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Abstract

In this paper, we propose an approach for learning sparse re-
ject option classifiers using double ramp loss Ldr . We use DC
programming to find the risk minimizer. The algorithm solves
a sequence of linear programs to learn the reject option clas-
sifier. We show that the loss Ldr is Fisher consistent. We also
show that the excess risk of loss Ld is upper bounded by ex-
cess risk of Ldr . We derive the generalization error bounds
for the proposed approach. We show the effectiveness of the
proposed approach by experimenting it on several real world
datasets. The proposed approach not only performs compa-
rable to the state of the art, it also successfully learns sparse
classifiers.

1 Introduction
Standard classification tasks focus on building a classifier
which predicts well on future examples. The overall goal
is to minimize the number of mis-classifications. However,
when the cost of mis-classification is very high, a generic
classifier may still suffer from very high risk. In such cases
it makes more sense not to classify high risk examples. This
choice given to the classifier is called reject option. Hence,
the classifiers which can also reject examples are called re-
ject option classifiers. The rejection also has its cost but it is
very less compared to the cost of mis-classification.

For example, making a poor decision based on the di-
agnostic reports can cost huge amount of money on fur-
ther treatments or it can be cost of a life (da Rocha Neto
et al. 2011). If the reports are ambiguous or some rare
symptoms are seen which are unexplainable without fur-
ther investigation, then the physician might choose not to
risk misdiagnosing the patient. In this case, he might in-
stead choose to perform further medical tests, or to refer
the case to an appropriate specialist. Reject option classifier
may also be found useful in financial services (Rosowsky
and Smith 2013). Consider a banker looking at a loan appli-
cation of a customer. He may choose not to decide on the
basis of the information available, and ask for a credit bu-
reau score or further recommendations from the stake hold-
ers. Reject option classifiers have been used in wide range of
applications from healthcare (Hanczar and Dougherty 2008;
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da Rocha Neto et al. 2011) to text categorization (Fumera,
Pillai, and Roli 2003) to crowd sourcing (Li et al. 2017) etc.

Reject option classifier can be viewed as combination of
a classifier and a rejection function. The rejection region
impacts the proportion of examples that are likely to be re-
jected, as well as the proportion of predicted examples that
are likely to be correctly classified. An optimal reject op-
tion classifier is the one which minimizes the rejection rate
as well as the mis-classification rate on the predicted exam-
ples.

LetX ⊆ Rn be the feature space and Y be the label space.
For binary classification, we use Y = {+1,−1}. Examples
(x, y) are generated from unknown joint distribution D on
the product space X ×Y . A typical reject option classifier is
defined using a decision surface (f(x) = 0) and bandwidth
parameter ρ (determines rejection region) as follows:

hρ(f(x)) = 1.I{f(x)>ρ} + 0.I{|f(x)|≤ρ} − 1.I{f(x)<−ρ}
(1)

A reject option classifier can be viewed as two parallel sur-
faces and the area between them as rejection region. The
goal is to determine both f and ρ simultaneously. The per-
formance of a reject option classifier is measured using Ld
loss function defined as:

Ld(yf(x), ρ) = 1.I{yf(x)<−ρ} + d.I{|f(x)|≤ρ} (2)

where d is the cost of rejection. If d = 0, then f(.) will
always reject. If d ≥ 0.5, then f(x) will never reject, since
the cost of random labeling is 0.5. Thus, d is chosen in the
range (0, 0.5). hρ(f(x)) (described in equation. 1) has been
shown to be infinite sample consistent with respect to the
generalized Bayes classifier (Yuan and Wegkamp 2010). A
reject option classifier is learnt by minimizing the risk which
is the expectation of Ld with respect to the joint distribution
D. The risk under Ld is minimized by generalized Bayes
discriminant f∗d (x) (Chow 1970), which is

f∗d (x) = 1.I{η(x)>1−d} + 0.I{d≤η(x)≤1−d} − 1.I{η(x)<d}
(3)

