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Abstract

The goal of binary classification is to identify whether an in-
put sample belongs to positive or negative classes. Usually,
supervised learning is applied to obtain a classification rule,
but in real-world applications, it is conceivable that only pos-
itive and unlabeled data are accessible for learning, which is
called learning from positive and unlabeled data (PU learn-
ing). Furthermore, in practice, data distributions are likely to
differ between training and testing due to, for example, time
variation and domain shift. The covariate shift is a dataset
shift situation, where distributions of covariates (inputs) dif-
fer between training and testing, but the input-output rela-
tion is the same. In this paper, we address the PU learning
problem under the covariate shift. We propose an importance-
weighted PU learning method and reveal in which situations
the importance-weighting is necessary. Moreover, we derive
the convergence rate of the proposed method under mild con-
ditions and experimentally demonstrate its effectiveness.

1 Introduction
The goal of binary classification is to identify whether an in-
put sample belongs to positive or negative classes. To obtain
classification rules, we collect labeled data for both positive
and negative classes and use supervised learning. However,
in real-world applications, it is conceivable that collecting
positive data is easy but collecting negative data is relatively
difficult or almost impossible. For example, in social net-
working services, the users’ favorite articles (positive data)
can be found using a “like” button, but disliked articles (neg-
ative data) cannot be explicitly observed unless a “dislike”
button is implemented; the articles that the users did not de-
clare to “like” are a mixture of positive and negative data,
i.e., unlabeled data.

To address such a situation, learning from positive and un-
labeled data (PU learning) (Letouzey, Denis, and Gilleron
2000; Lee and Liu 2003; Elkan and Noto 2008) has been
studied and recently gaining much attention (Xu et al. 2017;
Yang, Liu, and Yang 2017; Kiryo et al. 2017; Gong et al.
2018). In PU learning, a classifier is trained with only posi-
tive and unlabeled data, and used for identifying whether test
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samples belong to positive or negative classes. To obtain the
classifier, du Plessis, Niu, and Sugiyama (2015) proposed a
method based on empirical risk minimization (ERM), which
enables us to compute a risk estimator unbiased to the risk
in supervised learning by only using PU data. Moreover, the
theoretical properties of the ERM-based PU classification
method have been studied in various perspective (Niu et al.
2016; Kiryo et al. 2017).

In addition to the PU learning situation, in practice, a
distribution for training can be different from testing due
to the time variation and domain change for example. As
a distribution shift scenario, the covariate shift is widely
considered and has been studied so far (Shimodaira 2000;
Quioñero Candela et al. 2009). In the covariate shift, the
input-output relation is assumed to be the same across train-
ing and test, but the input distribution in a test phase is dif-
ferent from that in training. For example, when we want to
predict whether a patient has a certain disease in some city
but the training data were gathered in a different city, the
distribution of patients will often change.

To address the covariate shift, an importance-weighted
risk minimization approach was proposed and its superior
performance was demonstrated (Quioñero Candela et al.
2009). The importance function is the ratio between test and
training densities and it is multiplied by a loss, so that an av-
erage of weighted losses over training data approximates an
average of (non-weighted) losses over test data. Although
the effectiveness of the importance-weighted ERM for the
covariate shift has been demonstrated in various machine
learning tasks, it has not been elucidated in the PU learning
setting even if the PU learning situation frequently occurs in
real-world applications.

In this paper, we consider the problem of training a clas-
sifier from PU data under the covariate shift. To address the
problem, we propose a novel risk function and show the
practical implementation. The proposed method can reuse
positive data from the training distribution; thus we can save
annotation cost for obtaining labeled data from test distri-
bution, which is similar to the existing supervised learning
methods for covariate shift adaptation. Our analysis reveal
the situations where the importance-weighting is necessary
for PU learning under the covariate shift. Besides, we dis-
cuss the relation between the covariate shift and the prior
probability shift, which is also often considered in dataset
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shift. Furthermore, we derive the convergence rate for the
learned classifier. Finally, we demonstrate the effectiveness
of our proposed method through numerical experiments.

