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Abstract

Binary neural networks have great resource and computing
efficiency, while suffer from long training procedure and
non-negligible accuracy drops, when comparing to the full-
precision counterparts. In this paper, we propose the com-
posite binary decomposition networks (CBDNet), which first
compose real-valued tensor of each layer with a limited num-
ber of binary tensors, and then decompose some conditioned
binary tensors into two low-rank binary tensors, so that the
number of parameters and operations are greatly reduced
comparing to the original ones. Experiments demonstrate the
effectiveness of the proposed method, as CBDNet can ap-
proximate image classification network ResNet-18 using 5.25
bits, VGG-16 using 5.47 bits, DenseNet-121 using 5.72 bits,
object detection networks SSD300 using 4.38 bits, and se-
mantic segmentation networks SegNet using 5.18 bits, all
with minor accuracy drops. 1

Introduction
With the remarkable improvements of Convolutional Neural
Networks (CNNs), varied excellent performance has been
achieved in a wide range of pattern recognition tasks, such
as image classification (Krizhevsky et al. 2012; Szegedy
et al. 2015; He et al. 2016; Huang et al. 2017), object
detection (Girshick et al. 2014; Ren et al. 2015; Shen et
al. 2017) and semantic segmentation (Long et al. 2015;
Badrinarayanan et al. 2017), etc. A well-performed CNN
based systems usually need considerable storage and com-
putation power to store and calculate millions of parame-
ters in tens or even hundreds of CNN layers. Therefore,the
deployment of CNNs to some resource limited scenarios
is hindered, especially low-power embedded devices in the
emerging Internet-of-Things (IoT) domain.

Many efforts have been devoted to optimizing the infer-
ence resource requirement of CNNs, which can be roughly
divided into three categories according to the life cycle of
deep models. First, design-time network optimization con-
siders designing efficient network structures from scratch in
a handcraft way such as MobileNet (Howard et al. 2017),
interlacing/shuffle networks (Zhang et al. 2017; 2018), or
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Figure 1: Overall framework illustration of CBDNet.

even automatic search way such as NASNet (Zoph and Le
2016), PNASNet (Liu et al. 2017a). Second, training-time
network optimization tries to simplify the pre-defined net-
work structures on neural connections (Han et al. 2015;
2016), filter structures (Wen et al. 2016; Li et al. 2017; Liu
et al. 2017b), and even weight precisions (Chen et al. 2015;
Courbariaux et al. 2016; Rastegari et al. 2016) through regu-
larized retraining or fine-tuning or even knowledge distilling
(Hinton et al. 2015). Third, deploy-time network optimiza-
tion tries to replace heavy/redundant components/structures
in pre-trained CNN models with efficient/lightweight ones
in a training-free way. Typical works include low-rank de-
composition (Denton et al. 2014), spatial decomposition
(Jaderberg et al. 2014), channel decomposition (Zhang et al.
2016) and network decoupling (Guo et al. 2018).

To produce desired outputs, it is obvious that the first
two categories of methods require a time-consuming train-
ing procedure with full training-set available, while methods
of the third category may not require training-set, or in some
cases require a small dataset (e.g., 5000 images) to calibrate
some parameters. The optimization process can be typically
done within dozens of minutes. Therefore, in case that the
customers can’t provide training data due to privacy or con-
fidential issues, it is of great value when software/hardware
vendors help their customers optimize CNN based solutions.
It also opens the possibility for on-device learning to com-
pression, and online learning with new ingress data. In con-
sequence, there is a strong demand for modern deep learn-
ing frameworks or hardware (GPU/ASIC/FPGA) vendors to
provide deploy-time model optimizing tools.

However, current deploy-time optimization methods can
only provide very limited optimization (2∼4× in compres-
sion/speedup) over original models. Meanwhile, binary neu-

4747



ral networks (Courbariaux et al. 2015; 2016), which aim for
training CNNs with binary weights or even binary activa-
tions, attract much more attention due to their high com-
pression rate and computing efficiency. However, binary net-
works generally suffer much from a long training procedure
and non-negligible accuracy drops, when comparing to the
full-precision (FP32) counterparts. Many efforts have been
spent to alleviate this problem in training-time optimization
(Rastegari et al. 2016; Zhou et al. 2016). This paper con-
siders the problem from a different perspective via raising
the question: is it possible to directly transfer full-precision
networks into binary networks at deploy-time in a training-
free way? We study this problem, and give a positive answer
by proposing a solution named composite binary decompo-
sition networks (CBDNet). Figure 1 illustrates the overall
framework of the proposed method. The main contributions
of this paper are summarized as below:
• We show that full-precision CNN models can be directly

transferred into highly parameter and computing efficient
multi-bits binary network models in a training-free way
by the proposed CBDNet.

