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Abstract

Multi-task learning (MTL) allows deep neural networks to
learn from related tasks by sharing parameters with other
networks. In practice, however, MTL involves searching an
enormous space of possible parameter sharing architectures
to find (a) the layers or subspaces that benefit from sharing,
(b) the appropriate amount of sharing, and (c) the appropriate
relative weights of the different task losses. Recent work has
addressed each of the above problems in isolation. In this work
we present an approach that learns a latent multi-task archi-
tecture that jointly addresses (a)–(c). We present experiments
on synthetic data and data from OntoNotes 5.0, including four
different tasks and seven different domains. Our extension
consistently outperforms previous approaches to learning la-
tent architectures for multi-task problems and achieves up to
15% average error reductions over common approaches to
MTL.

Introduction
Multi-task learning (MTL) in deep neural networks is typ-
ically a result of parameter sharing between two networks
(of usually the same dimensions) (Caruana 1993). If you
have two three-layered, recurrent neural networks, both with
an embedding inner layer and each recurrent layer feeding
the task-specific classifier function through a feed-forward
neural network, we have 19 pairs of layers that could share
parameters. With the option of having private spaces, this
gives us 519 =19,073,486,328,125 possible MTL architec-
tures. If we additionally consider soft sharing of parameters,
the number of possible architectures grows infinite. It is ob-
viously not feasible to search this space. Neural architecture
search (NAS) (Zoph and Le 2017) typically requires learning
from a large pool of experiments with different architec-
tures. Searching for multi-task architectures via reinforce-
ment learning (Wong and Gesmundo 2018) or evolutionary
approaches (Liang, Meyerson, and Miikkulainen 2018) can
therefore be quite expensive. In this paper, we jointly learn a
latent multi-task architecture and task-specific models, pay-
ing a minimal computational cost over single task learning
and standard multi-task learning (5-7% training time). We
refer to this problem as multi-task architecture learning. In
contrast to architecture search, the overall meta-architecture
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is fixed and the model learns the optimal latent connections
and pathways for each task. Recently, a few authors have con-
sidered multi-task architecture learning (Misra et al. 2016;
Meyerson and Miikkulainen 2018), but these papers only
address a subspace of the possible architectures typically
considered in neural multi-task learning, while other ap-
proaches at most consider a couple of architectures for shar-
ing (Søgaard and Goldberg 2016; Peng and Dredze 2016;
Martı́nez Alonso and Plank 2017). In contrast, we introduce
a framework that unifies previous approaches by introducing
trainable parameters for all the components that differentiate
multi-task learning approaches along the above dimensions.

Contributions We present a novel meta-architecture
(shown in Figure 1) that generalizes several previous multi-
task architectures, with an application to sequence tagging
problems. Our meta-architecture enables multi-task architec-
ture learning, i.e., learning (a) what layers to share between
deep recurrent neural networks, but also (b) which parts of
those layers to share, and with what strength, as well as (c) a
mixture model of skip connections at the architecture’s outer
layer. We show that the architecture is a generalization of var-
ious multi-task (Caruana 1998; Søgaard and Goldberg 2016;
Misra et al. 2016) and transfer learning algorithms (Daumé
III 2007). We evaluate it on four tasks and across seven do-
mains on OntoNotes 5.0 (Weischedel et al. 2013), where
it consistently outperforms previous work on multi-task ar-
chitecture learning, as well as common MTL approaches.
Moreover, we study the task properties that predict gains and
those that correlate with learning certain types of sharing.