Related work: There was an attempt to apply PU learning
techniques to dataset shift. In Xia et al. (2013), a PU classi-
fication method was used for finding important samples in
the target domain from domain-mixed training data, where
samples from the target domain were regarded as positive
and samples from the mixed domains are regarded as unla-
beled data. After finding the important samples, they applied
an importance-weighted supervised classification method,
where both positive and negative data were used for train-
ing. Although the idea of PU learning is used in the dataset
shift scenario, the existing approach is substantially different
from the proposed approach in this paper. Unlike the exist-
ing work, since we consider classification tasks under the
PU learning setting, we can obtain classification rules even
if negative data are not collected in training,

2 Background
In this section, we formulate our problem setting and review
the existing algorithms.

2.1 Problem Setting
Let x ∈ Rd and y ∈ {±1} be covariate and its class label
associated with probability density p(x, y), where d is a pos-
itive integer. Let g : Rd → R be a classifier and the predicted
label is obtained by its sign: ŷ = sign(g(x)). Our goal is to
obtain a classifier that minimizes the risk over test data as
small as it can:

Rte(g) := Epte(x,y)[`(yg(x))],

where Epte(x,y) denotes the expectation over the test proba-
bility distribution pte(x, y), and `(m) is a loss function.

In PU learning, unlike ordinary supervised classification,
we are given positive (P) data but not given negative (N)
data; instead, we are given unlabeled (U) data:

{xPtr
i }

nPtr
i=1

i.i.d.∼ ptr(x | y = +1),

{xUtr
k }

nUtr

k=1
i.i.d.∼ ptr(x) = πPtrptr(x | y = +1)

+ πNtrptr(x | y = −1),

where πPtr := ptr(y = +1), πNtr := ptr(y = −1), and ptr
denotes the training probability distribution.

In addition to the PU learning setting, we further consider
the situation known as the covariate shift (Shimodaira 2000),
where the input-output relation is the same but the input dis-
tributions are different between training and test:

ptr(y | x) = pte(y | x),

ptr(x) 6= pte(x).

In our setting, we suppose that unlabeled data from test dis-
tribution are also given:

{xUte
k }

nUte

k=1
i.i.d.∼ pte(x) = πPtepte(x | y = +1)

+ πNtepte(x | y = −1),

where πPte := pte(y = +1) and πNte := pte(y = −1).
From these three sets of samples {xPtr

i }
nPtr
i=1 , {xUtr

k }
nUtr

k=1 ,
and {xUte

k }
nUte

k=1 , we train a classifier that achieves accurate
prediction under the covariate shift.

2.2 PU Classification
We here review the PU classification method based on
empirical risk minimization (ERM) (du Plessis, Niu, and
Sugiyama 2015).

The ordinary supervised learning risk is expressed as

Rtr(g) = Eptr(x,y)[`(yg(x))]

= πPtrEPtr[`(g(x))] + πNtrENtr[`(−g(x))]

=: Rtr
PN(g), (1)

where EPtr and ENtr denote the expectations over ptr(x |
y = +1) and ptr(x | y = −1), respectively. We refer to
Rtr

PN(g) as the positive-negative risk (the PN risk). From the
definition of the marginal density ptr(x), we have

EUtr[`(−g(x))] = πPtr EPtr[`(−g(x))]

+ πNtr ENtr[`(−g(x))],

where EUtr denotes the expectation over ptr(x). Arranging
the above equation, we obtain

πNtr ENtr[`(−g(x))] = EUtr[`(−g(x))]

− πPtr EPtr[`(−g(x))].

Finally, plugging it into the second term of the PN risk in
Eq. (1), the risk in PU classification (the PU risk) is given by

Rtr
PU(g) := πPtr EPtr[

˜̀(g(x)] + EUtr[`(−g(x))], (2)

where ˜̀(m) := `(m) − `(−m). In practice, we use the em-
pirical PU risk by using only positive and unlabeled data
from training distribution:

R̂tr
PU(g) :=

πPtr

nPtr

nPtr∑
i=1

˜̀(g(xPtr
i )) +

1

nUtr

nUtr∑
k=1

`(−g(xUtr
k )).

We obtain the learned classifier by minimizing the empirical
PU risk with, e.g., the `2-regularizer.

2.3 Covariate Shift Adaptation by Importance
Weighting

In this section, we review the importance-weighted risk
minimization framework for covariate shift adaptation
(Quioñero Candela et al. 2009).

For covariate shift adaptation, the use of the ordinary risk
Rtr(g) := Eptr(x,y)[`(yg(x))] often leads to an inaccurate
classifier in practice.1 Instead, we employ the importance-
weighted risk:

Rtr
c (g) := Eptr(x,y)[`(yg(x))w(x)],

1To be precise, if we use the correct model for estimating the
input-output relation, the covariate shift does not matter. However,
in practice, the model is often misspecified, i.e., the true function is
not included in the model. Thus, the trained model does not work
well on test data because the risk on training data, Rtr(g), is biased.
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where w(x) is the importance function defined as

w(x) :=
pte(x)

ptr(x)
.