• We propose an algorithm to first expand full-precision
tensors of each conv-layer with a limited number of bi-
nary tensors, and then decompose some conditioned bi-
nary tensors into two low-rank binary tensors. To our best
knowledge, we are the first to study the network sparsity
and the low-rank decomposition in the binary space.

• We demonstrate the effectiveness of CBDNet on differ-
ent classification networks including VGGNet, ResNet,
DenseNet as well as detection network SSD300 and se-
mantic segmentation network SegNet. This verifies that
CBDNet is widely applicable.

Related Work
Binary Neural Networks
Binary neural networks (Courbariaux et al. 2015; 2016;
Rastegari et al. 2016) with high compression rate and great
computing efficiency, have progressively attracted attentions
owing to their great inference performance.

Particularly, BinaryConnect (BNN) (Courbariaux et al.
2015) binarizes weights to +1 and −1 and substitutes mul-
tiplications with additions and subtractions to speed up the
computation. As well as binarizing weight values plus one
scaling factor for each filter channel, Binary weighted net-
works (BWN) (Rastegari et al. 2016) extends it to XNOR-
Net with both weights and activations binarized. DoReFaNet
(Zhou et al. 2016) binarizes not merely weights and acti-
vations, but also gradients for the purpose of fast training.
However, binary networks are facing the challenge that ac-
curacy may drops non-negligibly, especially for very deep
models (e.g., ResNet). In spite of the fact that (Hou et al.
2017) directly consider the loss to mitigate possible accu-
racy drops to mitigate during binarization, which gain more
accurate results than BWN and XNOR-Net, it still has gap
to the full-precision counterparts. A novel training procedure
named stochastic quantization (Dong et al. 2017) was intro-
duced to narrow down such gaps. All these works belongs to
the training-time optimization category in summary.

Deploy-time Network Optimization
Deploy-time network optimization tries to replace some
heavy CNN structures in pre-trained CNN models with ef-
ficient ones in a training-free way. Low-rank decomposition
(Denton et al. 2014) exploits low-rank nature within CNN
layers, and shows that fully-connected (FC) layers can be ef-
ficiently compressed and accelerated with low-rank approx-
imations, while conv-layers can not. Spatial decomposition
(Jaderberg et al. 2014) factorizes the kh× kw convolutional
filters into a linear combination of a horizontal filter 1×kw
and a vertical filter kh× 1. Channel decomposition (Zhang et
al. 2016) decomposes one conv-layer into two layers, while
the first layer has the same filter-size but with less channels,
and the second layer uses a 1×1 convolution to mix output of
the first one. Network decoupling (Guo et al. 2018) decom-
poses the regular convolution into the successive combina-
tion of depthwise convolution and pointwise convolution.

Due to its simplicity, deploy-time optimization has many
potential applications for software/hardware vendors as
aforementioned. However, it suffers from relatively limited
optimization gains (2∼4× in compression/speedup) over
original full-precision models.

Binary Network Decomposition
Few existing works like us consider transferring full-
precision networks into multi-bits binary networks in a
training-free way. Binary weighted decomposition (BWD)
(Kamiya et al. 2017) takes each filter as a basic unit as BWN,
and expands each filter into a linear combination of binary
filters and a FP32 scalar. ABC-Net (Lin et al. 2017) approxi-
mates full-precision tensor with a linear combination of mul-
tiple binary tensors and FP32 scalar weights during training-
procedure to obtain multi-bits binary networks. Our method
is quite different to these two works. We further consider the
redundance and sparsity in the expanded binary tensors, and
try to decompose binary tensors. The decomposition is sim-
ilar to spatial decomposition (Jaderberg et al. 2014) but in
the binary space. Hence, our binary decomposition step can
also be viewed as binary spatial decomposition.