where η(x) = P (y = 1|x). However, in general we do
not know D. But, we have the access to a finite set of ex-
amples drawn from D called training set. We find the reject
option classifier by minimizing the empirical risk. Minimiz-
ing the empirical risk under Ld is computationally hard. To
overcome this problem, convex surrogates of Ld have been
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proposed. Generalized hinge based convex loss has been
proposed for reject option classifier (Bartlett and Wegkamp
2008). The paper describes an algorithm for minimizing l2
regularized risk under generalized hinge loss. Wegkamp et.al
2011 (Wegkamp and Yuan 2011) propose sparse reject op-
tion approach by minimizing l1 regularized risk under gen-
eralized hinge loss. In both these approaches (Bartlett and
Wegkamp 2008; Wegkamp and Yuan 2011), first a classi-
fier is learnt based on risk minimization under generalized
hinge loss and then a rejection threshold is learnt. Ideally,
the classifier and the rejection threshold should be found si-
multaneously. This approach might not give the optimal pa-
rameters. Also, a very limited experimental results are pro-
vided to show the effectiveness of the proposed approaches
(2011). A cost sensitive convex surrogate for Ld called dou-
ble hinge loss has been proposed in (Grandvalet et al. 2008).
The double hinge loss remains an upper bound to Ld pro-

vided ρ ∈
(

1−H(d)
1−d , H(d)−d

d

)
, which is very strict condi-

tion. So far, the approaches proposed learn a threshold for
rejection along with the classifier. However, in general, the
rejection region may not be symmetrically located near the
classification boundary. A generic convex approach has been
proposed which simultaneously learns the classifier as well
as the rejection function (Cortes, Salvo, and Mohri 2016).
The main challenge with the convex surrogates is that they
are not constant even in the reject region in contrast to Ld
loss. Sousa and Cardoso (Sousa and Cardoso 2013) model
reject option classification as ordinal regression problem. It
is not clear whether treating rejection as a separate class
leads to a good approximation simply because training data
does not contain rejection as a class label. Moreover, clas-
sification consistency of this approach is not known in the
reject option context. A non-convex formulation for learn-
ing reject option classifier using logistic function is proposed
in Fumera and Roli (2002a). However, theoretical guaran-
tees for the approach are not known. Also, a very limited
set of experiments are provided in support of the approach.
A bounded non-convex surrogate called double ramp loss
Ldr is proposed in Manwani et al. (2015). A regularized risk
minimization algorithm was proposed with l2 regularization
(Manwani et al. 2015). The approach proposed shown to
have interesting geometric properties and robustness to the
label noise. However, statistical properties of Ldr (Fisher
consistency, generalization error etc.) are not studied so far.
Also, l2 regularization based approach does not learn sparse
classifiers.

Our Contributions
In this paper, we propose a sparse reject option classifier
learning algorithm using double ramp loss. By sparseness,
we mean that the number of support vectors needed to ex-
press the classifier are small. Our contributions in this work
are as follows.

• We propose a difference of convex (DC) programming
(Thi Hoai An and Dinh Tao 1997) based algorithm to
learn sparse reject option classifier. The final algorithm
turns out to be solving successive linear programs.
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Figure 1: Ld vs. Double ramp loss Ldr (d=0.2, ρ = 2).

• We also establish statistical properties for double ramp
loss function. We show that the double ramp loss func-
tion is Fisher consistent. Which means that generalized
Bayes classifier minimizes the population risk under Ldr.
We also show that the excess risk under loss Ldr upper
bounds the excess risk under loss Ld.

• We derive the generalization error bounds for the pro-
posed approach.

• We also show experimentally that the proposed approach
performs comparable to the other state of the art ap-
proaches for reject option classifier. Our approach learns
sparser classifiers compared to all the other approaches.
We also show experimentally that the proposed approach
is robust against label noise.
The rest of the paper is organized as follows. We discuss

the proposed method and algorithm in section 2. In section 3,
we provide the theoretical results for Ldr. The experiments
are given in section 4. We conclude the paper with some
remarks in section 5.