Under the covariate shift, we can show that the importance-
weighted risk is equivalent to the risk on test data:

Rtr
c (g) = Eptr(x)[`(yg(x))w(x)ptr(y | x)] (3)

= Epte(x)[`(yg(x))pte(y | x)] (4)

= Rte(g),

where ptr(y | x) = pte(y | x) and w(x)ptr(x) = pte(x)
are used for obtaining Eq. (4) from Eq. (3). By the impor-
tance weighting, we obtain a classifier trying to minimize
the risk on test distribution.

3 PU Classification under Covariate Shift
In this section, we first propose a risk function computed
from PU data for covariate shift adaptation, and analyze the
effect of dataset shift from the viewpoint of the proposed
risk function. We also describe the practical implementation
and the convergence rate of our method.

3.1 Proposed Approach
LetRte

PU be the PU risk on test distribution pte. If the covari-
ate shift does not occur, both Rtr

PU and Rte
PU are equivalent.

This means that the empirical PU risk on training data, R̂tr
PU,

is an estimator unbiased to the PU risk on test dataRte
PU, i.e.,

E[R̂tr
PU(g)] = Rtr

PU(g) = Rte
PU(g).

Under the covariate shift, a use of R̂tr
PU does not mean the

risk estimator unbiased toRte
PU, i.e.,Rtr

PU(g) 6= Rte
PU(g) due

to input distribution shift ptr(x) 6= pte(x). To address this
issue, we propose to use the following risk for covariate shift
adaptation on PU learning, called the PUc risk, defined as

RPUc(g) := πPtr EPtr[
˜̀(g(x))w(x)]

+ EUtr[`(−g(x))w(x)]. (5)

The empirical PUc risk on training data is an unbiased es-
timator to the PU risk on test data, that is, E[R̂PUc(g)] =
Rte

PU(g). Since the equivalence of the second term in Eq. (5)
is obvious from ptr(x)w(x) = pte(x), we show that the first
term in Eq. (5) is equivalent to the first term in Eq. (2):

πPtrEPtr[
˜̀(g(x))w(x)]=EUtr[

˜̀(g(x))w(x)ptr(y=+1|x)]

=EUte[
˜̀(g(x))pte(y = +1|x)]

= πPte EPte[
˜̀(g(x))],

where πPtrptr(x | y = +1) = ptr(y = +1 | x)ptr(x)
are used in the first line, ptr(y | x) = pte(y | x) and
ptr(x)w(x) = pte(x) are used for obtaining the second line
from the first line.

By replacing the expectations over ptr(x | y = +1) and
pte(x) with the corresponding sample averages, we obtain

the empirical PUc risk by

R̂PUc(g) :=
πPtr

nPtr

nPtr∑
i=1

˜̀(g(xPtr
i ))w(xPtr

i )

+
1

nUtr

nUtr∑
k=1

`(−g(xUtr
k ))w(xUtr

k ). (6)

An advantage of the PUc risk is that positive samples
drawn from test conditional distribution are not required to
obtain the PUc risk estimator, unlike the PU risk estimator
on test data. This property will be highly useful in practical
applications under the covariate shift. In such a case, to ap-
ply the PU classification method, we need to collect positive
samples from a new environment. In contrast, the PUc clas-
sification method can reuse the positive samples obtained
from a previous environment. An extra cost for the PUc clas-
sification method is collecting unlabeled test data, but the
cost is relatively low compared with collecting positive data
in addition to unlabeled data from the test environment.

Discussion: In the PUc risk in Eq. (5), the weighted aver-
age over unlabeled training data can be replaced with non-
weighted average over unlabeled test data. The use of non-
weighted average over unlabeled test data will give a stable
estimates of the risk since importance-weighting reduces the
number of samples for estimation.2 However, in our prelim-
inary experiments, we found that the use of weighted av-
erage over unlabeled training data achieved more accurate
classification performance. A possible reason is that since
an estimated importance function is not accurate enough,
the weighted loss computed by positive data is biased by
the estimated importance. Thus, the loss computed by unla-
beled data is better to be biased in the same direction of the
weighted loss for the positive class.

3.2 Effect of Covariate Shift
Here, we discuss the effect of the covariate shift on PU learn-
ing. In particular, we consider two situations called positive-
only and negative-only shifts.

Positive-Only Shift Dataset shift occurs in a domain of
positive class but not negative class, i.e.,

ptr(x | y = +1) 6= pte(x | y = +1),

ptr(x | y = −1) = pte(x | y = −1).