Multi-task Architecture Learning
We introduce a meta-architecture for multi-task architecture
learning, which we refer to as a sluice network, sketched in
Figure 1 for the case of two tasks. The network learns to
share parameters between M neural networks—in our case,
two deep recurrent neural networks (RNNs) (Hochreiter and
Schmidhuber 1997). The network can be seen as an end-to-
end differentiable union of a set of sharing architectures with
parameters controlling the sharing. By learning the weights
of those sharing parameters (sluices) jointly with the rest of
the model, we arrive at a task-specific MTL architecture over
the course of training.
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Figure 1: A sluice meta-network with one main task A and
one auxiliary task B. It consists of a shared input layer (bot-
tom), two task-specific output layers (top), and three hidden
layers per task, each partitioned into two subspaces G that
are enforced to be orthogonal. α parameters control which
subspaces are shared between main and auxiliary task, while
β parameters control which layer outputs are used for predic-
tion. For simplicity, we do not index layers and subspaces.
With two subspaces, each block αAA, αBA, . . . ∈ R2×2.
With three layers, βA, βB ∈ R3.

The two networksA and B share an embedding layer asso-
ciating the elements of an input sequence, in our case English
words, with vector representations via word and character
embeddings. The two sequences of vectors are then passed
on to their respective inner recurrent layers. Each layer is
divided into subspaces (by splitting the matrices in half), e.g.,
for network A into GA,1 and GA,2, which allow the sluice
network to learn task-specific and shared representations, if
beneficial. The subspaces have different weights.

The output of the inner layer of network A is then passed
to its second layer, as well as to the second layer of network
B. This traffic of information is mediated by a set of α and
β parameters similar to the way a sluice controls the flow of
water. Specifically, the second layer of each network receives
a combination of the output of the two inner layers weighted
by the α parameters. Importantly, these α parameters are
trainable and allow the model to learn whether to share or
to focus on task-specific features in a subspace. Finally, a
weighted combination of the outputs of the outer recurrent
layers G·,3,· as well as the weighted outputs of the inner
layers are mediated through β parameters, which reflect a
mixture over the representations at various depths of the
multi-task architecture. In sum, sluice networks have the
capacity to learn what layers and subspaces should be shared,
and how much, as well as at what layers the meta-network
has learned the best representations of the input sequences.

Matrix Regularization We cast learning what to share as
a matrix regularization problem, following (Jacob et al. 2009;
Yang and Hospedales 2017). Assume M different tasks that
are loosely related, with M potentially non-overlapping

datasets D1, . . . ,DM . Each task is associated with a deep
neural network with K layers L1, . . . LK . For simplicity,
we assume that all the deep networks have the same hyper-
parameters at the outset. Let W ∈ RM×D be a matrix in
which each row i corresponds to a model θi with D pa-
rameters. The loss that sluice networks minimize, with a
penalty term Ω, is then as follows: λ1L1(f(x; θ1), y1)+ . . .+
λMLM (f(x; θM ), yM ) + Ω. The loss functions Li are cross-
entropy functions of the form −

∑
y p(y) log q(y) where yi

are the labels of task i. Note that sluice networks are not
restricted to tasks with the same loss functions, but could
also be applied to jointly learn regression and classification
tasks. The weights λi determine the importance of the dif-
ferent tasks during training. We explicitly add inductive bias
to the model via the regularizer Ω below, but our model also
implicitly learns regularization through multi-task learning
(Caruana 1993) mediated by the α parameters, while the β
parameters are used to learn the mixture functions f(·), as
detailed in the following.

Learning Matrix Regularizers We now explain how up-
dating α parameters can lead to different matrix regularizers.
Each matrix W consists of M rows where M is the number
of tasks. Each row is of lengthD withD the number of model
parameters. Subvectors Lm,k correspond to the parameters of
network m at layer k. Each layer consists of two subspaces
with parameters Gm,k,1 and Gm,k,2. Our meta-architecture
is partly motivated by the observation that for loosely related
tasks, it is often beneficial if only certain features in specific
layers are shared, while many of the layers and subspaces
remain more task-specific (Søgaard and Goldberg 2016). We
want to learn what to share while inducing models for the
different tasks. For simplicity, we ignore subspaces at first
and assume only two tasks A and B. The outputs hA,k,t and
hB,k,t of the k-th layer for time step t for task A and B re-
spectively interact through the α parameters (see Figure 1).
Omitting t for simplicity, the output of the α layers is:

[
h̃A,k
h̃B,k

]
=

[
αAA αAB
αBA αBB

] [
hA,k

> , hB,k
>] (1)

where h̃A,k is a linear combination of the outputs that is
fed to the k+1-th layer of taskA, and

[
a>, b>

]
designates the

stacking of two vectors a, b ∈ RD to a matrix M ∈ R2×D.
Subspaces (Virtanen, Klami, and Kaski 2011; Bousmalis et
al. 2016) should allow the model to focus on task-specific
and shared features in different parts of its parameter space.
Extending the α-layers to include subspaces, for 2 tasks and
2 subspaces, we obtain an α matrix ∈ R4×4 that not only
controls the interaction between the layers of both tasks, but
also between their subspaces:

h̃A1,k

...
h̃B2,k

 =

αA1A1 . . . αB2A1

...
. . .

...
αA1B2

. . . αB2B2


[
hA1,k

> , . . . , hB2,k
>]

(2)
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where hA1,k is the output of the first subspace of the k-th
layer of task A and h̃A1,k is the linear combination for the
first subspace of task A. The input to the k + 1-th layer of
task A is then the concatenation of both subspace outputs:
hA,k =

[
h̃A1,k , h̃A2,k

]
. Different α weights correspond to

different matrix regularizers Ω, including several ones that
have been proposed previously for multi-task learning. We
review those in Section 3. For now just observe that if all
α-values are set to 0.25 (or any other constant), we obtain
hard parameter sharing (Caruana 1993), which is equivalent
to a heavy L0 matrix regularizer.

Adding Inductive Bias Naturally, we can also add ex-
plicit inductive bias to sluice networks by partially con-
straining the regularizer or adding to the learned penalty.
Inspired by work on shared-space component analysis (Salz-
mann et al. 2010), we add a penalty to enforce a division
of labor and discourage redundancy between shared and
task-specific subspaces. While the networks can theoret-
ically learn such a separation, an explicit constraint em-
pirically leads to better results and enables the sluice net-
works to take better advantage of subspace-specific α-values.
We introduce an orthogonality constraint (Bousmalis et al.
2016) between the layer-wise subspaces of each model:
Ω =

∑M
m=1

∑K
k=1 ‖Gm,k,1

>Gm,k,2‖2F , where M is the
number of tasks, K is the number of layers, ‖ · ‖2F is the
squared Frobenius norm, and Gm,k,1 and Gm,k,2 are the first
and second subspace respectively in the k-th layer of the
m-th task model.

Learning Mixtures Many tasks form an implicit hierarchy
of low-level to more complex tasks, with intuitive synergies
between the low-level tasks and parts of the complex tasks.
Rather than hard-coding this structure (Søgaard and Gold-
berg 2016; Hashimoto et al. 2017), we enable our model to
learn hierarchical relations by associating different tasks with
different layers if this is beneficial for learning. Inspired by
advances in residual learning (He et al. 2016), we employ
skip-connections from each layer, controlled using β param-
eters. This layer acts as a mixture model, returning a mixture
of expert predictions:

h̃>A =

[
βA,1
· · ·
βA,k

]> [
hA,1

> , . . . hA,k
>] (3)

where hA,k is the output of layer k of model A, while h̃A,t
is the linear combination of all layer outputs of model A that
is fed into the final softmax layer.

Complexity Our model only adds a minimal number of
additional parameters compared to single-task models of the
same architecture. In our experiments, we add α parameters
between all task networks. As such, they scale linearly with
the number of layers and quadratically with the number of
tasks and subspaces, while β parameters scale linearly with
the number of tasks and the number of layers. For a sluice
network with M tasks, K layers per task, and 2 subspaces

per layer, we thus obtain 4KM2 additional α parameters and
KM β parameters. Training sluice networks is not much
slower than training hard parameter sharing networks, with
only a 5–7% increase in training time.