2 Proposed Approach
We propose a new algorithm for learning reject option clas-
sifier which minimizes the l1-regularized risk under double
ramp loss function Ldr (Manwani et al. 2015). Ldr is a non-
convex surrogate of Ld as follows.

Ldr(t, ρ) =
d

µ

[[
µ− t+ ρ

]
+
−
[
− µ2 − t+ ρ

]
+

]
+

(1− d)

µ

[[
µ− t− ρ

]
+
−
[
− µ2 − t− ρ

]
+

] (4)

where µ is the slope of the loss in linear region, [a]+ =
max(0, a) and t = yf(x). Note thatLdr depends on specific
choice of µ. Also, for a valid reject region, we want ρ ≥
1
2µ(1+µ). Figure 1 shows the plot ofLdr for different values
of µ.

Sparse Double Ramp SVM (SDR-SVM)
Let S = {(x1, y1), . . . , (xN , yN )} be the training set where
(xi, yi) ∈ X ×{+1,−1}, i = 1 . . . N . Let the reject option
classifier be of the form f(x) = h(x)+b. LetK : X ×X →
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R+ be a Mercer kernel (continuous, symmetric and posi-
tive semi-definite) to produce nonlinear classifiers. Let HK
be the reproducing kernel Hilbert space (RKHS) induced by
the Mercer kernel K with the norm ‖.‖K (Aronszajn 1950).
To learn sparse reject option classifier, we use l1 regulariza-
tion term. Thus, we find the classifier as solving following
optimization problem.

min
h∈H+

K,b,ρ
λ‖h‖1 +

1

N

N∑
i=1

Ldr(yif(xi), ρ)

However, the optimal h lies in a finite dimensional sub-
space H+

K,S of HK (Scholkopf and Smola 2001). H+
K,S ={∑N

i=1 yiαiK(xi, .) | [α1, . . . , αN ] ∈ RN+
}

. Given h ∈

H+
K,S , the l1 regularization is defined as Ω(h) =

∑N
i=1 αi

for h(x) =
∑N
i=1 yiαiK(xi,x) (Smola, Scholkopf, and

Ratsch 1999; Bradley and Mangasarian 2000; Wu and Zhou
2005). Thus, the sparse double ramp SVM can be learnt by
minimizing following l1 regularized risk.

J(Θ) = λ

N∑
i=1

αi +
1

N

N∑
i=1

Ldr(yif(xi), ρ) (5)

where f(xi) =
∑N
j=1 yjαjK(xi,xj) + b. Θ = (α, b, ρ).

We see that J is a non-convex function. However, J can be
decomposed as a difference of two convex functions Q1 and
Q2 as J(Θ) = Q1(Θ)−Q2(Θ), where

Q1(Θ) = λ

N∑
i=1

αi +
1

Nµ

N∑
i=1

[
d
[
µ− yif(xi) + ρ

]
+

+ (1− d)
[
µ− yif(xi)− ρ

]
+

]
Q2(Θ) =

1

Nµ

N∑
i=1

[
d
[
− µ2 − yif(xi) + ρ

]
+

+ (1− d)
[
− µ2 − yif(xi)− ρ

]
+

]
To minimize such a function which can be expressed as dif-
ference of two convex functions, we can use difference of
convex (DC) programming. In this case, DC programming
guarantees to find a local optima of the objective function
(Thi Hoai An and Dinh Tao 1997). The simplified DC al-
gorithm uses the convexity property of Q2(Θ) and finds an
upper bound on J(Θ) as J(Θ) ≤ B(Θ,Θ(l)), where

B(Θ,Θ(l)) := Q1(Θ)−Q2(Θ(l))−(Θ−Θ(l))T∇Q2(Θ(l))