In the positive-only shift, unless the ratio of class-priors of
training and test phases satisfy

πPtr

πPte

=
pte(x | y = +1)

ptr(x | y = +1)

2For instance, suppose 20% of samples are important and 80%
of samples are less important from the viewpoint of values of an
importance function. In this case, the method ignores 80% of sam-
ples and trains a classifier by using only 20% of samples for co-
variate shift adaptation.
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for all x ∈ DP, whereDP is the support of class-conditional
density for positive class, the importance function around
the positive domain is not equal to one, i.e.,

pte(x, y = +1)

ptr(x, y = +1)
6= 1.

This shows that the weighting is necessary for the PUc risk;
otherwise the first term in Eq. (5) is biased.

Negative-Only Shift We assume that data distribution sat-
isfies the following condition:

ptr(x | y = +1) = pte(x | y = +1),

ptr(x | y = −1) 6= pte(x | y = −1).

In contrast to the positive-only shift, the weighting is not
necessary in the negative-only shift. This is because i) we
have

pte(x, y = +1) = πPteptr(x | y = +1),

and ii) the risk for negative data can be approximated by
unlabeled test data instead of the weighted average over un-
labeled training data, meaning that all we need is class-prior
in test instead of training data. In summary, in the negative-
only shift, even though dataset shift occurs, the importance-
weighting is not necessary and the following risk for PU
classification, called the PUc-te risk, can be used:

RPUc-te(g) := πPte EPtr[
˜̀(g(x))] + EUte[`(−g(x))]. (7)

Unlike the PUc risk, since the weighting is not used, the
PUc-te risk is more stable than the PUc risk, similarly to
the discussion in supervised learning (Quioñero Candela et
al. 2009). Moreover, when applying PU classification on the
negative-only shift situation, the positive data can be reused;
a laborious labeling task is not necessary. The above obser-
vation coincides with an advantage of PU classification dis-
cussed in the literature (see, for example, du Plessis, Niu,
and Sugiyama (2015)).

In Section 4.3, we experimentally validate this discussion.

Relation to Prior Probability Shift Here, we discuss the
relation to the class-prior probability shift.

The prior probability shift is stated that class-conditional
densities are fixed but class-prior probabilities are different
between training and test phases:

ptr(x | y) = pte(x | y),

ptr(y) 6= pte(y).

Under the prior probability shift, the empirical risk on train-
ing data is not equal to the one on test data.

In supervised learning, the prior probability shift can be
adapted by weighting errors of positive and negative classes.
The PN risk for the prior probability shift, called the PNw
risk, is equivalent to the test risk:

Rtr
PNw(g) := πPte EPtr[`(g(x))] + πNte ENtr[`(−g(x))]

= πPte EPte[`(g(x))] + πNte ENte[`(−g(x))]

= Rte(g).

On the other hand, the PU risk for the prior probability
shift, called the PUw risk, can be obtained by

Rtr
PUw(g) := πPte EPtr[

˜̀(g(x))] + EUte[`(−g(x))], (8)

where we used the following relation for derivation:

pte(x) = πPteptr(x | y = +1) + pte(x, y = −1).

Thus, the prior probability shift is mitigated by replacing the
class-prior and unlabeled data in a training phase with that
in a test phase.

The PUw risk in Eq. (8) is equivalent to the PUc-te
risk in Eq. (7). A difference is the assumption about the
class-conditional density for the negative class, i.e, whether
p(x | y = −1) is the same or not between training and test
phases, implying a relation between the covariate shift and
prior probability shift.

3.3 Implementation
In this section, we explain our implementation of the pro-
posed approach.

As a classifier, we use the linear-in-parameter model:

g(x) =

b∑
`=1

β`φ`(x) = β>φ(x),

where β := (β1, . . . , βb)
> is the vector of parameters,

φ(x) := (φ1(x), . . . , φb(x))> is the vector of basis func-
tions, and b is the number of basis functions. In Eq. (6), there
are two unknown quantities: the class-prior of training data
πPtr and the importance function w(x). In our implementa-
tion, we estimate them by using existing methods.

To estimate the class-prior πPtr, we employ the method
based on kernel mean embedding (Ramaswamy, Scott, and
Tewari 2016).

