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Abstract

In unsupervised learning, dimensionality reduction is an im-
portant tool for data exploration and visualization. Because
these aims are typically open-ended, it can be useful to frame
the problem as looking for patterns that are enriched in one
dataset relative to another. These pairs of datasets occur com-
monly, for instance a population of interest vs. control or sig-
nal vs. signal free recordings. However, there are few meth-
ods that work on sets of data as opposed to data points or
sequences. Here, we present a probabilistic model for dimen-
sionality reduction to discover signal that is enriched in the
target dataset relative to the background dataset. The data
in these sets do not need to be paired or grouped beyond
set membership. By using a probabilistic model where some
structure is shared amongst the two datasets and some is
unique to the target dataset, we are able to recover interesting
structure in the latent space of the target dataset. The method
also has the advantages of a probabilistic model, namely that
it allows for the incorporation of prior information, handles
missing data, and can be generalized to different distribu-
tional assumptions. We describe several possible variations
of the model and demonstrate the application of the technique
to de-noising, feature selection, and subgroup discovery set-
tings.

Introduction
In unsupervised learning, the goal is often to learn what is
unique or interesting about a dataset. Given the subjective
nature of this question, it can be useful to frame the problem
in the context of what signal is enriched in one dataset, re-
ferred to as the target, relative to a second dataset, referred
to as the background. An example of this is an exploration
of a heterogeneous disease population, such as patients with
Parkinson’s disease. The interesting sources of variation are
those that are unique to the disease population. However, it
is likely that some sources of variation are unrelated to the
disease state, for instance variation due to aging. This is dif-
ficult to assess without a baseline population, therefore, it is
useful to contrast the disease population with a population of
healthy controls. Such contrastive analysis can discover nui-
sance variation that is common amongst the two populations
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and is uninteresting for the problem while highlighting vari-
ation unique to the disease population enabling downstream
applications such as subgroup discovery.

Despite this natural setting for unsupervised learning,
most techniques address individual data points, sequences,
or paired data points. Few techniques generalize to the con-
trastive scenario where we have sets of data but no obvious
correspondence between their members. Yet, there are many
cases where datasets that can be used in a comparative set-
ting arise naturally: control vs. study populations, pre- and
post-intervention groups, and signal vs. signal free groups
(Abid et al. 2018). Each of these settings has possible nui-
sance variation, for example, population level variation, ef-
fects unrelated to intervention, and sensor noise variation.

The recently published contrastive principal component
approach (cPCA) (Abid et al. 2018) is one example of a
technique that can be used for sets of data. cPCA builds on
principal component analysis (PCA) (Hotelling 1933), a di-
mensionality reduction technique which projects data into a
lower dimensional space while minimizing the squared loss.
PCA and other dimensionality reduction techniques are pop-
ular because they allow high-dimensional data to be visual-
ized while removing noise. cPCA seeks to find a projection
to a lower dimensional space that discovers variation that is
enriched in one dataset as compared to another by applying
PCA to the empirical covariance matrix

C =
1

n

n∑
i=1

xixT
i − α

1

m

m∑
j=1

yjy
T
j (1)

where {xi} are the observations of interest, {yj} are the
comparison data, and α is a tuning parameter. The choice of
α is a trade-off between maximizing the retained variance
of the target set and minimizing the retained variance of the
background set.

In this work, we develop probabilistic latent variable mod-
els applicable to the setting where contrastive analysis is de-
sired. These models are based on the insight that it is possi-
ble to emphasize latent structures of interest while suppress-
ing spurious, uninteresting variance in the data through care-
fully designed statistical models. Such models have several
key advantages over deterministic approaches: it is straight
forward to incorporate prior domain knowledge, missing and
noisy data can naturally be modeled through appropriate
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noise distributions, model and feature selection can be per-
formed through sparsity promoting prior distributions, and
the model can more easily be incorporated into larger prob-
abilistic systems in a principled manner. Through this paper,
we advance the state-of-the-art in several ways. First, we de-
velop latent variable models capable of contrastive analy-
sis. We then demonstrate the generality of our framework
by demonstrating how robust and sparse contrastive variants
can be developed, learned and how automatic model selec-
tion can be performed. We also develop contrastive variants
of the variational autoencoder, a deep generative model, and
demonstrate its utility in modeling the density of noisy data.
Finally, we vet our proposed models through extensive ex-
periments on real world scientific data to demonstrate the
utility of the proposed framework.

