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Abstract

A number of results have recently demonstrated the benefits
of incorporating various constraints when training deep ar-
chitectures in vision and machine learning. The advantages
range from guarantees for statistical generalization to bet-
ter accuracy to compression. But support for general con-
straints within widely used libraries remains scarce and their
broader deployment within many applications that can benefit
from them remains under-explored. Part of the reason is that
Stochastic gradient descent (SGD), the workhorse for training
deep neural networks, does not natively deal with constraints
with global scope very well. In this paper, we revisit a clas-
sical first order scheme from numerical optimization, Condi-
tional Gradients (CG), that has, thus far had limited applica-
bility in training deep models. We show via rigorous analysis
how various constraints can be naturally handled by modifi-
cations of this algorithm. We provide convergence guarantees
and show a suite of immediate benefits that are possible —
from training ResNets with fewer layers but better accuracy
simply by substituting in our version of CG to faster train-
ing of GANs with 50% fewer epochs in image inpainting ap-
plications to provably better generalization guarantees using
efficiently implementable forms of recently proposed regular-
izers.

Introduction
The learning or fitting problem in deep neural networks in
the supervised setting is often expressed as the following
stochastic optimization problem,

min
W

E
(x,y)∼D

L(W ; (x, y)) (1)

where W = W1 × · · · ×Wl denotes the Cartesian product
of the weight matrices of the network with l layers that we
seek to learn from the data (x, y) sampled from the underly-
ing distribution D. Here, x can be thought of the “features”
(or predictor variables) of the data and y denotes the “labels”
(or the response variable). The variableW parameterizes the
function that predicts the labels given the features whose ac-
curacy is measured using the loss function L. For simplic-
ity, the specification above is intentionally agnostic of the
activation function we use between the layers and the spe-
cific network architecture. Most common instantiations of
Copyright c© 2019, Association for the Advancement of Artificial
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the above task are non-convex but results in the last 5 years
show that good minimizers can be found via SGD and its
variants. Recent results have also explored the interplay be-
tween the overparameterization of the network, its degrees
of freedom and issues related to global optimality (Soudry
and Carmon 2016).

Regularizers. Independent of the architecture we choose
to deploy for a given task, one may often want to impose
additional constraints or regularizers, pertinent to the ap-
plication domain of interest. In fact, the use of task spe-
cific constraints to improve the behavioral performance of
neural networks, both from a computational and statisti-
cal perspective, has a long history dating back at least to
the 1980s (Platt and Barr 1988; Zhang and Constantinides
1992). These ideas are being revisited (Rudd, Di Muro, and
Ferrari 2014) motivated by generalization, convergence or
simply as a strategy for compression (Cheng and others
2017). However, using constraints on the types of archi-
tectures that are common in modern AI problems is still
being actively researched by various groups. For example,
(Mikolov and others 2014) demonstrated that training Re-
current Networks can be accelerated by constraining a part
of the recurrent matrix to be close to identity. Sparsity and
low-rank encouraging constraints have shown promise in a
number of settings (Tai and others 2015). In an interesting
paper, (Pathak, Krahenbuhl, and Darrell 2015) showed that
linear constraints on the output layer improves the accuracy
on a semantic image segmentation task. (Márquez-Neila,
Salzmann, and Fua 2017) showed that hard constraints on
the output layer yield competitive results on the pose estima-
tion task and (Oktay and others 2017) used anatomical con-
straints for cardiac image analysis. This suggests that while
there are some results demonstrating the value of specific
constraints for specific problems, the development is still in
a nascent stage. It is, therefore, not surprising that the exist-
ing software libraries for deep learning (DL) offer little to no
support for hard constraints. For example, Keras only offers
support for simple bound constraints.