For the importance function w(x) = pte(x)/ptr(x), we
employ direct density-ratio estimation methods (Sugiyama,
Suzuki, and Kanamori 2012), rather than separately estimat-
ing individual densities ptr(x) and pte(x). We adopt rel-
ative unconstrained least-squares importance fitting (RuL-
SIF) (Yamada et al. 2013), which addresses the importance
function takes extremely larger values around a low-density
region of training data (see Figure 1 in Yamada et al. (2013)).
RuLSIF directly estimates the α-relative density-ratio of
ptr(x) and pte(x):

wα(x) :=
pte(x)

(1− α)ptr(x) + αpte(x)
,

where 0 ≤ α ≤ 1 is the mixture rate. The α-relative density-
ratio is always bounded by 1/αwhen α > 0, and it coincides
with the plain importance function when α = 0. The α con-
trols efficiency and consistency (Yamada et al. 2013).

Replacing the class-prior and importance function by the
estimates π̂Ptr and ŵα(x), we obtain a trained classifier ĝ
by solving the following optimization problem:

ĝ := argmin
g

R̂PUc(g) + λβ>β,
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where λ ≥ 0 is the regularization parameter. In our experi-
ments and theoretical analysis, we use the squared loss func-
tion `(m) = (1−m)2/4. An advantage of the squared loss is
that the optimization problem becomes the convex optimiza-
tion if we used the linear-in-parameter model (du Plessis,
Niu, and Sugiyama 2015), i.e., we solve the following opti-
mization problem:

β̂ := argmin
β∈Rb

−q̂β +
1

4
β>Ĥβ +

1

2
ĥ
>
β + λβ>β,

where

q̂ :=
π̂Ptr

nPtr

nPtr∑
i=1

ŵα(xPtr
i )φ(xPtr

i ),

Ĥ :=
1

nUtr

nUtr∑
k=1

ŵα(xUtr
k )φ(xUtr

k )φ(xUtr
k )>,

ĥ :=
1

nUtr

nUtr∑
k=1

ŵα(xUtr
k )φ(xUtr

k ).

In practice, we need to determine the hyperparameters
such as the regularization parameter. To this end, we use the
importance-weighted cross-validation (IWCV) (Sugiyama,
Krauledat, and Müller 2007), which computes a score based
on the importance-weighted risk. We compute the empiri-
cal PUc risk in Eq. (6) with the plain density-ratio estimator,
i.e., ŵα(x) with α = 0, similarly to Yamada et al. (2013).

3.4 Convergence Analysis
Here, we present the convergence property of our proposed
PUc risk estimator. Our proof follows du Plessis, Niu, and
Sugiyama (2015) that is based on the perturbation analy-
sis of optimization problems (Bonnans and Cominetti 1996;
Bonnans and Shapiro 1998).

For the sake of simplicity, we focus on the squared loss
and the linear-in-parameter model. As in du Plessis, Niu,
and Sugiyama (2015), the use of the squared loss and linear-
in-parameter model leads to convex optimization problems.
Without loss of generality, we assume that the basis func-
tion satisfies 0 ≤ φ` ≤ 1 for all ` = 1, . . . , b and x ∈ Rd,
and the basis functions are linearly independent over ptr(x).
Also, we assume that the parameter vector of the classifier
is bounded, i.e., regularized as ‖β‖ ≤ M for a constant
M > 0. Additionally, we assume that the class-prior πPtr

and the importance function w are known.3

The PUc and `2-regularized empirical PUc risk with the
squared loss function are respectively defined as

R̂λPUc(β) = −q̃>β +
1

4
β>H̃β +

1

2
h̃
>
β + 1 + λβ>β,

RPUc(β) = −q>β +
1

4
β>Hβ +

1

2
h>β + 1,

3The convergence property of estimation methods for the class-
prior and importance functions were studied in, e.g., Ramaswamy,
Scott, and Tewari (2016), du Plessis, Niu, and Sugiyama (2017),
and Yamada et al. (2013), respectively.

where

q := πPtr

∫
w(x)φ(x)ptr(x | y = +1)dx,

H :=

∫
w(x)φ(x)φ(x)>ptr(x)dx,

h :=

∫
w(x)φ(x)ptr(x)dx,

and q̃, H̃ , and h̃ are its sample approximation.
Let β∗ := argminβ∈Rb RPUc(β) be the minimizer of the

PUc risk with the squared-loss. We prove the following con-
vergence results (the proof is in Appendix A):
Theorem 1. As nPtr, nUtr →∞, we have∥∥β̂ − β∗∥∥ = Op

( 1
√
nPtr

+
1

√
nUtr

)
,

∣∣R̂λPUc(β̂)−RPUc(β
∗)
∣∣ = Op

( 1
√
nPtr

+
1

√
nUtr

)
provided that λ = Op(1/√nPtr + 1/

√
nUtr).

Theorem 1 means that the estimated parameter of the clas-
sifier converges on the order of Op(1/√nPtr + 1/

√
nUtr).