Prior Work as Instances of Sluice Networks
Our meta-architecture is very flexible and can be seen as a
generalization over several existing algorithms for transfer
and multi-task learning, including (Caruana 1998; Daumé III
2007; Søgaard and Goldberg 2016; Misra et al. 2016). We
show how to derive each of these below.
• Hard parameter sharing between the two networks ap-

pears if all α values are set to the same constant (Caru-
ana 1998; Collobert and Weston 2008). This is equivalent
to a mean-constrained `0-regularizer Ω(·) = | · |w̄i

0 and∑
i λiLi < 1. Since the penalty for not sharing a parame-

ter is 1, it holds that if the sum of weighted losses is smaller
than 1, the loss with penalty is always the highest when all
parameters are shared.

• The `1/`2 group lasso regularizer is
∑G
g=1 ||G1,i,g||2, a

weighted sum over the `2 norms of the groups, often used
to enforce subspace sharing (Zhou, Jin, and Hoi 2010;
Świrszcz and Lozano 2012). Our architecture learns a
`1/`2 group lasso over the two subspaces (with the same
degrees of freedom), when all αAB and αBA-values are
set to 0. When the outer layer α-values are not shared, we
get block communication between the networks.

• The approach to domain adaptation in (Daumé III 2007),
commonly referred to as frustratingly easy domain
adaptation, which relies on a shared and a private space
for each task or domain, can be encoded in sluice net-
works by setting all αAB- and αBA-weights associated
with Gi,k,1 to 0, while setting all αAB-weights associated
with Gi,k,2 to αBB , and αBA-weights associated with
Gi,k,2 to αAA. Note that Daumé III (2007) discusses three
subspaces. We obtain this space if we only share one half
of the second subspaces across the two networks.

• Søgaard and Goldberg (2016) propose a low supervision
model where only the inner layers of two deep recurrent
works are shared. This is obtained using heavy mean-
constrained L0 regularization over the first layer Li,1, e.g.,
Ω(W ) =

∑K
i ||Li,1||0 with

∑
i λiL(i) < 1, while for

the auxiliary task, only the first layer β parameter is set to
1.
• Misra et al. (2016) introduce cross-stitch networks that

have α values control the flow between layers of two con-
volutional neural networks. Their model corresponds to
setting the α-values associated with Gi,j,1 to be identi-
cal to those for Gi,j,2, and by letting all but the β-value
associated with the outer layer be 0.
In our experiments, we include hard parameter sharing,

low supervision, and cross-stitch networks as baselines. We
do not report results for group lasso and frustratingly easy
domain adaptation, which were consistently inferior, by some
margin, on development data.1

1Note that frustratingly easy domain adaptation was not designed
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Figure 2: The relative importance of the auxiliary task (αBA
αAA

)
over number of training instances. With more data, the net-
work learns not to share, when auxiliary task is randomly
relabeled (Random).

Experiments
A synthetic experiment Our first experiment serves as a
sanity check that our meta-architecture learns reasonable
sharing architectures by learning α weights. We also want
the α to adjust quickly in order not to slow down learning.
We contrast two partially synthetic pairs of target and aux-
iliary data. In both cases, our target dataset is n instances
(sentences) from our part-of-speech tagging dataset (see de-
tails below). In the first scenario (Random), the auxiliary
dataset is a random relabeling of the same n instances. In the
second scenario (Copy), the auxiliary dataset is a copy of the
n instances.

For Random, we would like our α parameters to quickly
learn that the auxiliary task at best contributes with noise in-
jection. Initializing our α parameters to equal weights (0.25),
we therefore hope to see a quick drop in the relative impor-
tance of the auxiliary task, given by αBA

αAA
. Seeing n training in-

stances, we expect this number to quickly drop, then stabilize
to a slow decrease due to the reduced need for regularization
with larger sample sizes.2

For Copy, in contrast, we expect no significant change in
the relative importance of the auxiliary task over n training
instances. We use the same hyperparameters as in our subse-
quent experiments (see below). The parameter settings are
thus realistic, and not toy settings.