Method
As is known, parameters of each conv-layer in CNNs could
be represented as a 4-dimensional (4D) tensor. We take ten-
sor as our study target. We first present how to expand full-
precision tensors into a limited number of binary tensors.
Then we show some binary tensors that fulfill certain condi-
tions can be decomposed into two low-rank binary tensors,
and propose an algorithm for that purpose.

Tensor Binary Composition
Suppose the weight parameters of a conv-layer are repre-
sented by a 4D tensor Wt ∈ Rn×k×k×m, where n is the
number of input channels, m is the number of output chan-
nels, and k × k is the convolution kernel size. For each ele-
ment w ∈Wt, we first normalize it with

w̃ = w/wmax, (1)

where wmax = maxwi∈Wt
{|wi|}. The normalized tensor is

denoted as W̃t. The normalization makes every element w̃
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Figure 2: Performance on ImageNet for different networks
with binary tensor expansion using different J bits. Dashed-
line indicates FP32 accuracy. Left is for top-1, right is for top-
5.
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Figure 3: Weight distribution of all conv-layers for ResNet-18.
(a) normalized weights, (b) sparse-ratio of each binary quan-
tized weight.

within range [−1, 1]. For simplicity, we denote the magni-
tude of w̃ as ŵ, i.e., w̃ = sign(w̃)ŵ, where sign(·) is a sign
function which equals to -1 when w̃ < 0, otherwise 1. And
ŵ ∈ [0, 1] can be expressed by the composite of a series of
fixed-point basis as

ŵ ≈
∑J−2

i=0
ai ∗ 2−i, (2)

where ai ∈ {0, 1} is a binary coefficient indicating
whether certain power-of-two term is activated or not, i ∈
{0, · · · , J − 2} means totally J − 1 bits is needed for the
representation. When taking the sign bit into consideration,
w̃ requires J bits to represent.

Denote the magnitude of the normalized tensor as Ŵt.
Tensor binary composition is a kind of tensor expansion,
when each element of the tensor is binary expanded and ex-
pressed by the same bit rate J as

Ŵt ≈
∑J−2

i=0
Ai ∗ 2−i, (3)

where Ai ∈ {0, 1}n×k×k×m is 4D binary tensor. J will im-
pact the approximation accuracy, while larger J gives more
accurate results. We empirically study three different Ima-
geNet CNN models. Figure 2 shows that J = 7 is already
sufficiently good to keep a balance between the accuracy and
the efficiency of the expansion.

Different Ai may have different sparsity, which could be
further utilized to compress the binary tensor. Figure 3a il-
lustrates the distribution of normalized weights w̃ in all the
layers of ResNet-18, which looks like a Laplacian distri-
bution, where most weight values concentrate in the range
(−0.5, 0.5). This suggests that 1 is very rare in some binary
tensor Ai with smaller i, since smaller i corresponds to big-
ger values in the power-of-two expansion. Figure 3b further
shows the average sparsity of each binary tensor Ai, which
also verifies thatAi with smaller i is much more sparse. Due
to the sparsity of Ai, we next perform binary tensor decom-
position to further reduce the computation complexity, as in-
troduced in the next section.

Binary expansion with α scaling factor The non-
saturation direct expansion from FP32 to low-bits will yield
non-negligible accuracy loss as shown in (Migacz 2017;

Krishnamoort 2018). A scaling factor is usually introduced
and learnt to minimize the loss through an additional cali-
bration procedure (Migacz 2017; Krishnamoort 2018). Sim-
ilarly, we impose a scaling factor α to Eq.(1) as

w̃ = α ∗ w/wmax, (4)

where α ≥ 1 is a parameter to control the range of w̃ ∈
[−α, α]. When the scaling factor α is allowed, the normal-
ized weight ŵ ∈ [0, α] can be expressed with a composite of
power-of-two terms as below:

ŵ ≈
∑J−q−2

i=−q
ai ∗ 2−i, (5)

where q = dlog2 αe and J also denotes the number bits of
the weight, including J − 1 bits for magnitude and 1 sign
bit. The corresponding tensor form can be written as

Ŵα
t ≈

∑J−q−2

i=−q
Ai ∗ 2−i. (6)

Note that the scaling factor α will shift the power-
of-two bases from {20, 2−1, · · · , 2−J+2} for Eq.(3) to
{2q, · · · , 20, · · · , 2−J+q+2} for Eq.(6). When α = 1, we
have q = dlog2 αe = 0, which makes Eq.(6) reduce to the
case without scaling factor as in Eq.(3).

