
heuristic (SA). Note that deviations obtained from the trained
model are negative in general, as expected given the discus-
sion in the subsection about Extracting route costs above.

information flow does not “spill” from one to another. Finally,
on all experiments we have normalized all edge weights
to be ∈ [0, 1], and the target cost is always normalized by
the number of cities n. We have dedicated significant effort
into making the reproduction of the experiments reported
here available as a plug-and-play functionality. The code
used to generate instances, train and evaluate the model and
produce the figures presented in this paper is available at
https://github.com/machine-reasoning-ufrgs/TSP-GNN.

Conclusions and Future Work
In this paper, we have proposed a Graph Neural Network
(GNN) architecture which assigns multidimensional embed-
dings to vertices and edges in a graph. In our model, vertices
and edges undergo a number of message-passing iterations
in which their embeddings are enriched with local informa-
tion. Finally, each embedding “votes” on whether the graph
admits a Traveling Salesperson route no longer than C, and
the votes are combined to yield a prediction. We show that
such a network can be trained with sets of dual decision in-
stances: given a optimal cost C∗, we produce a (negative)
instance with target cost x% smaller and a (positive) instance
with target cost x% larger than C∗. Upon training the model
with −2%,+2% deviations were able to obtain 80% accu-
racy, and the model learned to generalize to larger deviations
with increasing accuracy (96% at−5%,+5%). We also show
how the model generalizes to some extent to larger problem
sizes and different distributions. We conjecture that the model
learns a positive-by-default algorithm, initially guessing that
a route does exist and overriding that prediction when it can
convince itself that is does not. In addition, the network is
more confident that a route exists the larger the problem
size is, which we think reflects the fact that the optimal TSP
tour for a n-city euclidean graph scales with

√
n (and there-

fore larger graphs admit proportionally shorter routes). By

plotting the “acceptance curves” of the trained model, we un-
covered a behavior reminiscent of phase transitions on hard
combinatorial problems. Coupled with a binary search, these
curves allow for an accurate prediction of the optimal TSP
cost, even though the network was only trained to provide
yes-or-no answers.

We are hopeful that a training set can be engineered in such
a way as to enforce the model to learn a negative-by-default
algorithm, possibly enabling us to extract a TSP route from
the refined embeddings as we know to be possible given the
NeuroSAT experiment (Selsam et al. 2018). We intend on
training and evaluating our model on a comprehensive set
of real and random graphs, and to assess how far the model
can generalize to larger problem sizes compared to those it
was trained on. Finally, we believe that this experiment can
showcase the potential of GNNs to the AI community and
help promote an increased interest on integrated machine
learning and reasoning models.
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