Θ(l) is the parameter vector after (l)th iteration,∇Q2(Θ(l))
is a sub-gradient of Q2 at Θ(l). Θ(l+1) is found by minimiz-
ing B(Θ,Θ(l)). Thus,

J(Θ(l+1)) ≤ B(Θ(l+1),Θ(l)) ≤ B(Θ(l),Θ(l)) = J(Θ(l))

Thus, the DC program reduces the value of J(Θ)
in every iteration. Now, we will derive a DC al-
gorithm for minimizing J(Θ). Given Θ(l), we find

Algorithm 1 Sparse Double Ramp SVM (SDR-SVM)
Input: S = {(x1, y1), . . . , (xN , yN )}, ε > 0, d ∈
(0, 0.5), µ ∈ (0, 1], λ > 0
Output: α∗, b∗, ρ∗
Initialize: l = 0, α(0), b(0), ρ(0)

while (J(Θ(l))− J(Θ(l+1)) > ε) do
for i = 1 to N do
β
′(l)
i = I{yif(l)(xi)≤ρ(l)−µ2}

β
′′(l)
i = I{yif(l)(xi)≤−ρ(l)−µ2}

end for
α(l+1), b(l+1), ρ(l+1) = arg minΘ B(Θ,Θ(l))

end while

Θ(l+1) ∈ arg minΘ B(Θ,Θ(l)) = arg minΘ Q1(Θ) −
ΘT∇Q2(Θ(l)). We use∇Q2(Θ(l)) as:

∇Q2(Θ(l)) = −
N∑
i=1



dβ
′(l)
i +(1−d)β

′′(l)
i

µN y1yiK(x1,xi)
...

dβ
′(l)
i +(1−d)β

′′(l)
i

µN yNyiK(xN ,xi)
dβ

′(l)
i +(1−d)β

′′(l)
i

µN yi

−dβ
′(l)
i −(1−d)β

′′(l)
i

µN


where

β
′(l)
i = I{yif(l)(xi)≤ρ(l)−µ2}; i = 1 . . . N

β
′′(l)
i = I{yif(l)(xi)≤−ρ(l)−µ2}; i = 1 . . . N

Note that f (l)(x) =
∑N
i=1 α

(l)
i yiK(xi,x) + b(l). The new

parameters Θ(l+1) are found by minimizingB(Θ,Θ(l)) sub-
ject to ρ ≥ 1

2µ(1 + µ). Which becomes

min
α,b,ρ,ξ′

,ξ′′
λ

N∑
i=1

αi +
1

Nµ

N∑
i=1

(
dξ′i + (1− d)ξ′′i

)
+

d

Nµ

N∑
i=1

β
′(l)
i

[
yi
( N∑
j=1

αjyjK(xj ,xi) + b
)
− ρ
]

+
1− d
Nµ

N∑
i=1

β
′′(l)
i

[
yi
( N∑
j=1

αjyjK(xj ,xi) + b
)

+ ρ
]

s.t.


yi
(∑N

j=1 αjyjK(xj ,xi) + b
)
≥ ρ+ µ− ξ′i ∀i

yi
(∑N

j=1 αjyjK(xj ,xi) + b
)
≥ −ρ+ µ− ξ′′i ∀i

αi, ξ
′
i, ξ
′′
i ≥ 0 ∀i ρ ≥ 1

2µ(1 + µ)

Thus, B(Θ,Θ(l)) can be minimized by solving a linear pro-
gram. Thus, the algorithm solves a sequence of linear pro-
grams to learn a sparse reject option classifier. The complete
approach is described in Algorithm 1. Convergence guaran-
tee of this algorithm follows from the convergence of DC
algorithm given in (Thi Hoai An and Dinh Tao 1997). The
final learnt classifier is represented as f(x) = h(x) + b and
ρ.
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3 Analysis
In this paper, we are proposing an algorithm based on Ldr.
We first need to ensure that minimizer of the population risk
under Ldr is minimized by the generalized Bayes classifier
f∗d (defined in eq.(3)). This property is called Fisher consis-
tency or classification calibrated-ness.