Contrastive Latent Variable Models
To achieve the aim of discovering patterns that are enriched
in one dataset relative to another, we propose a latent vari-
able model where some structure is shared across the two
datasets and some structure is unique to the target dataset.
Given a target dataset {xi}ni=1 and a background dataset
{yj}mj=1, the model is specified

xi = Szi + Wti + µx + εi, i = 1 . . . n

yj = Szj + µy + εj , j = 1 . . .m
(2)

where xi, yj ∈ Rd are the observed data, zi, zj ∈ Rk and
ti ∈ Rt are the latent variables, S ∈ Rd×k and W ∈ Rd×t
are the corresponding factor loadings, µx,µy ∈ Rd are the
dataset-specific means and εi, εj ∈ Rd are the noise. In gen-
eral, we do not expect the number of samples in the two
datasets to be the same, i.e. n 6= m. Furthermore, there is
no special relationship between the samples i and j in equa-
tion 2. The primary variables of interest are {ti}ni=1, which
are the lower dimensional representation that is unique to the
target dataset.

Gaussian likelihood and priors
To provide intuition into why eqn. 2 meets our goal of
capturing patterns enriched in the target with respect to
the background, we consider the case where the noise fol-
lows isotropic Gaussian distributions, εi ∼ N (0, σ2Id) and
εj ∼ N (0, σ2Id) and the latent variables are modeled using
standard Gaussian distributions

xi|zi, ti ∼ N (Szi + Wti + µx, σ
2Id)

yj |zj ∼ N (Szj + µy, σ
2Id)

zi ∼ N (0, Ik), zj ∼ N (0, Ik), ti ∼ N (0, It),

(3)

where N (µ,Σ) is a multivariate normal distribution param-
eterized by mean µ and covariance Σ and Id denotes a d× d
identity matrix. The resulting marginal distributions for the
observed data are

xi ∼ N (µx,WWT + SST + σ2Id)

yj ∼ N (µy,SST + σ2Id).
(4)

The covariance structure for the target data is additive and
contains a term (SST) that is shared with the background

data and a term that is unique to the target data (WWT).
This constructions allows the factor loading W to model
the structure unique to the target. The model closely mir-
rors probabilistic PCA (PPCA) (Tipping and Bishop 1999;
Roweis 1998) and is exactly PPCA applied to the combined
datasets when the target factor loading dimensionality t is
zero. Similarly, this model is exactly PPCA applied to only
the target dataset when the shared factor loading dimen-
sionality k is zero. Expectation-maximization (EM) (Demp-
ster, Laird, and Rubin 1977) can be used to solve for the
model parameters. Because EM requires conjugacy, most
model formulations will not be solved this way. However,
we present a summary of the EM steps to provide an intu-
ition about the model. To provide interpretable equations in
the below description, we consider the case where the factor
loading matrices W and S are orthogonal.

The model parameters are S, W, µx, µy , σ2 and the latent
variables are zi, zj , ti. The lower bound of the likelihood is

L =

n∑
i=1

Ep(zi,ti|xi)[ln p(zi, ti, xi)]+

m∑
j=1

Ep(zj |yj)[ln p(zj , yj)]
(5)

The M-step maximizes the lower bound of the likelihood
with respect to the parameters. The update step for the
shared factor loading is

S̃ =
[
(B + (I−WR−1WT)T)S

]
(σ2I + M−1ST(B + T)S)−1

(6)

where B is the sample covariance of the background data, T
is the sample covariance of the target data, M = σ2Ik+STS,
and R = σ2It + WTW. The update step for the target factor
loading is

W̃ = ((I− SM−1S)TW)(σ2I + R−1WTTW)−1 (7)

Details on the derivation can be found in the supplemen-
tal information. It is useful to recall that the orthogonal
projection onto the range space of a matrix A is given
by P = A(ATA)−1AT and the orthogonal projection onto
the nullspace of A is given by I − P. In eqn. 7, I −
SM−1S can be expanded using the definition of M to I −
S(σ2Ik + STS)−1ST. Similarly, in eqn. 6, I − WQ−1WT

can be expanded using the definition of Q to I−W(σ2It +
WTW)−1WT. When σ2 is small, these equations are similar
to the projection onto the nullspace of S and W, respectively.
This matches our intuition as to how these factor loading
matrices are updated: in a sense, the part of the target data
captured by the target factor loading space is projected away
before updating the shared factor loading space, and vice
versa. This behavior is similar to cPCA. In eqn. 1, as α goes
to infinity, directions not in the null space of the background
data covariance are given an infinite penalty. When this is
the case, cPCA projects the target data onto the null space
of the background data and then performs PCA (Abid et al.
2018).
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The update steps can also be compared to the PPCA up-
dates. For the factor loading matrix W, the update step is:

W̃ = TW(σ2I + R−1WTTW)−1 (8)

which is the same as eqn. 7, except for the projection term.