Moreover, Theorem 1 implies that even if a model of classi-
fier is misspecified, the parameter of the model converges to
the optimal one in the prespecified function class.

4 Experiments
In this section, we show the effectiveness of the proposed
PUc classification method.

4.1 Settings
In Section 4.2, we used the linear model g(x) = w>x+w0.
In Sections 4.3 and 4.4, we used the linear-in-parameter
model g(x) = w>φ(x) with the Gaussian kernel basis
function φ`(x) = exp(−‖x − x`‖2/(2σ2)), where σ > 0
was the bandwidth, the number of basis functions was set
at b = min(200, nUte), and {x`}b`=1 was a set of samples
selected randomly from {xUte

k }
nUte

k=1 . All hyper-parameters
were determined by 5-fold IWCV described in Section 3.3.
In all the experiments, the class-prior probabilities for train-
ing and test were set at πPtr = πPte = 0.5.

We evaluated the classification performance by misclas-
sification rate, i.e., the empirical risk on test data with the
zero-one loss function `0-1(m) := (1 + sign(m))/2.

4.2 Illustration
Firstly, we illustrate the performance of our proposed
method on artificial data. The marginal distributions for
training and test were respectively specified as

ptr(x) =
1

2
N
((

1
−3

)
, 2I2

)
︸ ︷︷ ︸

ptr(x|y=+1)

+
1

2
N
((

2
3

)
, 2I2

)
︸ ︷︷ ︸
ptr(x|y=−1)

,

pte(x) =
1

2
N
((−3

1

)
, 2I2

)
︸ ︷︷ ︸

pte(x|y=+1)

+
1

2
N
((

2
2

)
, 2I2

)
︸ ︷︷ ︸
pte(x|y=−1)

,
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(a) Generated data with its class labels
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(b) Learned decision boundaries (c) Positive training data having larger weights

Figure 1: (a) The positive training (4) and test (◦) samples and negative training (�) and test (×) samples, where the mark
of negative samples are hardly visible because of large overlap of training and test distributions of negative data. (b) The
obtained decision boundaries from the PUc (-·-), plain PU (· · · ), PNc (- - -) methods, and the true decision boundary (—). The
proposed PUc classification method can access the positive training data (4), unlabeled training data (+), and the unlabeled
test data (·). The result shows that the decision boundary obtained by the PUc method is corrected compared with that of the
plain PU method. (c) The positive training samples (4) with importance weight larger than two {xPtr

i | w(xPtr
i ) > 2, ∀i =

1, . . . , nPtr}. The samples distributed around the right bottom region in Fig. 1(b) were almost ignored while the samples given
large importance-weights contributed to training a classifier.

where N(µ,Σ) is the normal distribution with mean vec-
tor µ and covariance Σ, and Id is the d-dimensional iden-
tity matrix. The decision boundary was set at g∗(x) =
max(−4x(1),−x(1)/4) − x(2), where x(t) denotes the t-th
element of the feature vector. Then, we collected nPtr = 400
positive and nUtr = 700 unlabeled data from training distri-
bution, and nUte = 700 unlabeled data from test distribu-
tion. We used the plain PU and proposed PUc classification
methods and plotted the decision boundaries. As reference,
we also plotted the decision boundary obtained by the PNc
method (supervised classification for covariate shift adapta-
tion) with labeled samples of size nP = nN = 400.

Figure 1(a) depicts the positive training (4) and test
(◦) samples and negative training (�) and test (×) sam-
ples, where the mark of negative samples are hardly visi-
ble because of large overlap of training and test distributions
of negative data. Figure 1(b) shows the obtained decision
boundaries from the PUc (-·-), plain PU (· · · ), PNc (- - -)
methods, and the true decision boundary (—). The proposed
PUc classification method can access the positive training
data (4), unlabeled training data (+), and the unlabeled test
data (·). In this example, g̃tr(g) = −x(1)/4 − x(2) is an
accurate linear decision function for the training data, and
g̃te(g) = −4x(1) − x(2) for the test data (see Fig. 1(b)).
The result shows that the boundary obtained by the PUc
method was compensated compared with that of the plain
PU method.

To see the effect of the importance weights, we plotted
the positive training samples (4) with importance weight
larger than two, {xPtr

i | w(xPtr
i ) > 2, i = 1, . . . , nPtr},

in Fig. 1(c). While the samples distributed around the right
bottom region in Fig. 1(b) were almost ignored, the positive
samples near g̃te were contributed to training a classifier.