Binary Tensor Decomposition
We have shown that some binary tensors Ai are sparse.
As sparse operations require specific hardware/software ac-
celerators, it is not preferred in many practical usages.
In deploy-time network optimization, researches show that
full-precision tensor could be factorized into two much
smaller and more efficient tensors (Jaderberg et al. 2014;
Zhang et al. 2016). Here, we attempt to extend the spatial-
decomposition (Jaderberg et al. 2014) to our binary case.

For the simplicity of analysis, we flatten the 4D ten-
sor Ŵt ∈ Rn×k×k×m into the weight matrix W ∈
R(n×k)×(k×m) , so does for each Ai. Here the matrix height
and width are n×k and k×m respectively. We then factorize
a sparse matrix A into two smaller matrices as

A = B ∗ C, (7)

where matrix B ∈ {0, 1}(n×k)×c and matrix C ∈
{0, 1}c×(k×m). Note that our method is significantly differ-
ent from the vector decomposition method (Kamiya et al.
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2017), which keeps B binary, the other full-precision. On
the contrary, we keep both B and C binary. This decompo-
sition has the special meaning in conv-layers. It decomposes
a conv-layer with k × k spatial filters into two layers—one
layer with k×1 spatial filters and the other with 1×k spatial
filters. Suppose the feature map size is h×w, then the num-
ber of operations is n×m×k2×h×w for matrixA, while the
number of operations reduces to (m+ n)× c× k × h× w
for B ∗ C. We have the following lemma regarding to the
difference before and after binary decomposition.
Lemma 1 (1) The computing cost ratio for A over B ∗C is
n×m×k/c×(m+n). (2) The bit-rate compression ratio from A
to B ∗C is also n×m×k/c×(m+n). (3) c < n×m×k

(m+n) can yield
real parameter and computing operation reduction.

Binary Matrix Decomposition We first review the prop-
erty of matrix rank:

rank(B ∗ C) ≤ min{rank(B), rank(C)}. (8)

Comparing with binary matrix factorization methods (Zhang
et al. 2007; Miettinen 2010), which tend to minimize certain
kind of loss like |A − B ∗ C| and find matrices B and C
iteratively, we attempt to decompose A into matrices B and
C without any loss when c ≥ rank(A) is satisfied.
Theorem 1 If c ≥ rank(A), binary matrix A ∈
{0, 1}(n×k)×(k×m) can be losslessly factorized into binary
matrices B ∈ {0, 1}(n×k)×c and C ∈ {0, 1}c×(k×m).
Proof According to the Gaussian elimination method, ma-
trix A can be converted to an upper triangular matrix D.
Our intuition is to construct matrices B and C through the
process of Gaussian elimination. Assume n ≤ m, Pi is the
transform matrix representing the i-th primary transforma-
tion, matrix D can be expressed as:

D =

k∏
i=0

Pk−i ⊗A, (9)

where ⊗ is element-wise binary multiply operator so that

A⊗B = (A ∗B) mod 2.

For simplicity, we use ∗ instead of ⊗ here. As Pi ∈
{0, 1}(n×k)×(n×k) is the permutation transform matrix, the
inverse matrix of Pi exists. Therefore,A can be decomposed
into the following form:

A =

k∏
i=0

P−1
i ∗D (10)

Since D only contains value 1 in the first r rows where r =
rank(A), D can be decomposed into two matrices:

D =

[
D1

0

]
=

[
I
0

]
∗
[
D1

]
(11)

where D1 ∈ {0, 1}r×(k×m) is the first r rows of matrix D,
I is a r×r identity matrix. Then matrix A can be written as:

A = (

k∏
i=0

P−1
i ∗

[
I
0

]
) ∗
[
D1

]
. (12)

Algorithm 1 Binary matrix decomposition
Input: binary matrixA with size hA × wA

Output: matrix rank r, matrixB, matrix C (A = B ∗ C)