See Figure 2 for the results of our experiment. The two
curves show the expected contrast between an auxiliary task
with an all-noise signal (Random) and an auxiliary task with
a perfect, albeit redundant, signal (Copy). This experiment
shows that our meta-architecture quickly learns a good shar-
ing architecture in clear cases such as Random and Copy. We
now proceed to test whether multi-task architecture learn-
ing also leads to empirical gains over existing approaches to
multi-task learning.

for MTL.
2The quick drop is the meta-architecture learning that the auxil-

iary data is much less useful than the target data; the slight decrease
after the first drop is the reduced need for regularization due to lower
variance with more data.

Domains
bc bn mz nw pc tc wb

Train 173289 206902 164217 878223 297049 90403 388851
Dev 29957 25271 15421 147955 25206 11200 49393
Test 35947 26424 17874 60756 25883 10916 52225

Table 1: Number of tokens for each domain in the OntoNotes
5.0 dataset.

WORDS Abramov had a car accident

CHUNK O B-VP B-NP I-NP I-NP
NER B-PERSON O O O O
SRL B-ARG0 B-V B-ARG1 I-ARG1 I-ARG1
POS NNP VBD DT NN NN

Table 2: Example annotations for CHUNK, NER, SRL, and
POS.

Data As testbed for our experiments, we choose the
OntoNotes 5.0 dataset (Weischedel et al. 2013), not only
due to its high inter-annotator agreement (Hovy et al. 2006),
but also because it enables us to analyze the generalization
ability of our models across different tasks and domains. The
OntoNotes dataset provides data annotated for an array of
tasks across different languages and domains. We present
experiments with the English portions of datasets, for which
we show statistics in Table 1.

Tasks In MTL, one task is usually considered the main task,
while other tasks are used as auxiliary tasks to improve per-
formance on the main task. As main tasks, we use chunking
(CHUNK), named entity recognition (NER), and a simpli-
fied version of semantic role labeling (SRL) where we only
identify headwords3 , and pair them with part-of-speech tag-
ging (POS) as an auxiliary task, following (Søgaard and
Goldberg 2016). Example annotations for each task can be
found in Table 2.

Model We use a state-of-the-art BiLSTM-based sequence
labeling model (Plank, Søgaard, and Goldberg 2016) as the
building block of our model. The BiLSTM consists of 3
layers with 100 dimensions that uses 64-dimensional word
and 100-dimensional character embeddings, which are both
randomly initialized. The output layer is an MLP with a
dimensionality of 100. We initialize α parameters with a bias
towards one source subspace for each direction and initialize
β parameters with a bias towards the last layer4. We have
found it most effective to apply the orthogonality constraint
only to the weights associated with the LSTM inputs.

Training and Evaluation We train our models with
stochastic gradient descent (SGD), an initial learning rate
of 0.1, and learning rate decay5. During training, we uni-

3We do this to keep pre-processing for SRL minimal.
4We experimented with different initializations for α and β

parameters and found these to work best.
5We use SGD as Søgaard and Goldberg (2016) also employed

SGD. Adam yielded similar performance differences.
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In-domain results

System bc bn mz nw pt tc wb Avg

B
as

el
in

es Single task 90.80 92.20 91.97 92.76 97.13 89.84 92.95 92.52
Hard sharing 90.31 91.73 92.33 92.22 96.40 90.59 92.84 92.35
Low supervision 90.95 91.70 92.37 93.40 96.87 90.93 93.82 92.86
Cross-stitch nets 91.40 92.49 92.59 93.52 96.99 91.47 94.00 93.21

Ours Sluice network 91.72 92.90 92.90 94.25 97.17 90.99 94.40 93.48
Out-of-domain results

B
as

el
in

es Single task 85.95 87.73 86.81 84.29 90.91 84.55 73.36 84.80
Hard sharing 86.31 87.73 86.96 84.99 90.76 84.48 73.56 84.97
Low supervision 86.53 88.39 87.15 85.02 90.19 84.48 73.24 85.00
Cross-stitch nets 87.13 88.40 87.67 85.37 91.65 85.51 73.97 85.67