Optimization Schemes. Let us momentarily set aside the
issue of constraints and discuss the choice of the optimiza-
tion schemes that are in use today. There is little doubt that
SGD algorithms dominate the landscape of DL problems in
AI. Instead of evaluating the loss and the gradient over the
full training set, SGD computes the gradient of the param-
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eters using a few training examples. It mitigates the cost of
running back propagation over the full dataset and comes
with various guarantees as well (Hardt, Recht, and Singer
2016). The reader will notice that part of the reason that
constraints have not been intensively explored may have to
do with the interplay between constraints and the SGD al-
gorithm (Márquez-Neila, Salzmann, and Fua 2017). While
some regularizers and “local” constraints are easily handled
within SGD, some others require a great deal of care and can
adversely affect convergence and practical runtime (Bengio
2012). There are also a broad range of constraints where
SGD is unlikely to work well based on theoretical results
known today — and it remains an open question in optimiza-
tion (Johnson and Zhang 2013). We note that algorithms
other than the standard SGD have remained a constant focus
of research in the community since they offer many theo-
retical advantages that can also be easily translated to prac-
tice (Dauphin, de Vries, and Bengio 2015). These include
adaptive sub-gradient methods such as Adagrad, the RM-
Sprop algorithm, and various adaptive schemes for choosing
learning rate including momentum based methods (Good-
fellow, Bengio, and Courville 2016). However, notice that
these methods only impose constraints in a “local” fashion
since the computational cost of imposing global constraints
using SGD-based methods becomes extremely high (Pathak,
Krahenbuhl, and Darrell 2015).

Do we need to impose constraints?
The question of why constraints are needed for statistical
learning models in vision and machine learning can be re-
stated in terms of the need for regularization while learning
models. Recall that regularization schemes in one form or
another go nearly as far back as the study of fitting mod-
els to observations of data (Wahba 1990). Broadly speaking,
such schemes can be divided into two related categories: al-
gebraic and statistical. The first category may refer to prob-
lems that are otherwise not possible or difficult to solve, also
known as ill-posed problems (Tikhonov, Goncharsky, and
Bloch 1987). For example, without introducing some addi-
tional piece of information, it is not possible to solve a linear
system of equations Ax = b in which the number of obser-
vations (rows of A) is less than the number of degrees of
freedom (columns of A). In the second category, one may
use regularization as a way of “explaining” data using sim-
ple hypotheses rather than complex ones, for example, the
minimum description length principle (Rissanen 1985). The
rationale is that, complex hypotheses are less likely to be ac-
curate on the unobserved samples since we need more data
to train complex models. Recent developments on the theo-
retical side of DL showed that imposing simple but global
constraints on the parameter space is an effective way of
analyzing the sample complexity and generalization error
(Neyshabur, Tomioka, and Srebro 2015). Hence we seek to
solve,

min
W

E
(x,y)∼D

L(W ; (x, y)) + µR(W ) (2)

where R(·) is a suitable regularization function for a fixed
µ > 0. We usually assume that R(·) is simple, in the sense

that the gradient can be computed efficiently. Using the La-
grangian interpretation, Problem (2) is the same as the fol-
lowing constrained formulation,

min
W

E
(x,y)∼D

L(W ; (x, y)) s.t. R(W ) ≤ λ (3)

where λ > 0. Note that when the loss function L is con-
vex, both the above problems are equivalent in the sense that
given µ > 0 in (2), there exists a λ > 0 in (3) such that the
optimal solutions to both the problems coincide (see Sec 1.2
in (Bach and others 2012)). In practice, both λ and µ are
chosen by standard procedures such as cross validation.

Finding Pareto Optimal Solutions: On the other hand,
when the loss function is nonconvex as is typically the case
in DL, formulation (3) is more powerful than (2). Let us see
why.

For a fixed λ > 0, there might be solutions W ∗λ of (3) for
which there exists no µ > 0 such that W ∗λ = W ∗µ whereas
any solution of problem (2) can be obtained for some µ in (3)
(Section 4.7 in (Boyd and Vandenberghe 2004)). It turns out
that it is easier to understand this phenomenon through Mul-
tiobjective Optimization (MO). In MO, care has to be taken
to even define the notion of optimality of feasible points (let
alone computing them efficiently). Among various notions
of optimality, we will now argue that Pareto optimality is
the most suited for our goal.