1: function BINARYMATDECOMPOSITION(A)
2: if hA ≤ wA then
3: A← AT

4: transpose = True

5: end if
6: r ← 0;
7: B ← identity matrix hA × wA

8: for c← 1 to wA do
9: l← first raw satisfy the constraints:A[l, c] = 1 and l ≥ r + 1

10: Reverse row l & r + 1, P ← corresponding transition matrix
11: r ← r + 1;
12: B ← B ∗ P−1

13: for row ← r + 1 to hA do
14: ifA[row, c] > 0 then
15: A[row, :]← (A[r, :] + A[row, :]) mod 2
16: P ← corresponding transition matrix
17: B ← B ∗ P−1

18: end if
19: end for
20: end for
21: C ← first r rows of A
22: P ← first r rows are identity matrix, other hA − r rows are zeros.
23: B ← B ∗ P
24: if transpose then
25: Return r, CT ,BT

26: else
27: Return r,B, C
28: end if
29: end function

We then obtain the size (n × k) × r matrix B as B =∏k
i=0 P

−1
i ∗

[
I
0

]
, and the size r × (k ×m) matrix C as

C = D1 exactly without any loss. This procedure also indi-
cates that the minimum bottleneck parameter c is rank(A),
i.e., c ≥ rank(A). This ends the proof. �

Based on this proof, we outline the binary matrix de-
composition procedure in Algorithm 1. From the proof, we
should also point out that the proposed binary decomposi-
tion is suitable for both conv-layers and FC-layers. Note
that for binary permutation matrix P , its inverse matrix P−1
equals to itself, i.e., P−1 = P . Suppose hA and wA are
height and width of matrix A, the computing complexity of
B ∗P is just O(hA) as P is a permutation matrix. The com-
puting complexity of Algorithm 1 is O(wA × h2A).

Losslessly Compressible of Ai? Theorem 1 shows that
only when c ≥ rank(A), our method could produce loss-
less binary decomposition, while Lemma 1 shows that only
c < n×m×k

(m+n) could yield practical parameter and computing
operations reduction. We have the following corollary:

Corollary 1 Binary matrix A is losslessly compressible
based on Theorem 1 when rank(A) ≤ c < n×m×k

(m+n) .

However, it is unknown which Ai in Eq.(3) was losslessly
compressible before decomposition. The brute-force way is
trying to decompose each Ai as in Eq.(7), and then keep-
ing those satisfying Definition 1. This is obviously ineffi-
cient and impracticable. Alternatively, we may use some
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Figure 4: Maximum rank ratio per-layer of ResNet-18.

heuristic cue to estimate which subset of {Ai} could be loss-
lessly compressible. According to Figure 3, Ai with smaller
i is more sparse than that with bigger i. Empirically, more
sparsity corresponds to smaller rank(Ai). Based on Theo-
rem 1, this pushes us to seek the watershed value j so that
those Ai where i ≤ j are losslessly compressible, while
other Ai (i > j) are not. This requires introducing a vari-
able into the definition of Ai, so that we choose the Ai de-
fined by Eq.(6) rather than Eq.(3). As is known, the Ai se-
quence defined by Eq.(6) is {A−q, · · · , A0, · · · , AJ−q−2}
where q = dlog2 αe. Here, we seek for the optimal α, so
that j = 0 is the watershed, i.e., {A−q, · · · , A0} are loss-
lessly compressible.

For simplicity, we still denote the flatten matrix of the ten-
sor Ŵα

t in Eq.(6) as W ∈R(n×k)×(k×m). We propose to use
the indicator matrix described below for easy analysis.
Definition 1 The indicator matrix of W is defined as
Iw>β ∈ {0, 1}(n×k)×(k×m), in which the value at position
(x, y) is Iw>β [x, y] = If (W[x, y] > β), where β ∈ [0, α]
is a parameter, If (·) is an element-wise indication function,
which equals to 1 when the prediction is true, otherwise 0.
Based on this definition, Ai in Eq.(6) can be written as

Ai[x, y] = If (bW[x, y] + ∆w

2−i
c mod 2 = 1), (13)

where ∆w = 2−J+q+1 is the largest throwing-away power-
of-two terms in Eq.(6).