Beyond Gaussian Models
The assumptions of Gaussianity are not necessary for re-
covering latent structure that enriches desired patterns in the
target dataset. We can more generally express the proposed
model as:

p(D,{zi, ti}ni=1, {zj}mj=1; Θ) =

p(Θ)

n∏
i=1

p(xi|zi, ti; W,S,µx, σ
2)p(zi)p(ti)

m∏
j=1

p(yj |zj ; S,µy, σ
2)p(zj),

(9)

where D = {{xi}ni=1, {yj}mj=1} and Θ =

{W,S,µx,µy, σ2}. The primary modeling decisions
are to choose the appropriate likelihoods and priors on the
loading matrices. The particular choices are governed by
the application and domain specific knowledge.

However, this flexibility comes at a price: the poste-
rior distributions p(ti, zi, zj |D) are no longer guaranteed to
be tractable. Consequently, the EM algorithm sketched in
the previous section is no longer available and instead, we
use variational inference (Wainwright and Jordan 2008). In
summary, the intractable posteriors are approximated with
tractable surrogates q(ti|λti)q(zi|λzi)q(zj |λzj ) and diver-
gence KL(q || p) is minimized with respect to the variational
parameters λ = {{λzi , λti}ni=1, {λzj}mj=1}. This is equiva-
lent to maximizing the lower bound of the marginal likeli-
hood,

p(D; Θ) ≥ L(λ,Θ)

=
∑
i

Eq(zi;λzi
)q(ti;λti

)[ln p(xi|zi, ti; Θ\{µy})]

− KL(q(zi;λzi) || p(zi))− KL(q(ti;λti) || p(ti))

+
∑
j

Eq(zj ;λzj
)[ln p(yj |zj ; Θ\{µx,θx})]

− KL(q(zj ;λzj ) || p(zj)) + ln p(Θ)
(10)

where Θ\{·} implies the parameters in Θ except the pa-
rameters denoted in the set. Depending on the choice of
q and p the expectations required for computing L(λ,Θ)
may themselves be intractable. We use recently proposed
black box techniques (Ranganath, Gerrish, and Blei 2014;
Kingma and Welling 2014; Rezende, Mohamed, and Wier-
stra 2014; Titsias and Lázaro-Gredilla 2014) to sidestep this
additional complication. In particular, we approximate the
intractable expectations in L(Θ, λ) with unbiased Monte-
Carlo estimates, L̃(Θ, λ). Because the latent variables of in-
terest are continuous, we are able to use reparameterization
gradients (Kingma and Welling 2014; Rezende, Mohamed,
and Wierstra 2014) to differentiate through the sampling

process and obtain low variance estimates of ∇λ,ΘL(Θ, λ),
∇λ,ΘL̃(Θ, λ). Using the noisy but unbiased gradients, opti-
mization can proceed using a stochastic gradient ascent vari-
ant, e.g. ADAM (Kingma and Ba 2014). In our experiments
we use Edward (Tran et al. 2016), a library for probabilis-
tic modeling, to implement these inference strategies for the
proposed models. We sketch the pseudocode for variational
learning in Algorithm 1.

Algorithm 1 Pseudocode
1: Input Model p(D; Θ), variational approximations
q({zi, ti}ni=1, {zj}mj=1 | λ)

2: Output: Optimized Θ and variational parameters λ
3: Initialize λ and Θ.
4: repeat
5: Use reparameterization trick to compute unbiased es-

timates of the gradients of the objective in Eqn. 10,
∇λ,ΘL̃(λ,Θ)

6: Update λ(l+1) ← ADAM(λ(l),∇λL̃(λ,Θ)),
Θ(l+1) ← ADAM(Θ(l),∇ΘL̃(λ,Θ))

7: until convergence

Finally, we note that the black box inference framework
does not restrict us to point estimates of Θ. As we will il-
lustrate in the next section, it is possible to infer variational
distributions over Θ by specifying an appropriate approxi-
mation q(Θ | λΘ).

cLVM Variants
We refer to the base structure of the model as provided in
eqn. 9 as a contrastive latent variable model, cLVM. As pre-
viously noted, different choices for the distributions in eqn. 9
can be made to address the specific challenges of the appli-
cation. Several models are introduced here and are summa-
rized in Table 1.