Recall that our goal is to find W ’s that achieve low train-
ing error and are at the same time “simple” (as measured by
R). In this context, a Pareto optimal solution is a point W
such that none of L(W ) or R(W ) in (3) or (2) can be made
better without making the other worse, thus capturing the
essence of overfitting effectively. In practice, there are many
algorithms to find Pareto optimal solutions and this is where
problem (3) dominates (2). Specifically, formulation (2) falls
under the category of “scalarization” technique whereas (3)
is ε-constrained technique. It is well known that when the
problem is nonconvex, ε-constrained technique yields pareto
optimal solutions whereas scalarization technique does not
(Boyd and Vandenberghe 2004)!

Finally, we should note that even when the problems (2)
and (3) are equivalent, in practice, algorithms that are used
to solve them can be very different.
Our contributions: We show that many interesting global
constraints of interest in AI can be explicitly imposed using
a classical technique, Conditional Gradient (CG) that has not
been deployed much at all in deep learning. We analyze the
theoretical aspects of this proposal in detail. On the appli-
cation side, specifically, we explore and analyze the perfor-
mance of our CG algorithm with a specific focus on training
deep models on the constrained formulation shown in (3).
Progressively, we go from cases where there is no (or neg-
ligible) loss of both accuracy and training time to scenarios
where this procedure shines and offers significant benefits in
performance, runtime and generalization. Our experiments
indicate that: (i) with less than 50% #-parameters, we im-
prove ResNet accuracy by 25% (from 8% to 6% test error),
and (ii) GANs can be trained in nearly a third of the compu-
tational time achieving the same or better qualitative per-
formance on an image inpainting task.
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First Order Methods: Two Representatives
To setup the stage for our development we first discuss the
two broad strategies that are used to solve problems of the
form shown in (3). First, a natural extension of gradient
descent (GD) also known as Projected GD (PGD) may be
used. Intuitively, we take a gradient step and then compute
the point that is closest to the feasible set defined by the reg-
ularization function. Hence, at each iteration PGD requires
the solution of the following optimization problem or the so-
called Projection operator,

WPGD
t+1 ← arg min

W :R(W )≤λ

1

2
‖W − (Wt − ηgt) ‖2F (4)

where ‖W‖F is the Frobenius norm of W , gt is (an estimate
of) the gradient of L at Wt and η is the step size. In prac-
tice, we compute gt by using only a few training samples
(or minibatch) and running backpropagation. Note that the
objective E(x,y)∼DL(W ) is smooth in W for any probabil-
ity distribution D with a density function and is commonly
referred to as stochastic smoothing. Hence, for our descrip-
tions, we will assume that the derivative is well defined. Fur-
thermore, when there are no constraints, (4) is simply the
standard SGD method that requires optimizing a quadratic
function on the feasible set. So, the main bottleneck in ex-
plicitly imposing constraints with PGD is the complexity of
solving (4). Even though many R(·) do admit an efficient
procedure in theory, using them for applications in training
deep models has been a challenge since they may be com-
plicated or not easily amenable to a GPU implementation
(Taylor and others 2016; Frerix and others 2017).

So, a natural question to ask is whether there are meth-
ods that are faster in the following sense: can we solve sim-
pler problems at each iteration and also explicitly impose
the constraints effectively? An assertive answer is provided
by a scheme that falls under the second general category
of first order methods: the Conditional Gradient (CG) al-
gorithm (Reddi and others 2016). Recall that CG methods
solve the following linear minimization problem at each it-
eration instead of a quadratic one

st ∈ arg min
W

gTt W s.t. R(W ) ≤ λ (5)

and update WCG
t+1 ← ηWt + (1 − η)st. While both PGD

and CG guarantee convergence with mild conditions on η,
it may be the case (as we will see shortly) that problems of
the form (5) can be much simpler than the form in (4) and
hence highly suitable for training deep learning models. An
additional bonus is that CG algorithms also offer nice space
complexity guarantees that are also attainable in practice,
making it a very promising choice for explicitly constrained
training of deep models.
Remark 1. Note that in order for CG algorithm (5) to be
well defined, we need the feasible set to be bounded whereas
this is not required for PGD (4).

To that end, we will see how the CG algorithm behaves
for the regularization constraints that are commonly used.
Remark 2. Note that although the loss function EL(W ) is
nonconvex, the constraints that we need for almost all appli-
cations are convex, hence, all our algorithms are guaranteed

to converge by design (Lacoste-Julien 2016; Reddi and oth-
ers 2016) to a stationary point.