Theorem 1. Fisher Consistency of Ldr The generalized
Bayes discriminant function f∗d (x) (described in eq. (3))
minimizes the risk

Rdr(f, ρ) = E
[
Ldr(yf(x), ρ)

]
over all measurable functions f .

The proof of this theorem is skipped due to the space con-
straints and is provided in the supplementary file submit-
ted with the main file. To approximate the optimal classifier,
Fisher consistency is the minimal requirement for the loss
function.

Excess Risk Bound
We will now derive the bound on the excess risk (Rd(f, ρ)−
Rd(f∗d , ρ∗d)) in terms of the excess risk under Ldr where
Rd(f, ρ) = E[Ld(yf(x), ρ)]. We know that Ld(f(x), ρ) ≤
Ldr(f(x), ρ), ∀x ∈ X , ∀f . This relation remains
preserved when we take expectations both side, means
Rd(f, ρ) ≤ Rdr(f, ρ). This relation is also true for excess
risk. To show that, We first define the following terms. Let
η(x) = P (y = 1|x) and z = f(x). We define following
terms.

ξ(η) := ηI{η<d} + dI{d≤η≤1−d} + (1− η)I{η>1−d}

H(η) := inf
z,ρ

ηLdr(z, ρ) + (1− η)Ldr(−z, ρ)

= η(1 + µ)I{η<d} + d(1 + µ)I{d≤η≤1−d}

+ (1− η)(1 + µ)I{η>1−d}

We know that R∗d = E[ξ(η)] and R∗dr = E[H(η)]. Further-
more, we define

ξ−1(η) := η − ξ(η)

ξr(η) := d− ξ(η)

ξ1(η) := (1− η)− ξ(η)

H−1(η) := inf
z<−ρ

ηLdr(z, ρ) + (1− η)Ldr(−z, ρ)

Hr(η) := inf
|z|≤ρ

ηLdr(z, ρ) + (1− η)Ldr(−z, ρ)

H1(η) := inf
z>ρ

ηLdr(z, ρ) + (1− η)Ldr(−z, ρ)

We observe the following relationship.

Proposition 2.

ξ−1(η) ≤ H−1(η)−H(η)

ξr(η) ≤ Hr(η)−H(η)

ξ1(η) ≤ H1(η)−H(η)

The proof of the Proposition 2 is omitted due to the space
constraints. Now we prove that the excess risk of Ld loss is
bounded by excess risk of Ldr using above proposition.

Theorem 3. For any measurable function f : X → R,

Rd(f, ρ)−Rd(f∗d , ρ∗d) ≤ Rdr(f, ρ)−Rdr(f∗d , ρ∗d)

Proof. We know that

Rd(f, ρ) = E[ηI{f<−ρ} + dI{−ρ≤f≤ρ} + (1− η)I{f>ρ}]

and Rdr(f, ρ) = E[rη(f)] where rη(f(x)) =
Ey|x[Ldr(yf(x), ρ)] = ηLdr(f(x), ρ) + (1 −
η)Ldr(−f(x), ρ) . Therefore,

Rd(f, ρ)−Rd(f∗d , ρ∗d)
= E

[
ηI{f<−ρ} + dI{|f |≤ρ} + (1− η)I{f>ρ}

]
− E

[
ξ(η)

]
= E

[
ξ−1(η)I{f<−ρ} + ξr(η)I{−ρ≤f≤ρ} + ξ1(η)I{f>ρ}

]
Using Proposition 2, we will get

Rd(f, ρ)−Rd(f∗d , ρ∗d) ≤ E
[
(H−1(η)−H(η))I{f<−ρ}

+ (Hr(η)−H(η))I{−ρ≤f≤ρ} + (H1(η)−H(η))I{f>ρ}
]