Define w′ = w + ∆w, according to Eq.(6), the rank of
matrix A0 can be expressed as:

rank(A0) = rank(
∑dnI/2e−1

i=0
I(2i+1)≤w′<(2i+2))

= rank(
∑nI

i=1
Iw′≥i),

where nI = dαe. Based on the matrix rank property
rank(A+B) ≤ rank(A) + rank(B), (14)

we derive the upper bound of the rank(Ai) as:

rank(A0) ≤
∑nI

i=1
rank(Iw′≥i). (15)

The empirical results show that when rank(Iw′≥1) ≤
0.5∗min{n×k,m×k}, and the rank of the indicator matrix
satisfies the following constraints:

(1)
rank(Iw′≥2)

rank(Iw′≥1)
≤ C0,

(2) max{
rank(Iw′≥i)

rank(Iw′≥1)
} ≤ C1, 3 ≤ i ≤ nI .

(16)

Algorithm 2 Binary search α to satisfy rank condition.
Input: weight matrix W, expected rank c
Output: scalar value α

1: function SCALARVALUESEARCH(W , c)
2: min← 0,max← max number of 1 value in a full rank matrix
3: sort W in a descending order to a vector v
4: whilemin ≤ max do
5: center ← (min+max)/2

6: α← 1/v[center]

7: Compute indicator matrix Iw≥1

8: Compute rank r of Iw≥1

9: if r > c then
10: max← center − 1

11: else if r < c then
12: min← center + 1

13: else
14: Return α
15: end if
16: end while
17: Return α = 1/v[max]

18: end function

With the bound (15), we get the bound of the rank by the
indicator matrix Iw′≥1:
rank(A0) ≤ ((α− 2)+ ∗ C1 + C0 + 1) ∗ rank(Iw′≥1), (17)

where (x)+ equals to x if x > 0, otherwise 0. We make
some empirical study on ResNet-18, and find that C0 ≤ 0.2
in most of the layers as in Figure 4a, C1 ≤ 0.05 in most of
the layers as in Figure 4b, and α ≤ 8 in all the layers. Hence,
we have a simpler method to estimate rank(A0) by:

rank(A0) ≤ (4 ∗ 0.05 + 0.2 + 1) ∗ rank(Iw′≥1)

= 1.4 ∗ rank(Iw′≥1).

Therefore, we transfer the optimization of α to the optimiza-
tion of rank(Iw′≥1).

A binary search algorithm for scaling factor a
In practice, we may give an expected upper bound c for
rank(Iw≥1), and search the optimal α to satisfy

rank(Iw≥1) ≤ c. (18)

As w ∈ [0, α] and α > 1, w ∈ [0, 1] only corresponds to
1/α portion of the whole range of w.

Generally, weight matrix W should be sorted and tra-
versed to compute the rank(Iw≥1). Instead of using this
time-consuming method, we propose an efficient solution
based on the binary search algorithm.

Suppose that every element in weight matrix W has a
unique value, we sort W to be a vector v with length
N = n × m × k2 in descending order, so that v[1] is
the largest element. Assume index i satisfy the constraint:
v[i] ≥ 1 > v[i + 1], then the indicator matrix can be ex-
pressed as:

Iw≥1 = Ip(w)<i+1 (19)
where p(w) is the index position of the element w in array
v, i.e., v[p(w)] = w. Hence, there are i ones in the indicator
matrix while others are zeros. Comparing matrix Ip(w)<i+1

with matrix Ip(w)<i, we have the property:

Ip(w)<i+1[x, y] =

{
Ip(w)<i[x, y] p(w[x, y]) 6= i

Ip(w)<i[x, y] + 1 p(w[x, y]) = i
(20)
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Model FP32 CBDNet Bitratetop-1(%) top-5(%) size-MB top-1(%) top-5(%) size-MB
ResNet-18 66.41 87.37 44.57 65.27(-1.14) 86.62(-0.75) 7.31 5.25
VGG-16 68.36 88.44 527.7 67.36(-1.00) 87.81(-0.63) 90.3 5.47

DenseNet-121 74.41 92.14 30.11 73.13(-1.28) 91.29(-0.85) 5.38 5.72

Table 1: Performance of different CNNs on ImageNet and
CBDNet. Numbers in bracket indicates accuracy drop rela-
tive to FP32 models. Last-column lists bitrate of CBDNet.