Table 1: Average with standard error of misclassification
rates over 100 trials. The boldface indicates the best and
comparable methods in terms of average misclassification
rate according to the t-test at the significance level of 5%.

Dataset Shift PUc PU PUc-te

positive-only 31.68 (0.63) 33.66 (0.59) 47.12 (0.32)
negative-only 30.66 (0.64) 32.89 (0.64) 19.89 (0.31)

4.3 Effect of Dataset Shift

In this section, we experimentally confirmed the effect of
dataset shift discussed in Section 3.2. That is, under ei-
ther the positive-only or negative-only shifts, we evaluated
the following three methods: the proposed PUc method in
Eq. (5), the PU method in Eq. (2), and the PUc-te method in
Eq. (7). In the experiment, we drew sets of samples of size
nPtr = 100, nUtr = 500, and nUte = 500.

We used the MNIST dataset (LeCun et al. 1998) and re-
garded the even numbers as the positive class, and the odd
numbers as the negative class. To simulate the positive-only
(resp. negative-only) shift, we changed the ratio of samples
in subclasses of positive (resp. negative) class. In this exper-
iment, with probability 0.1, positive training samples were
drawn from images of “0” and “2”, and with probability 0.9,
positive training samples were drawn from images of “4”,
“6”, and “8”, while the rate was switched in positive testing
samples i.e., 0.9 and 0.1 of positive testing samples. Simi-
larly, with probabilities 0.1 and 0.9, negative training sam-
ples were drawn from images of “1” and “3”, and images of
“5”, “7”, and “9”, respectively; the rate was also switched in
test data.

Table 1 summarizes the results of dataset shift in the pos-
itive (resp. negative) class. In the positive-only shift, the
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Table 2: Average with standard error of misclassification
rates over 100 trials. The boldface indicates the best and
comparable methods in terms of average misclassification
rate according to the t-test at the significance level of 5%.

Dataset d PUc PU Reference

PNc PN

banana 2 24.6 (0.64) 26.4 (0.68) 15.5 (0.68) 19.4 (0.68)

susy 18 40.1 (0.56) 40.1 (0.57) 31.8 (0.57) 31.7 (0.57)

ijcnn1 22 46.0 (0.45) 48.1 (0.29) 41.8 (0.29) 45.0 (0.29)

comp-rec 100 21.4 (1.42) 24.7 (1.57) 6.4 (1.57) 6.9 (1.57)

comp-sci 100 22.0 (0.77) 25.1 (0.89) 14.6 (0.89) 16.1 (0.89)

comp-talk 100 15.9 (1.28) 20.3 (1.58) 4.9 (1.58) 5.5 (1.58)

a9a 123 21.8 (0.22) 23.5 (0.27) 19.0 (0.27) 20.0 (0.27)

proposed PUc method attained lower misclassification rate
than the other approaches. In particular, the PUc-te method
performed poorly; this agrees with our discussion in Sec-
tion 3.2. In contrast, in the negative-only shift, the PUc-te
method achieved the lowest misclassification rate. This can
be explained as follows: i) since the positive data do not
change in the negative-only shift and unlabeled testing data
absorbs the change, the PUc-te method properly handled
the dataset shift, ii) the importance-weighting approach is
known as making learning unstable while the PUc-te method
does not require the importance weighting as discussed in
Section 3.2.

4.4 Benchmark Data
Finally, we evaluated the performance of our proposed
method on the benchmark datasets taken from the web-
site of LIBSVM (Chang and Lin 2011), the IDA Bench-
mark (Rätsch, Onoda, and Müller 2001), and the 20 News-
groups (Lang 1995).4 In this experiment, we split the data
set into training and test data based on the median of the
feature vector. Specifically, we first constructed the set C :=
{ci = ‖xi − x̄‖}ni=1, where ‖ · ‖ is the Euclidean norm and
x̄ = (1/n)

∑n
i=1 xi. We found the median cmed from the

set C, and then split the set C into the first set whose ele-
ments were smaller than cmed and the second set whose el-
ements were larger than cmed. With probability 0.9 and 0.1,
the samples whose indices were in the first set were chosen
as training data and test data, respectively. In contrast, the
samples whose indices were in the second set were chosen
as training data and test data with probability 0.1 and 0.9,
respectively.

We compared the proposed PUc classification method
against the ordinary PU classification method. As reference,
we also report the results obtained by supervised learning
(PN) and that with importance-weighting (PNc). We drew
sets of samples of size nPtr = 300, nNtr = 300, nUtr =
700, and nUte = 700.