Sparse cLVM One application-specific problem is feature
selection. In unsupervised learning, there is often a sec-
ondary goal of learning a subset of measurements that are
of interest which is motivated by improved interpretability.
This is especially important when the observed data is very
high-dimensional. For instance, many biological assays re-
sult in datasets that have tens of thousands of measurements
such as SNP and RNA-Seq data. During data exploration,
discovering a subset of these measurements that is impor-
tant to the target population can help guide further analysis.
To learn a latent representation that is only a function of a
subset of the observed dimensions, certain rows of the target
factor loading, W, must be zero. The observed data corre-
sponding to the zero rows in W then have no contribution
to the latent representation t. Because there is no restriction
on S, a sparsity requirement for W does not imply that the
corresponding observation is zero.

One way to achieve this behavior is by using a regulariza-
tion penalty on the model parameters. The penalty is added
to the objective function to incite certain behavior. Regu-
larization penalties can be related to priors by noting that
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Model name Prior Likelihood Variational Approximation
cLVM – Gaussian –

Sparse cLVM p(W) =
∏d
i=1N (Wi:|ρi, τ)

C+(ρi|0, 1)C+(τ |0, bg)
Gaussian

q(W) = N (·, ·)
q(lnρ) = N (·, ·)
q(ln τ) = N (·, ·)

cLVM with
model selection p(S) =

∏d−1
i=1 N (S:j |0, αj)IG(αj |a, b) Gaussian q(S) = N (·, ·)

q(lnα) = N (·, ·)
Robust cLVM p(σ2) = IG(a, b) Student’s t q(lnσ2) = N (·, ·)

cVAE – Gaussian parameterized
by neural network q(zi, ti) = N (gµ(·), gσ(·))

Table 1: Summary of the model variants. For all of the models in the table, the latent variables {zi, ti}ni=1, {zj}mj=1 are modeled
as standard Gaussians and the variational distributions are also Gaussian, unless otherwise noted. The model choice depends on
the application. The various models are not mutually exclusive and may also be combined.

log p(W) ∝ r(W), where r(·) is the penalty function. For
feature selection, a group sparsity penalty (Yuan and Lin
2007) could be used. The rows of W ∈ Rd×t are penalized:

r(W) = ρ

d∑
i=1

√
pi‖Wi:‖2 (11)

where Wi: is the ith row of W. This functional form is
known to lead to sparsity at the group level, i.e. all mem-
bers of a group are zero or non-zero. For increasing values
of ρ, the target factor loading matrix has a larger number of
zero-valued rows.

Sparsity inducing priors such as the automatic relevance
determination (ARD) (Bishop 1999a; Virtanen et al. 2011;
Klami, Virtanen, and Kaski 2013) or global-local shrinkage
priors such as the horseshoe (Carvalho, Polson, and Scott
2009; 2010) can also be easily incorporated into the frame-
workU̇sing the horseshoe prior as an example, the ith row of
W is modeled,

Wi:|ρi, τ ∼ N (0, ρ2
i τ

2It)
ρi ∼ C+(0, 1), τ ∼ C+(0, bg)

(12)

where a ∼ C+(0, b) is the half-Cauchy distribution with
density p(a|b) = 2

π b(1 + a2

b2 ) for a > 0. The horseshoe prior
is useful for subset selection because it has heavy tails and
an infinite spike at zero. Further discussion can be found in
the supplemental information. For both the prior and regu-
larization formulations, groups of rows in W could also be
used instead of single rows if such a grouping exists.

cLVM with Automatic Model Selection The ARD prior
is more typically applied to the columns of a factor loading
matrix. This use allows for automatic selection of the di-
mension of the matrix. This could also be done in the cLVM
model. Although both latent spaces can have any dimension
less than d, which must be selected, we generally recom-
mend setting the target dimension to two for visualization
purposes. To select the dimension of the shared space, the
percent variance explained can be analyzed or a prior, such
as the ARD prior can be used. The columns of S are modeled

S:j |αj ∼ N (0, αjId), αj ∼ IG(a0, b0). (13)

The ARD prior has been shown to be effective at model se-
lection for PPCA models (Bishop 1999b).