With the property of Eq.(14), we get the relation between
the indicator matrices with adjacent index:

|rank(Ip(w)<i+1)− rank(Ip(w)<i)| ≤ 1. (21)

This indicates that rank(Ip(w)<i) are continuous integers.
Hence, i ∈ [i1, i2] always exists to satisfy below constraints:

rank(Ip(w)<i) = c,

(rank(Ip(w)<i1)− c) ∗ (rank(Ip(w)<i2)− c) < 0.
(22)

Eq.(22) provides the property to design a binary search al-
gorithm as outlined in Algorithm 2, which could find the
local optimal of α when matrix W has some identical
elements. The computing complexity of this algorithm is
O(N log(N)), where N = n× k2 ×m.

Here, c is a tunable hyper-parameter. In practice, we did
not directly give c since different layers may require differ-
ent c. Instead, we assume m ≥ n and define b = c/n×k
as bottleneck ratio, since we reduce the neuron number
from n × k to c by the binary matrix B. Then we tune
b and make it constant over all the layers, while b < 0.5
could provide compression effect. After getting α, we ob-
tain q = dlog2 αe, and only do binary decomposition for the
subset {A−q, · · · , A0} as they are losslessly compressible.

Experiments
This section conducts experiments to verify the effective-
ness of CBDNet on various ImageNet classification net-
works (Russakovsky et al. 2015), as well as object detection
network SSD300 (Liu et al. 2016) and semantic segmenta-
tion network SegNet (Badrinarayanan et al. 2017).

Classification Networks on ImageNet
The ImageNet dataset contains 1.2 million training images,
100k test images, and 50k validation images. Each image is
classified into one of 1000 object categories. The images are
cropped to 224 × 224 before fed into the networks. We use
the validation set for evaluation and report the classification
performance via top-1 and top-5 accuracies. Table 1 gives an
overall performance of different evaluated networks. Note
we decomposed all the conv-layers and FC-layers with the
proposed method in this study. The resulted bit-rate is de-
fined by 32 × size(CBDNet)/size(FP32), where size(x)
gives the model size of model x.

Model 1: ResNet-18 (He et al. 2016) consists of 21 conv-
layers and 1 FC-layer. The top-1/top-5 accuracy of the FP32
model is 66.41/87.37 in our single center crop evaluation.
Figure 5 shows the accuracy and the bit-rate of CBDNet at
different bottleneck ratios. The effective bit-rate of CBDNet
is 5.25 with b=0.3 and J=7, while the top-1/top-5 accuracy
drops by 1.14% and 0.75% respectively.

Model FP32 BWD CBDNet
top-5(%) top-5(%) Bitrate top-5(%) Bitrate

ResNet-152 92.11 90.25(-1.86) 6 91.61(-0.5) 5.37
VGG-16 88.44 86.28(-2.16) 6 87.81(-0.63) 5.47

Table 2: CBDNet vs BWD on ResNet and VGGNet.

Model 2: VGG-16 (Simonyan and Zisserman 2015) con-
sists of 13 conv-layers and 3 FC-layers. The top-1/top-5 ac-
curacy of the FP32 model is 68.36/88.44 in our single center
crop evaluation. Figure 6 shows the accuracy and the bit-
rate of CBDNet at different bottleneck ratios. The effective
bit-rate of CBDNet is 5.47 with b=0.3 and J=7, while the
top-1/top-5 accuracy drops by 1% and 0.63% respectively.

Model 3: DenseNet-121 (Huang et al. 2017) consists of
121 layers. The top-1/top-5 accuracy of the FP32 model is
74.41/92.14 in our single center crop evaluation. Figure 7
shows the accuracy and the bit-rate of CBDNet at different
bottleneck ratios. The effective bit-rate is 5.72 with b = 0.4
and J = 7, while the top-1/top-5 accuracy drops by 1.28%
and 0.85% respectively.

Comparison to State-of-the-art We further compare the
accuracy and bit-rate to the prior art binary weighted de-
composition (BWD) (Kamiya et al. 2017). Table 2 lists the
comparison results on ResNet-152 and VGG-16. Note that,
BWD keeps the first conv-layer un-decomposed to ensure no
significant accuracy drops, while our CBDNet decomposes
all the layers. It shows that our CBDNet achieves much less
accuracy drops even with smaller bit-rate.