Table 2 summarizes the average with standard error of
misclassification rates, showing that the PUc classifica-

4For the 20 Newsgroups, we used a tiny version of the dataset
available at https://cs.nyu.edu/∼roweis/data.html.

tion method achieved more accurate classification perfor-
mance than the ordinary PU classification method on many
datasets. The difference between the proposed PUc and ordi-
nary PU classification methods was larger than that between
the PN and PNc methods. One of the reasons is that since
label information for negative class is not available in PU
learning, the information of importance function would be
highly useful under the covariate shift.

5 Conclusions
In this paper, we considered classification from positive and
unlabeled data (PU classification) under the covariate shift.
Based on importance-weighted risk minimization, we pro-
posed a PU classification method for covariate shift adapta-
tion. Our analysis revealed that in which situations covariate
shift adaptation is effective from both theoretical and empir-
ical viewpoints. Furthermore, we derived the convergence
rate of parameters of a classifier. Through numerical exper-
iments, we demonstrated the effectiveness of the proposed
method on several benchmark datasets.
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A Proof of Theorem 1
We first prove the following Lemma:

Lemma 2. Let ε be the smallest eigenvalue of H̃ . The sec-
ond order growth condition holds

RPUc(β) ≥ RPUc(β
∗) + ε‖β − β∗‖22.

Proof. Given the linearly independent basis functions over
ptr(x), H̃ is positive definite. Thus, RPUc(β) is strongly
convex with parameter at least ε. We then have

RPUc(β) ≥ RPUc(β
∗) +∇RPUc(β

∗)>(β − β∗)
+ ε‖β − β∗‖22
≥ RPUc(β

∗) + ε‖β − β∗‖22,
where we used the optimality condition∇RPUc(β

∗) = 0 to
obtain the second equation.

Then, let us define a set of perturbation parameters as
u := {uq ∈ Rb,UH ∈ Rb×b,uh ∈ Rb}. The perturbed
objective function and the solution are given by

RPUc(β,u) := −(q + uq)>β +
1

4
β>(H +UH)β

+
1

2
(h+ uh)>β + 1,

β(u) := argmin
β∈Rb

RPUc(β,u).

Apparently, RPUc(β) = RPUc(β,0). Then, we obtain the
following lemma:

Lemma 3. Given a sufficiently small neighborhood of
β∗, RPUc(·,u) − RPUc(·) is Lipschitz continuous modulus
ω(u) = O(‖uq‖2 + ‖UH‖Fro + ‖uh‖2).
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Proof. Let Bδ(β∗) := {β | ‖β − β‖2 ≤ δ be the δ-ball
of β∗. For any β ∈ Bδ(β∗), we can easily show ‖β‖2 ≤
‖β − β∗‖2 + ‖β∗‖2 ≤ δ +M . In addition, we have∥∥∥ ∂

∂β

(
RPUc(·,u)−RPUc(·)

)∥∥∥
2

≤ ‖uq‖2 +
δ +M

2
‖UH‖Fro +

1

2
‖uh‖2,

meaning that RPUc(·,u)−RPUc(·) is Lipschitz continuous
on Bδ(β∗) with a Lipschitz constant of order O(‖uq‖2 +
‖UH‖Fro + ‖uh‖2).

Finally, we prove Theorem 1. According to the cen-
tral limit theorem, we have ‖uq‖2 = Op(1/√nPtr),
‖UH‖Fro = Op(1/√nUtr), ‖uh‖2 = Op(1/√nUtr) as
nPtr, nUtr → ∞. Thus, by using Lemma 2, Lemma 3, and
Proposition 6.1 in Bonnans and Shapiro (1998), we have

‖β̂ − β∗‖2 ≤ ε−1ω(u)

= O(‖uq|2 + ‖UH‖Fro + ‖uh‖2)

= Op(1/√nPtr + 1/
√
nUtr).

This concludes the first half of Theorem 1.
Next, we prove the second half of the theorem. By using

the triangle inequality, we have

|R̂λPUc(β̂)−RPUc(β
∗)|

≤ |R̂λPUc(β̂)− R̂λPUc(β
∗)|+ |R̂λPUc(β

∗)−RPUc(β
∗)|.

We can show |R̂λPUc(β̂) − R̂λPUc(β
∗)| = O(‖β̂ −

β∗‖) = Op(1/√nPtr + 1/
√
nUtr) and |R̂λPUc(β

∗) −
RPUc(β

∗)| = Op(1/√nPtr + 1/
√
nUtr). As a result,

we conclude |R̂λPUc(β̂) − RPUc(β
∗)| = Op(1/√nPtr +

1/
√
nUtr).
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