Categorizing “Generic” Constraints for CG
We now describe how a broad basket of “generic” con-
straints broadly used in literature, can be arranged into a hi-
erarchy — ranging from cases where a CG scheme is perfect
and expected to yield wide-ranging improvements to situa-
tions where the performance is only satisfactory and addi-
tional technical development is warranted. For example, the
`1-norm is often used to induce sparsity. The nuclear norm
(sum of singular values) is used to induce a low rank regu-
larization, often for compression and/or speed-up reasons.

So, how do we know which constraints when imposed
using CG are likely to work well? In order to analyze the
qualitative nature of constraints suitable for CG algorithm,
we categorize the constraints into three categories based on
how the updates will, computationally, and learning-wise,
compare to a SGD update.

Category 1 constraints are excellent
We categorize constraints as Category 1 if both the SGD and
CG updates take a similar form algebraically. The reason we
call this category “excellent” is because it is easy to trans-
fer the empirical knowledge that we obtained in the uncon-
strained setting, specifically, learning and dropout rates to
the regime where we want to explicitly impose these addi-
tional constraints. Here, we see that we get quantifiable im-
provements in terms of both computation and learning.

Two types of generic constraints fall into this category: 1)
the Frobenius norm and 2) the Nuclear norm (Ruder 2017).
We will now see how we can solve (4) and (5) by comparing
and contrasting them.

Frobenius Norm. When R(·) is the Frobenius norm, it is
easy to see that (4) corresponds to the following,

WPGD
t+1 =

{
Wt − ηgt if ‖Wt − ηgt‖F ≤ λ
λ · Wt−ηgt
‖Wt−ηgt‖F otherwise,

(6)

and (5) corresponds to st = −λ gt
‖gt‖F which implies that,

WCG
t+1 = Wt − (1− η)

(
Wt + λ

gt
‖gt‖F

)
. (7)

It is easy to see that both the update rules essentially take the
same amount of calculation which can be easily done while
performing a backpropagation step. So, the actual change in
any existing implementation will be minimal but CG will
automatically offer an important advantage, notably scale
invariance, which several recent papers have found to be
advantageous (Lacoste-Julien and Jaggi 2015).

Nuclear norm. On the other hand, when R(·) is the nu-
clear norm, the situation where we use CG (versus not) is
quite different. All known projection (or proximal) algo-
rithms require computing at each iteration the full singu-
lar value decomposition of W , which in the case of deep
learning methods becomes restrictive (Recht, Fazel, and Par-
rilo 2010). In contrast, CG only requires computing the top-
1 singular vector of W which can be done easily and effi-
ciently on a GPU via the power method (Jaggi 2013). Hence
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in this case, if the number of edges in the network is |E| we
get a near-quadratic speed up, i.e., fromO(|E|3) for PGD to
O(|E| log |E|) making it practically implementable (Golub
and Van Loan 2012) in the very large scale settings (Yu,
Zhang, and Schuurmans 2017). Furthermore, it is interest-
ing to observe that the rank of W after running T iterations
of CG is at most T which implies that we need to only store
2T vectors instead of the whole matrixW making it a viable
solution for deployment on devices with memory constraints
(Howard and others 2017). The main takeaway is that, since
projections are computationally expensive, projected SGD
is not a viable option in practice.

Category 2 constraints are potentially good
As we saw earlier, CG algorithms are always at least as effi-
cient as the PGD updates: in general, any constraint that can
be imposed using the PGD algorithm can also be imposed
by CG algorithm, if not faster. Hence, generic constraints
are defined to be Category 2 constraints for CG if the em-
pirical knowledge cannot be easily transferred from PGD.
Two classical norms that fall into this category: ‖W‖1 and
‖W‖∞. For example, PGD on the `1 ball can be done in lin-
ear time (see (Duchi and others 2008)) and for ‖W‖∞ using
gradient clipping (Boyd and Vandenberghe 2004). So, let us
evaluate the CG step (5) for the constraint ‖W‖1 ≤ λ which
corresponds to,

sjt =

−λ if j∗ = arg max
j

∣∣∣gjt ∣∣∣
0 otherwise.