Robust cLVM Another application-specific goal may be
to systematically handle outliers in the dataset. Similar to
PPCA, the cLVM model is sensitive to outliers and can pro-
duce poor results if outliers are not addressed. It may be
possible to remove outliers from the dataset, however this
is typically a manual process that requires domain exper-
tise and an understanding of the process that generated the
data. A more general approach to handling outliers uses a
heavy-tailed distribution to describe the data. One approach
for constructing heavy tailed distributions is through scale
mixtures of Gaussians (West 1987). Consider,

σ2 ∼ IG(a, b). (14)

The resulting marginal distribution of the observed data is

p(xi|µ, a, b) =

d∏
k=1

∫ ∞
0

N (xik|µ, σ2)IG(σ2|a, b)dσ2

=

d∏
k=1

St(xik|µ, ν = 2a, λ =
a

b
)

(15)

where St indicates a Student’s t-distribution (Archambeau,
Delannay, and Verleysen 2006). The larger probability mass
in the tails of the Student’s t-distribution, as compared to the
normal distribution, allows the model to be more robust to
outliers.

Beyond Linear Models
Contrastive Variational Autoencoders Thus far we have
only considered models that linearly map latent variables z
and t to the observed space. The linearity constraint can be
relaxed, and doing so leads to powerful generative models
capable of accounting for nuisance variance.

xi = fθs(zi) + fθt(ti) + εi, i = 1 . . . n

yj = fθs(zj) + εj , j = 1 . . .m,
(16)
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where εi ∼ N (0, σ2) , εj ∼ N (0, σ2), and fθs , fθt rep-
resent non-linear transformations parameterized by neural
networks. The latent variables are modeled using standard
Gaussian distributions, as before. Observe that similar to the
linear case (eqn. 2) the target and background data share the
projection fθs while the target retains a private projection
fθt . This construction forces fθs to model commonalities
between the target and background data while allowing fθt
to capture structure unique to the target.

This model can be learned by maximizing the
lower bound to the marginal likelihood p(D|Θ),
Θ = {θs, θt, µx, µy, σ2}, analogously to eqn. 10. However,
a large amount of data is typically required to learn such
a non-linear model well. Moreover, since the number
of latent variables proliferate with increasing data, it is
computationally more efficient to amortize the cost of
inferring the latent variables through inference networks
shared between the data instances. In particular, we
parametrize the variational posteriors qλt(zi, ti|xi) =
N (zi|gµλt(xi), g

σ
λt

(xi))N (ti|gµλt(xi), g
σ
λt

(xi) and
q;λs(zj |yj) = N (zj |gµλs(yj), g

σ
λs

(yj)), where λt and
λs are inference network parameters. Unlike eqn. 10 where
the variational parameters grow with the number of data
instances, the variational parameters λt and λs do not. λt
is shared amongst the target instances while λs is shared
between the background examples. This is an example
of amortized variational inference (Dayan et al. 1995;
Gershman and Goodman 2014). Finally, learning proceeds
by maximizing the evidence lower bound,

p(D; Θ) ≥ L(Θ, λs, λt)

=
∑
i

Eqλt (zi,ti|xi)[ln p(xi|zi, ti; Θ\{µy})]

− KL(qλt(zi, ti|xi) || p(zi)p(ti))

+
∑
j

Eqλs (zj |yj)[ln p(yj |zj ; Θ\{µx,θx})]

− KL(qλs(zj |yj) || p(zj)) + ln p(Θ), (17)

with respect to Θ and λs, λt. The KL terms are available
to us in closed form, however the expectation terms are in-
tractable and we again resort to Monte Carlo approximations
and re-parameterized gradients to enable stochastic gradient
ascent. We refer to this combination of the non-linear model
and the amortized variational inference scheme as the con-
trastive variational auto encoder (cVAE).