≤ E
[
H−1(η)I{f<−ρ} +Hr(η)I{−ρ≤f≤ρ}

+H1(η)I{f>ρ} −H(η)
]

≤ E[rη(f)−H(η)] ≤ Rdr(f, ρ)−Rdr(f∗d , ρ∗d)

Hence, excess risk under Ld is upper bounded by ex-
cess risk under Ldr. From Theorem 3, we need to bound
Rdr(f, ρ) − Rdr(f∗d , ρ∗d) in order to bound Rd(f, ρ) −
Rd(f∗d , ρ∗d). We thus need an error decomposition for
Rdr(f, ρ)−Rdr(f∗d , ρ∗d).

Error Decomposition ofRdr(f, ρ)−Rdr(f∗d , ρ∗d)
The decomposition for RKHS based regularization schemes
is well established (Cucker and Zhou 2007). To understand
the details, consider the l2 regularized empirical risk mini-
mization with Ldr. For S = {(x1, y1), . . . , (xN , yN )} and
λ2 > 0, let f∗λ2,S

= h∗λ2,S
+ b∗λ2,S

where

(h∗λ2,S , b
∗
λ2,S , ρ

∗
λ2,S) = arg min

h∈HK,b,ρ

λ2

2
‖h‖2K + R̂dr(f, ρ)

(6)

Note that R̂dr denotes the empirical risk under double ramp
loss. In this case, we observe the following decomposition.

Rdr(f∗λ2,S
, ρ∗λ2,S

)−Rdr(f∗d , ρ
∗
d) ≤ A(λ2) +Rdr(f

∗
λ2,S

, ρ∗λ2,S
)

− R̂dr(f∗λ2,S
, ρ∗λ2,S

) + R̂dr(f∗λ2
, ρ∗λ2

)−Rdr(f∗λ2
, ρ∗λ2

) (7)

where R̂dr(f, ρ) is the empirical risk of (f, ρ) under double
ramp loss. f∗λ2

= h∗λ2
+ b∗λ2

and ρ∗λ2
are defined as follows.

(h∗λ2
, b∗λ2

, ρ∗λ2
) = arg min

h∈HK,b,ρ

λ2

2
‖h‖2K +Rdr(f, ρ) (8)

A(λ2) measures the approximation power in RKHS associ-
ated with kernel function K. ∀λ2 > 0, A(λ2) is defined as
follows.

A(λ2) = inf
h∈HK,b,ρ

λ2

2
‖h‖2K+Rdr(h+ b, ρ)−Rdr(f∗d , ρ∗d)

(9)
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The error decomposition in eq.(7) is easy to derive once we
know that both h∗λ2

and h∗λ2,S
lie in the same function space.

However, this doe not hold true in case of SDR-SVM pro-
posed in this paper. It happens because the error analysis
becomes difficult due to the data dependent nature of H+

K.
We use the techniques discussed in (Wu and Zhou 2005;
Huang, Shi, and Suykens 2014). We establish the error de-
composition of SDR-SVM using the error decomposition
(7) with the help of f∗λ2,S

. We first characterize some proper-
ties of f∗λ2,S

, ρ∗λ2,S
. Note that from here onwards, we assume

µ = 1 (slope parameter in the loss function Ldr).
Proposition 4. For any λ2 > 0, f∗λ2,S

=

(h∗λ2,S
, b∗λ2,S

, ρ∗λ2,S
) is given by eq.(6). Then,

Ω(h∗λ2,S) ≤ 1

λ2
R̂dr(f∗λ2,S , ρ

∗
λ2,S) + ‖h∗λ2,S‖

2
K

The proof of this proposition is skipped here and is pro-
vided in the supplementary file.