(8)

That is, we assign −λ to the coordinate of the gradient
gt that has the maximum magnitude in the gradient matrix
which corresponds to a deterministic dropout regularization
in which at each iteration we only update one edge of the
network. While this might not be necessarily bad, it is now
common knowledge that a high dropout rate (i.e., updating
very few weights at each iteration) leads to underfitting or
in other words, the network tends to need a longer training
time (Srivastava and others 2014). Similarly, the update step
(5) for CG algorithm with ‖W‖∞ takes the following form,

sjt =

{
+λ if gjt < 0

−λ otherwise.
(9)

In this case, the CG update uses only the sign of the gradient
and does not use the magnitude at all. In both cases, one
issue is that information about the gradients is not used by
the standard form of the algorithm making it not so efficient
for practical purposes. Interestingly, even though the update
rules in (8) and (9) use extreme ways of using the gradient
information, we can, in fact, use a group norm type penalty
to model the trade-off. Recent work shows that there are very
efficient procedures to solve the corresponding CG updates
as well (5).

Remark 3. The main takeaway from the discussion is that
Category 2 constraints surprisingly unifies many regulariza-
tion techniques that are traditionally used in DL in a more
methodical way.

Category 3 constraints need more work
There is one class of regularization norms that do not nicely
fall in either of the above categories, but is used in several
problems in vision: the Total Variation (TV) norm. TV norm
is widely used in denoising algorithms to promote smooth-
ness of the estimated sharp image (Chambolle and Lions
1997). The TV norm on an image I is defined as a certain
type of norm of its discrete gradient field (∇iI(·),∇jI(·))
i.e.,

‖I‖pTV := ((‖∇iI‖p + ‖∇jI‖p)p . (10)

Note that for p ∈ {1, 2}, this corresponds to the classical
anisotropic and isotropic TV norm respectively. Motivated
by the above idea, we can now define the TV norm of a Feed
Forward Deep Network. TV norm, as the name suggests,
captures the notion of balanced networks, shown to make the
network more stable (Neyshabur, Salakhutdinov, and Srebro
2015). Let A be the incidence matrix of the network: the
rows of A are indexed by the nodes and the columns are
indexed by the (directed) edges such that each column con-
tains exactly two nonzero entries: a +1,−1 in the rows cor-
responding to the starting node u and ending node v respec-
tively. Let us also consider the weight matrix of the network
as a vector (for simplicity) indexed in the same order as the
columns of A. Then, the TV norm of the deep neural net-
work is,

‖W‖TV := ‖AW‖p. (11)

It turns out that when R(W ) = ‖W‖TV , PGD is not triv-
ial to solve and requires special schemes (Fadili and Peyré
2011) with runtime complexity of O(n4) where n is the
number of nodes — impractical for most deep learning ap-
plications. In contrast, CG iterations only require a special
form of maximum flow computation which can be done ef-
ficiently (Harchaoui, Juditsky, and Nemirovski 2015).
Lemma 4. An ε-approximate CG step (5) can be computed
in O(1/ε) time (independent of dimensions of A).

Proof. (Sketch) We show that the problem is equivalent to
solving the dual of a specific linear program which can be
efficiently done using (Johnson and Zhang 2013).

Remark 5. The above discussion suggests that conceptu-
ally, Category 3 constraints can be incorporated and will
immensely benefit from CG methods. However, unlike Cat-
egory 1-2 constraints, it requires specialized implementa-
tions to solve subproblems from (11) which are not currently
available in popular libraries. So, additional work is needed
before broad utilization may be possible.