Related Work
There are many techniques for dimensionality reduction,
e.g. (Hotelling 1933; van der Maaten and Hinton 2008;
Cox and Cox 2008). This review focuses on dimensionality
techniques that use sets of data and/or address issues related
to nuisance variation. Canonical correlation analysis (CCA)
(Hotelling 1936) and its probabilistic variant (PCCA) (Bach
and Jordan 2005) use two (or more) sets of data, however re-
quires that samples are paired views (or higher dimensional
sets of views) of the same sample. For instance perhaps sev-
eral tests are run on a single patient and therefore the tests
are linked via the patient identity. In CCA, the number of

samples in the sets must be equal, n = m, however the di-
mensionality of each sample does not need to be the same.
Damianou, Lawrence, and Ek proposed a nonlinear exten-
sion of PCCA where the mappings are sampled from a Gaus-
sian process. The resulting model is a multi-view extension
of GP-LVM (Lawrence 2005), but still requires linking the
samples across datasets.

In this work, we propose addressing nuisance variation
in the dataset by introducing a structure to the latent repre-
sentation. Schulam and Saria investigate a similar idea with
respect to sharing representations across different parts of
the full data. In their work, a hierarchical model for disease
trajectory is proposed where some of the model coefficients
are shared across subsets of the data, e.g. total population
and individual. This idea has also been proposed for the
unsupervised analysis of time series data (Hsu, Zhang, and
Glass 2017; Li and Mandt 2018). Data samples are assumed
to have a latent representation that can be partitioned into
static and dynamic contributions. None of these works have
considered a contrastive setting. There has also been work
in addressing explicit sources of nuisance variation. Louizos
et al. explores a setting where certain variables within the
dataset are a priori identified as nuisance and the remain-
ing variables contribute to the latent representation. The ob-
served data is modeled x ∼ pθ(z, s) where s are the observed
nuisance variables.

Experiments
Contrastive latent variable models have applications in sub-
group discovery, feature selection, and de-noising, each of
which is demonstrated here leveraging different modeling
choices. We use examples from Abid et al. to highlight
the similarities and differences between the two approaches.
The results of cLVM as applied to synthetic datasets can be
found in the supplemental information.

Subgroup Discovery for Incomplete Data
To demonstrate the use of cLVM for subgroup discovery,
we use a dataset of mice protein expression levels (Higuera,
Gardiner, and Cios 2015). The target dataset has 270 sam-
ples of two unknown classes of mice: trisomic (Down Syn-
drome model) and control. The background dataset has 135
known control samples. Each sample has 77 measurements.
The dataset contains missing values at a level of approxi-
mately 1.6% due to technical artifacts and sampling that can-
not be repeated. One of the advantages of the probabilistic
approach is that it naturally handles missing data. Depending
why the data is missing, missing data can either be ignored,
marginalized, or explicitly modeled. For the mice protein
dataset, we marginalize over the missing values by treating
the missing data as latent variables and adding a correspond-
ing normal variational approximation. Increasing levels of
missing data were tested by artificially removing data from
the target dataset. The robust variation of the model is ap-
plied to account for other possible data issues. The target
and shared dimensionalities are both set to two. Fig. 1 shows
the latent representation using cPCA and robust cLVM for
the naturally occurring missing level, 25%, 50%, and 75%
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Figure 1: cLVM is robust to missing data. Density plots of the subgroups revealed in the target latent representation of the mice
protein expression data. Red and blue points are the control and trisomic mice samples, respectively. The rows use cPCA and
robust cLVM to learn the latent representation, respectively. Each column uses a different level of missing data, starting with the
leftmost column containing the natural level of missing data. PCA is unable to perform subgroup discovery (see supplemental
information) and robust cLVM is better able to perform subgroup discovery in the presence of missing data.

missing data. cPCA does not have natural handling for miss-
ing data therefore mean imputation was used to first fill-in.
PCA is unable to recover the structure in the dataset (see
supplemental information for results). Both cPCA and ro-
bust cLVM find the subsets, however, the proposed method
is better able to discover the subgroups as the amount of
missing data increases.

Subgroup Discovery for High Dimensional Data

To highlight the use of cLVM for subgroup discovery in
high-dimensional data, we use a dataset of single cell RNA-
Seq measurements (Zheng et al. 2017). The target dataset
consists of expression levels from 7,898 samples of bone
marrow mononuclear cells before and after stem cell trans-
plant from a leukemia patient. The background contains ex-
pression levels from 1,985 samples from a healthy individ-
ual. Pre-processing of the data reduces the dimensionality
from 32,738 to 500 (Zheng et al. 2017; Abid et al. 2018).
Given the size of the data to explore, it is useful in this set-
ting to use an ARD prior to automatically select the dimen-
sionality of the shared latent space. The target latent space
is set to two and an IG(10−3, 10−3) prior is used for the
columns of the shared factor loading. Fig. 2a shows the re-
sulting latent representation, which is able to discover the
subgroups, whereas PCA is not (see supplemental informa-
tion). Fig. 2b compares the percent of variance explained in
the ranked columns as compared to the cLVM model without
model selection. The model with ARD uses over 100 fewer
columns in the shared factor loading matrix and avoids an
analysis to manually select the dimension.