Detection Networks
We apply CBDNet to the object detection network SSD300
(Liu et al. 2016). The evaluation is performed on the
VOC0712 dataset. SSD300 is trained with the combined
training set from VOC 2007 trainval and VOC 2012
trainval (“07+12”), and tested on the VOC 2007 test-
set. We compare the performance between original SSD300
and our CBDNet. Figure 8a shows the comparison results, in
which we also include the composite-only (without binary
decomposition) results.

The effective bit-rate of CBDNet is 4.38, with 1.34% drop
of the mean Average Precision (mAP). That verifies the ef-
fectiveness of our CBDNet on object detection networks.

Semantic Segmentation Networks
We also perform an evaluation on the semantic segmentation
network SegNet (Badrinarayanan et al. 2017). The experi-
ment is conducted on the Cityscapes dataset (Cordts et al.
2016) of the 11 class version, for fair comparison to results
by (Kamiya et al. 2017). We use the public available SegNet
model, and test on the Cityscapes validation set. Figure 8b
shows the comparison results, in which the composite-only
results are also included.

The effective bit-rate of CBDNet on SegNet is 5.18, with
only 0.8% drop of the mean of intersection over union
(mIOU). In comparison, under the same setting, the BWD
(Kamiya et al. 2017) requires 6 bits but yields more than
2.75% accuracy loss. Figure 9 further illustrates the segmen-
tation results on two tested images, which compares results
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Figure 5: CBDNet accuracy on ImageNet for ResNet-18.
Dashed-line indicates FP32 accuracy. ‘b’ for bottleneck ratio.
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Figure 6: CBDNet accuracy on ImageNet for VGG-16.
Dashed-line indicates FP32 accuracy. ‘b’ for bottleneck ratio.
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Figure 7: CBDNet accuracy on ImageNet for DenseNet-121.
Dashed-line indicates FP32 accuracy. ‘b’ for bottleneck ratio.
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Figure 8: Accuracy comparison on (a) SSD300 and (b) Seg-
Net.

Sky

Fence Vehicle Pedestrain Bike Non labeled

TreeRoadPoleBuilding

Sign Symbol

Pavement

input image ground truth BWDSegNet CBDNet

Figure 9: Semantic segmentation results on CityScapes.
CBDNet is better than BWD on “sign” and “pole”.

from ground truth, SegNet, BWD, and our CBDNet. It is ob-
vious that our CBDNet gives better results than BWD. That
verifies the effectiveness of our CBDNet on semantic seg-
mentation networks.

Inference Speed with CBDNet
We make the inference speed comparison between CBD-
Net and the FP32 version on Intel Core i7-6700 CPU with
32GB RAM. We optimize one conv-layer of VGG-16 us-
ing SSE4.2 instructions (128-bit SIMD) for both the FP32
version and our CBDNet version. For CBDNet, we quan-
tize the input into 8-bits using the TensorFlow quantizer (Kr-
ishnamoort 2018), and then perform bitwise operations. We
project results in this layer to the whole network based on
operation numbers per-layer, and show that our CBDNet is
about 4.02× faster than the FP32 counterpart. In compar-

ison, BWD only gives 2.07× speedup over the FP32 ver-
sion with SSE4.2 optimization, under 6-bits weight quanti-
zation. This clearly demonstrates our advantage over BWD
(Kamiya et al. 2017). We believe specific designed hardware
with dedicated bitwise accelerators could realize ultra effi-
cient inference for our CBDNet.

Conclusion

This paper proposes composite binary decomposition net-
works (CBDNet), which can directly transfer pre-trained
full-precision CNN models into multi-bits binary network
models in a training-free way, while remain model accuracy
and computing efficiency. The method contains two steps,
composite real-valued tensors into a limited number of bi-
nary tensors, and decomposing certain conditioned binary
tensors into two low-rank tensors for parameter and comput-
ing efficiency. Experiments demonstrate the effectiveness of
the proposed method on various classification networks like
ResNet, DenseNet, VGGNet, as well as object detection net-
work SSD300, and semantic segmentation network SegNet.
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