Path Norm Constraints in Deep Learning
So far, we only covered constraints that were already in
use in vision/machine learning and recently, some attempts
(Márquez-Neila, Salzmann, and Fua 2017) were made to uti-
lize them in deep networks. Now, we review a new notion of
regularization, introduced recently, that has its roots primar-
ily in deep learning (Neyshabur, Salakhutdinov, and Srebro
2015). We will first see the definition and explain some of
the properties that this type of constraint captures.
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Algorithm 1 Path-CG iterations

Pick a starting point W0 : ‖W0‖π ≤ λ and η ∈ (0, 1).
for t = 0, 1, 2, · · · , T iterations do

for j = 0, 1, 2, · · · , l layers do
g ← gradient of edges from j − 1 to j layer.
Compute γe ∀ e from j − 1 to j layer (eq (13))
Set sjt ← arg minW gTW s.t.‖ΓW‖2 ≤ λ (eq(14))
Update W j

t+1 ← ηW j
t + (1− η)sjt

end for
end for

Definition 6. (Neyshabur, Salakhutdinov, and Srebro 2015)
The `2-path regularizer is defined as :

‖W‖2π =
∑

vin[i]
e1−→v1

e2−→···vout[j]

∣∣∣∣∣
l∏

k=1

Wek

∣∣∣∣∣
2

. (12)

Here π denotes the set of paths, vin corresponds to a node
in the input layer, ei corresponds to an edge between a node
(i − 1)-th layer and i-th layer that lies in the path between
vin and vout in the output layer. Therefore, the path norm
measures norm of all possible paths π in the network up to
the output layer.

Why do we need path norm? One of the basic properties
of ReLu (Rectified Linear Units) is that it is scaling invari-
ant in the following way: multiplying the weights of incom-
ing edges to a node i by a positive constant and dividing the
outgoing edges from the same node i does not change L for
any (x, y). Hence, an update scheme that is scaling invariant
will significantly increase the training speed. Furthermore,
the authors in (Neyshabur, Salakhutdinov, and Srebro 2015)
showed how path regularization converges to optimal solu-
tions that can generalize better compared to the usual SGD
updates — so apart from computational benefits, there are
clear statistical generalization advantages too.

How do we incorporate the path norm constraint? Re-
call from Remark 1 that the feasible set has to be bounded,
so that the step (5) is well defined. Unfortunately, this is not
the case with the path norm. To see this, consider a simple
line graph with weights W1 and W2. In this case, there is
only one path and the path norm constraint is W 2

1W
2
2 ≤ 1

which is clearly unbounded. Further, we are not aware of an
efficient procedure to compute the projection for higher di-
mensions since there is no known efficient separation oracle.
Interestingly, we take advantage of the fact that if we fixW1,
then the feasible set is bounded. This intuition can be gener-
alized, that is, we can update one layer at a time which we
will describe now precisely.

Path-CG Algorithm: In order to simplify the presenta-
tion, we will assume that there are no biases noting that the
procedure can be easily extended to the case when we have
individual bias for every node. Let us fix a layer j and the
vectorized weight matrix of that layer be W that we want to
update and as usual, g corresponds to the gradient. Let the
number of nodes in the (j − 1) and j-th layers be n1 and
n2 respectively. For each edge between these two layers we

will compute the scaling factors γe defined as,

γe =
∑

vin[i]···
e−→···vout[j]

∣∣∣∣∣∣
∏
ek 6=e

Wek

∣∣∣∣∣∣
2

. (13)

Intuitively, γe computes the norm of all paths that pass
through the edge e excluding the weight of e. This can be
efficiently done using Dynamic Programming in time O(l)
where l is the number of layers. Consequently, the com-
putation of path norm also satisfies the same runtime, see
(Neyshabur, Salakhutdinov, and Srebro 2015) for more de-
tails. Now, observe that the path norm constraint when all
of the other layers are fixed reduces to solving the following
problem,

min
W

gTW s.t. ‖ΓW‖2 ≤ λ (14)

where Γ is a diagonal matrix with Γe,e = γe, see (13).
Hence, we can see that the problem again reduces to a simple
rescaling and then normalization as seen for the Frobenius
norm in (7) and repeat for each layer.
Remark 7. The starting pointW0 such that ‖W0‖π ≤ λ can
be chosen simply by randomly assigning the weights from
the Normal Distribution with mean 0.

Complexity of Path-CG 1: From the above discussion,
our full algorithm is given in Algorithm 1. The main com-
putational complexity in Path-CG comes from computing
the matrix Γ for each layer, but as we described earlier, this
can be done by backpropagation – O(1) flops per example.
Hence, the complexity of Path-CG for running T iterations
is essentially O(lBT ) where B is a size of the mini-batch.