Ours Sluice network 87.95 88.95 88.22 86.23 91.87 85.32 74.48 86.15

Table 3: Accuracy scores for chunking on in-domain and out-of-domain test sets with POS as auxiliary task. Out-of-domain results
for each target domain are averages across the 6 remaining source domains. Error reduction vs. single task: 12.8% (in-domain),
8.9% (out-of-domain); vs. hard parameter sharing: 14.8% (in-domain).

formly sample from the data for each task. We perform early
stopping with patience of 2 based on the main task and hyper-
parameter optimization on the in-domain development data
of the newswire domain. We use the same hyperparameters
for all comparison models across all domains. We train our
models on each domain and evaluate them both on the in-
domain test set (Table 3, top) as well as on the test sets of
all other domains (Table 3, bottom) to evaluate their out-of-
domain generalization ability. Note that due to this set-up,
our results are not directly comparable to the results reported
in (Søgaard and Goldberg 2016), who only train on the WSJ
domain and use OntoNotes 4.0.

Baseline Models As baselines, we compare against i) a
single-task model only trained on chunking; ii) the low super-
vision model (Søgaard and Goldberg 2016), which predicts
the auxiliary task at the first layer; iii) an MTL model based
on hard parameter sharing (Caruana 1993); and iv) cross-
stitch networks (Misra et al. 2016). We compare these against
our complete sluice network with subspace constraints and
learned α and β parameters. We implement all models in
DyNet (Neubig et al. 2017) and make our code available at
https://github.com/sebastianruder/sluice-networks.

We first assess how well sluice networks perform on in-
domain and out-of-domain data compared to the state-of-the-
art. We evaluate all models on chunking with POS tagging as
auxiliary task.

Chunking results We show results on in-domain and out-
of-domain tests sets in Table 3. On average, sluice networks
significantly outperform all other model architectures on both
in-domain and out-of-domain data and perform best for all
domains, except for the telephone conversation (tc) domain,
where they are outperformed by cross-stitch networks. The
performance boost is particularly significant for the out-of-

domain setting, where sluice networks add more than 1 point
in accuracy compared to hard parameter sharing and almost .5
compared to the strongest baseline on average, demonstrating
that sluice networks are particularly useful to help a model
generalize better. In contrast to previous studies on MTL
(Martı́nez Alonso and Plank 2017; Bingel and Søgaard 2017;
Augenstein, Ruder, and Søgaard 2018), our model also consis-
tently outperforms single-task learning. Overall, this demon-
strates that our meta-architecture for learning which parts
of multi-task models to share, with a small set of additional
parameters to learn, can achieve significant and consistent
improvements over strong baseline methods.

NER and SRL We now evaluate sluice nets on NER with
POS tagging as auxiliary task and simplified semantic role
labeling with POS tagging as auxiliary task. We show results
in Table 4. Sluice networks outperform the comparison mod-
els for both tasks on in-domain test data and successfully
generalize to out-of-domain test data on average. They yield
the best performance on 5 out of 7 domains and 4 out of 7
domains for NER and semantic role labeling.

Joint model Most work on MTL for NLP uses a single
auxiliary task (Bingel and Søgaard 2017; Martı́nez Alonso
and Plank 2017). In this experiment, we use one sluice net-
work to jointly learn our four tasks on the newswire domain
and show results in Table 5.

Here, the low-level POS tagging and simplified SRL tasks
are the only ones that benefit from hard parameter sharing
highlighting that hard parameter sharing by itself is not suf-
ficient for doing effective multi-task learning with semantic
tasks. We rather require task-specific layers that can be used
to transform the shared, low-level representation into a form
that is able to capture more fine-grained task-specific knowl-
edge. Sluice networks outperform single task models for all
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Named entity recognition