Automatic Feature Selection using Sparse cLVM
The third example uses a dataset, referred to as mHealth,
that contains 23 measurements of body motion and vi-
tal signs from four types of signals (Banos et al. 2014;
2015). The participants in the study complete a variety of ac-
tivities. The target data is composed of the unknown classes
of cycling and squatting and the background data is com-
posed of the subjects lying still. In this application, we
demonstrate feature selection by learning a latent represen-
tation that both separates the two activities and uses only a
subset of the signals. A group sparsity penalty is used, as
described in the methodology, on the target factor loading.
The target dimension is two, the shared dimension is twenty,
and ρ is 400. ρ is selected by varying its value and inspect-
ing the latent representation. The latent representation us-
ing regularization is shown in Fig. 2c. The two classes are
clearly separated. Fig. 2d shows the row-wise norms of the
target factor loading. The last six dimensions, corresponding
to the magnetometer readings, are all zero which indicates
that the magnetometer measurements are not important for
differentiating the two classes and can be excluded from fur-
ther analysis.

De-noised Generative Modeling using cVAE
Finally, to demonstrate the utility of cVAE, we consider a
dataset of corrupted images (see Fig. 3a). This dataset was
created by overlaying a randomly selected set of 30, 000
MNIST (LeCun et al. 1998) digits on randomly selected im-
ages of the grass category from Imagenet (Russakovsky et
al. 2015). The background is 30, 000 grass images. We train
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Figure 2: cLVM variants allow for model and feature selection. (a) Subgroups revealed in the target latent representation for
the RNA-Seq dataset using the model selection cLVM variant. (b) The percent variance explained by the ordered columns of
the shared factor loading for LVM with and without ARD (model selection). The ARD model has over 100 fewer non-zero
columns in the shared factor loading. (c) Subgroups revealed in the target latent representation for the mHealth dataset using
sparse cLVM. (d) The norms of the rows of the target factor loading for sparse LVM where the different colors correspond to
different sensor types. The six dimensions with zero-valued norms correspond to magnetometer readings.

Figure 3: cVAE recovers meaningful structure from noisy data. (a) Samples of the target noisy images of digits on grass and
background grass images. (b) Generative samples of the de-noised target (top row) and background (bottom row) which are
enabled by the cVAE structure. Note there is no correspondence between the samples in (a) and (b). (c) The 2D cVAE projection
and a 2D tSNE projection of a VAE with 10 dimensional space. The colors represent different digits.

a cVAE with a two-dimensional target latent space and an
eight-dimensional shared space. We use fully connected en-
coder and decoder networks with two hidden layers with
128 and 256 hidden units employing rectified-linear non-
linearities. For the cVAE, both the target and shared de-
coders θs and θt use identical architectures. We compare
against a standard variational autoencoder with an identical
architecture and employ a latent dimensionality of ten, to
match the combined dimensionality of the shared and target
spaces of the contrastive variant. Fig. 3c presents the results
of this experiment. The latent projections for the cVAE clus-
ter according to the digit labels. VAE on the other hand con-
founds the digits with the background and fails to recover
meaningful latent projections. Moreover, cVAE allows us
to selectively generate samples from the target or the back-
ground space, Fig. 3b. The samples from the target space
capture the digits, while the background samples capture the
coarse texture seen in the grass images. Additional compar-
isons with a VAE using a two dimensional latent space is
available in the supplemental.

Conclusions
Dimensionality reduction methods are important tools for
unsupervised data exploration and visualization. We pro-
pose a probabilistic model for improved visualization when
the goal is to learn structure in one dataset that is enriched
as compared to another. The latent variable model’s core
characteristic is that it shares some structure across the two
datasets and maintains unique structure for the dataset of
interest. The resulting cLVM model is demonstrated using
robust, sparse, and nonlinear variations. The method is well-
suited to scenarios where there is a control dataset, which is
common in scientific and industrial applications.
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