Scale invariance of Path-CG 1: Note that CG algorithms
satisfy a much general property called as Affine Invariance
(Jaggi 2013), which implies that it is also scale invariant.
Scale invariance makes our algorithm more efficient (in wall
clock time) since it avoids exploring parameters that corre-
spond to the same prediction function.

Experimental Evaluation
We present experimental results on three different case stud-
ies to support our basic premise and theoretical findings in
the earlier sections: constraints can be easily handled with
our CG algorithm in the context of Deep Learning while pre-
serving the empirical performance of the models. The first
set of experiments is designed to show how simple/generic
constraints can be easily incorporated in existing deep learn-
ing models to get both faster training times and better accu-
racy while reducing the #-layers using the ResNet architec-
ture. The second set of experiments is to evaluate our Path-
CG algorithm. The goal is to show that Path-CG is much
more stable than the Path-SGD algorithm in (Neyshabur,
Salakhutdinov, and Srebro 2015), implying lower general-
ization error of the model. In the third set of experiments
we show that GANs (Generative Adversarial Networks) can
be trained faster using the CG algorithm and that the training
tends to be stable. To validate this, we test the performance
of the GAN on image inpainting. Since CG algorithm main-
tains a solution that is a convex combination of all previous
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Figure 1: (Left) Performance of CG on ResNet-32 on CIFAR10 dataset (x-axis denotes the fraction of T ): as λ increases, the
training error, loss value and test error all start to decrease simultaneously. (Right) Performance of Path-CG vs SGD on a 2-layer
fully connected network on four datasets (x-axis denotes the #iterations). Observe that across all datasets, Path-CG is much
faster than SGD (first three columns). Last column shows that SGD is not stable with respect to the path norm.

iterates, hence to decrease the effect of random initialization,
the training scheme consists of two phases: (i) burn-in phase
in which the CG algorithm is run with a constant stepsize;
(ii) decay phase in which the stepsize is decaying accord-
ing to 1/t. This makes sure that the effect of randomness
from the initialization is diminished. We use 1 epoch for the
burn-in phase, hence we can conclude that the algorithm is
guaranteed to converge to a stationary point (Lacoste-Julien
2016).

Improve ResNets using Conditional Gradients
We start with the problem of image classification, detection
and localization. For these tasks, one of the best perform-
ing architectures are variants of the Deep Residual Networks
(ResNet) (He and others 2016). For our purposes, to ana-
lyze the performance of CG algorithm, we used the shal-
lower variant of ResNet, namely ResNet-32 (32 hidden lay-
ers) architecture and trained on the CIFAR10 (Krizhevsky,
Sutskever, and Hinton 2012) dataset. ResNet-32 consists of
5 residual blocks and 2 fully connected, one each at the input
and output layers. Each residual block consists of 2 convolu-
tion, ReLu (Rectified Linear units), and batch normalization
layers, see (He and others 2016) for more details. CIFAR10
dataset contains 60000 color images of size 32 × 32 with
10 different categories/labels. Hence, the network contains
approximately 0.46M parameters.

To make the discussion clear, we present results for the
case where the total Frobenius norm of the network param-
eters is constrained to be less than λ and trained using the
CG algorithm. To see the effect of the parameters λ and step

sizes η on the model, we ran 80000 iterations, see Figure
1. The plots essentially show that if λ is chosen reasonably
big, then the accuracy of CG is very close to the accuracy
of ResNet-164 (5.46% top-1 test error, see (He and others
2016)) that has many more parameters (approximately 5
times!). In practice, since λ is a constraint parameter, we can
initially choose λ to be small and gradually increase it, thus
avoiding complicated grid search procedures.Thus, figure 1
shows that CG can be used to improve the performance of
existing architectures by appropriately choosing constraints
(see supplement for more experiments).

Takeaway: CG offers fewer parameters and higher accu-
racy on a standard network with no additional change.