System nw (ID) bc bn mz pt tc wb OOD Avg

B
as

el
in

es Single task 95.04 93.42 93.81 93.25 94.29 94.27 92.52 93.59
Hard sharing 94.16 91.36 93.18 93.37 95.17 93.23 92.99 93.22
Low supervision 94.94 91.97 93.69 92.83 94.26 93.51 92.51 93.13
Cross-stitch nets 95.09 92.39 93.79 93.05 94.14 93.60 92.59 93.26

Ours Sluice network 95.52 93.50 94.16 93.49 93.61 94.33 92.48 93.60
Simplified semantic role labeling

B
as

el
in

es Single task 97.41 95.67 95.24 95.86 95.28 98.27 97.82 96.36
Hard sharing 97.09 95.50 95.00 95.77 95.57 98.46 97.64 96.32
Low supervision 97.26 95.57 95.09 95.89 95.50 98.68 97.79 96.42
Cross-stitch nets 97.32 95.44 95.14 95.82 95.57 98.69 97.67 96.39

Ours Sluice network 97.67 95.64 95.30 96.12 95.07 98.61 98.01 96.49

Table 4: Test accuracy scores for different target domains with nw as source domain for named entity recognition (main task) and
simplified semantic role labeling with POS tagging as auxiliary task for baselines and Sluice networks. ID: in-domain. OOD:
out-of-domain.

System CHUNK NER SRL POS

Single task 89.30 94.18 96.64 88.62
Hard param. 88.30 94.12 96.81 89.07
Low super. 89.10 94.02 96.72 89.20

Sluice net 89.19 94.32 96.67 89.46

Table 5: All-tasks experiment: Test accuracy scores for each
task with nw as source domain averaged across all target
domains.

tasks, except chunking and achieve the best performance on
2/4 tasks in this challenging setting.

Analysis
To better understand the properties and behavior of our meta-
architecture, we conduct a series of analyses and ablations.

Task Properties and Performance Bingel and Søgaard
(2017) correlate meta-characteristics of task pairs and gains
compared to hard parameter sharing across a large set
of NLP task pairs. Similarly, we correlate various meta-
characteristics with error reductions and α, β values. Most
importantly, we find that a) multi-task learning gains, also in
sluice networks, are higher when there is less training data;
and b) sluice networks learn to share more when there is
more variance in the training data (cross-task αs are higher,
intra-task αs lower). Generally, α values at the inner lay-
ers correlate more strongly with meta-characteristics than α
values at the outer layers.

Ablation Analysis Different types of sharing may be more
important than others. In order to analyze this, we perform
an ablation analysis in Table 6. We investigate the impact of

i) the α parameters; ii) the β parameters; and iii) the division
into subspaces with an orthogonality penalty. We also eval-
uate whether concatenation of the outputs of each layer is
a reasonable alternative to our mixture model. Overall, we
find that learnable α parameters are preferable over constant
α parameters. Learned β parameters marginally outperform
skip-connections in the hard parameter sharing setting, while
skip-connections are competitive with learned β values in the
learned α setting.

In addition, modeling subspaces explicitly helps for almost
all domains. To our knowledge, this is the first time that sub-
spaces within individual LSTM layers have been shown to be
beneficial.6. Being able to effectively partition LSTM weights
opens the way to research in inducing more structured neural
network representations that encode task-specific priors. Fi-
nally, concatenation of layer outputs is a viable form to share
information across layers as has also been demonstrated by
recent models such as DenseNet (Huang et al. 2017).

Analysis of α values We analyze the final α weights in the
sluice networks for Chunking, NER, and SRL, trained with
newswire as training data. We find that a) for the low-level
simplified SRL, there is more sharing at inner layers, which
is in line with Søgaard and Goldberg (2016), while Chunking
and NER also rely on the outer layer, and b) more information
is shared from the more complex target tasks than vice versa.