Path-CG vs Path-SGD: Which is better?
In this case study, the goal is to compare Path-CG with the
Path-SGD algorithm (Neyshabur, Salakhutdinov, and Srebro
2015) in terms of both accuracy and stability of the algo-
rithm. To that end, we considered image classification prob-
lem with a path norm constraint on the network: ‖Wt‖p ≤ λ
for varying λ as before. We train a simple feed-forward net-
work which consists of 2 fully-connected hidden layers with
4000 units each, followed by the output layer with 10 nodes.
We used ReLu nonlinearity as the activation function and
cross entropy as the loss, see (Neyshabur, Salakhutdinov,
and Srebro 2015) for more details.
We performed experiments on 4 standard datasets for im-
age classification: MNIST, CIFAR (10,100) (Krizhevsky,
Sutskever, and Hinton 2012) and finally color images of
house numbers from SVHN dataset (Netzer and others ).
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Figure 2: Left: Illustrates the task of image inpainting overall pipeline. Right: CG-trained DC-GAN performs as good as (or better than)
SGD-based DC-GAN but with 50% epochs.

Figure 3: From left: show MSE/SSIM/FID on the full im-
age.

Figure 1 (right) shows the result for λ = 10−5 (after tun-
ing), it can achieve the same accuracy as that of Path-SGD.

Path-CG has one main advantage over Path-SGD: Our
results in the supplement show that Path-CG is more sta-
ble while the path norm of Path-SGD algorithm increases
rapidly. This shows that Path-SGD does not effectively reg-
ularize the path norm whereas Path-CG keeps the path norm
less than λ as expected.

Takeaway: All statistical benefits of path norm are possi-
ble via CG while being computationally stable.

Image Inpainting using Conditional Gradients
Finally, we illustrate the ability of our CG framework on
an exciting and recent application of image inpainting using
Generative Adversarial Networks (GANs). We now briefly
explain the overall experimental setup. GANs using game
theoretic notions can be defined as a system of 2 neural
networks called Generator and the Discriminator competing
with each other in a zero-sum game (Arora and others 2017).

Image inpainting/completion can be performed using the
following two steps (Amos ): (i) Train a standard GAN as a
normal image generation task, and (ii) use the trained gener-
ator and then tune the noise that gives the best output. Hence,
our hypothesis is that if the generator is trained well, then the
follow-up task of image inpainting benefits automatically.

Train DC-GAN faster for better image inpainting: We
used the state of the art DC-GAN architecture in our exper-
iments and we impose a Frobenius norm constraint on the

parameters but only on the Discriminator to avoid mode col-
lapse issues and trained using the CG algorithm. In order to
verify the performance of the CG algorithm, we used 2 stan-
dard face image datasets from CelebA and LWF and con-
ducted two experiments: trained on the CelebA dataset with
LFW being the test dataset and vice-versa. We found that
the generator generates very high quality images after be-
ing trained with LFW images in comparison to the original
DC-GAN in just 10 epochs (reducing the computational cost
by 50%). Quantitatively, we provide numerical evidence in
Figure 3 with 2 intrinsic metrics viz., Structural Similarity
(SSim), Mean Squared Error (MSE) and 1 extrinsic met-
ric, Frechet Inception Distance (FID). All the three metrics
are standard in GAN literature. We calculated the intrinsic
metrics after the image completion phase. We can see that
on all the three metrics, CG outperforms SGD clearly.

Takeaway: GANs can be trained faster with no change in
accuracy.

Conclusions
The main emphasis of our work is to provide evidence sup-
porting three distinct but related threads: (i) global con-
straints are relevant in the context of training deep models
in vision and machine learning; (ii) the lack of support for
global constraints in existing libraries like Keras and Tensor-
flow (Abadi and others 2016) may be because of the com-
plex interplay between constraints and SGD which we have
shown can be side-stepped, to a great extent, using CG; and
(iii) constraints can be easily incorporated with negligible to
small changes to existing implementations. We provide em-
pirical results on three different case studies to support our
claims, and conjecture that a broad variety of other prob-
lems will immediately benefit by viewing them through the
lens of CG algorithms. Our analysis and experiments sug-
gest concrete ways in which one may realize improvements,
in both generalization and runtime, by substituting in CG
schemes in deep learning models. Tensorflow code for all
our experiments will be made available in Github.
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