Analysis of β values Inspecting the β values for the all-
tasks sluice net in Table 5, we find that all tasks place little
emphasis on the first layer, but prefer to aggregate their rep-
resentations in different later layers of the model: The more
semantic NER and chunking tasks use the second and third

6Liu, Qiu, and Huang (2017) induce subspaces between separate
LSTM layers.
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Task sharing Layer sharing bc bn mz nw pt tc wb Avg

constant α (hard)
Concatenation 86.70 88.24 87.20 85.19 90.64 85.33 73.75 85.29
Skip-connections (β = 1) 86.65 88.10 86.82 84.91 90.92 84.89 73.62 85.13
Mixture (learned β) 86.59 88.03 87.19 85.12 90.99 84.90 73.48 85.19

learned α (soft)

Concatenation 87.37 88.94 87.99 86.02 91.96 85.83 74.28 86.05
Skip-connections 87.08 88.62 87.74 85.77 91.92 85.81 74.04 85.85
Mixture 87.10 88.61 87.71 85.44 91.61 85.55 74.09 85.73
Mixture + subspaces 87.95 88.95 88.22 86.23 91.87 85.32 74.48 86.15

Table 6: Ablation. Out-of-domain scores for Chunking with POS as auxiliary task, averaged across the 6 source domains.

layer to a similar extent, while for POS tagging and simpli-
fied SRL the representation of one of the two later layers
dominates the prediction.

Related Work
Hard parameter sharing (Caruana 1993) is easy to imple-
ment, reduces overfitting, but is only guaranteed to work
for (certain types of) closely related tasks (Baxter 2000;
Maurer 2007). Peng and Dredze (2016) apply a variation of
hard parameter sharing to multi-domain multi-task sequence
tagging with a shared CRF layer and domain-specific projec-
tion layers. Yang, Salakhutdinov, and Cohen (2016) use hard
parameter sharing to jointly learn different sequence-tagging
tasks across languages. Martı́nez Alonso and Plank (2017)
explore a similar set-up, but sharing is limited to the initial
layer. In all three papers, the amount of sharing between the
networks is fixed in advance.

In soft parameter sharing (Duong et al. 2015), each task
has separate parameters and separate hidden layers, as in our
architecture, but the loss at the outer layer is regularized by
the current distance between the models. Kumar and Daumé
III (2012) and Maurer, Pontil, and Romera-paredes (2013)
enable selective sharing by allowing task predictors to select
from sparse parameter bases for homogeneous tasks. Søgaard
and Goldberg (2016) show that low-level tasks, i.e. syntactic
tasks typically used for preprocessing such as POS tagging
and NER, should be supervised at lower layers when used as
auxiliary tasks.

Another line of work looks into separating the learned
space into a private (i.e. task-specific) and shared space (Salz-
mann et al. 2010; Virtanen, Klami, and Kaski 2011) to more
explicitly capture the difference between task-specific and
cross-task features. Constraints are enforced to prevent the
models from duplicating information. Bousmalis et al. (2016)
use shared and private encoders regularized with orthogo-
nality and similarity constraints for domain adaptation for
computer vision. Liu, Qiu, and Huang (2017) use a similar
technique for sentiment analysis. In contrast, we do not limit
ourselves to a predefined way of sharing, but let the model
learn which parts of the network to share using latent vari-
ables, the weights of which are learned in an end-to-end fash-
ion. Misra et al. (2016), focusing on applications in computer
vision, consider a small subset of the sharing architectures
that are learnable in sluice networks, i.e., split architectures,

in which two n-layer networks share the innermost k layers
with 0 ≤ k ≤ n, but learn k with a mechanism very similar
to α-values.

Our method is also related to the classic mixture-of-experts
layer (Jacobs et al. 1991). In contrast to this approach, our
method is designed for multi-task learning and thus encour-
ages a) the sharing of parameters between different task “ex-
perts” if this is beneficial as well as b) differentiating between
low-level and high-level representations.

Conclusion
We introduced sluice networks, a meta-architecture for multi-
task architecture search. In our experiments across four tasks
and seven different domains, the meta-architecture consis-
tently improved over strong single-task learning, architecture
learning, and multi-task learning baselines. We also showed
how our meta-architecture can learn previously proposed
architectures for multi-task learning and domain adaptation.
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