Error Decomposition for SDR-SVM
We now find the error decomposition for SDR-SVM. We
define the sample error as below,

S(N,λ1, λ2) =
(
Rdr(f∗λ1,S , ρ

∗
λ1,S)− R̂dr(f∗λ1,S , ρ

∗
λ1,S)

)
+ (1 + ψ)

(
R̂dr(f∗λ2

, ρ∗λ2
)−Rdr(f∗λ2

, ρ∗λ2
)
)

where (f∗λ1,S
, ρ∗λ1,S

) is a global minimizer of optimization
problem in eq.(5) and (f∗λ2

, ρ∗λ2
) is a global minimizer of

problem (8). Also, ψ = λ1

λ2
. Following theorem gives the

error decomposition for SDR-SVM.
Theorem 5. For 0 < λ1 ≤ λ2 ≤ 1, let ψ = λ1

λ2
. Then,

Rdr(f∗λ1,S , ρ
∗
λ1,S)−Rdr(f∗d , ρ∗d) + λ1Ω(h∗λ1,S)

≤ ψRdr(f∗d , ρ∗d) + S(N,λ1, λ2) + 2A(λ2)

where A(λ2) is the approximation error defined by eq.(9).
Proof of above theorem is provided in the supplementary

file. Using Theorem 5, the generalization error of SDR-SVM
is estimated by bounding S(N,λ1, λ2) and A(λ2).

Generalization Error of SDR-SVM
We expect that the sample error S(N,λ1, λ2) tends to zero
with certain rate as N tends to infinity. This can be under-
stood by the convergence of the sample mean to its expected
value. Also, we will have following assumption on A(λ2).
Assumption 1. For any 0 < β ≤ 1 and cβ > 0, the approx-
imation error satisfies

A(λ2) ≤ cβλβ ∀λ2 > 0 (10)
This is a standard assumption in the literature of learning

theory (Cucker and Zhou 2007).
Theorem 6. Suppose that Assumption 1 holds for any 0 <

β ≤ 1. Take λ1 = N−
β

4β+2 and (f∗λ1,S
, ρ∗λ1,S

) is the optimal
solution of SDR-SVM. Then for any 0 ≤ δ ≤ 1, there holds

Rd(f∗λ1,S , ρ
∗
λ1,S)−Rd(f∗d , ρ∗d) ≤ c̃

(
log

4

δ

)1/2

N−
β

4β+2

(11)

with probability at least 1− δ where c̃ = 2cβ + 16dτ2 + 17

and τ = supx,y∈X
√
|K(x,y)|.

Proof of this theorem is provided in the supplementary
file. It uses the concentration bounds results discussed in
(Bartlett and Mendelson 2003).

Bounds with µ 6= 1

Risk bound for µ 6= 1 can be extended easily. The final
expression for the risk bound (µ 6= 1) is same as given in
Theorem 6 with a different coefficient. The new coefficient
c̃ = 2cβ + 13 + 4 max(1, µ) + 8d(1+µ)τ2

µ .

4 Experiments
In this section, we show the effectiveness of approach on
several datasets. We report experimental results on five
datasets (“Ionosphere”, “Parkinsons”, “Heart”, “ILPD” and
“Pima Indian Diabetes”) available on UCI machine learning
repository (Lichman 2013).

Experimental Setup
In the proposed approach, to solve linear programming
problem in each iteration, we have used CVXOPT pack-
age in python language (Dahl and Vandenberghe 2008). In
our experiments, we apply a Gaussian kernel K(xi,xj) =

exp(−γ‖xi − xj‖2) for nonlinear problems. In all the ex-
periments, we set µ = 1. Regularization parameter λ and
kernel parameter γ are chosen using 10-fold cross valida-
tion.

We compare the performance of the proposed approach
(SDR-SVM) with 3 other approaches as follows. The first
approach is standard SVM based reject option classifier. In
that approach, we first learn a learning decision boundary us-
ing SVM and then set the width of rejection region by cross-
validation such that empirical risk under Ld is minimized.
We use this approach as a proxy for the approach proposed
in Bartlett and Wegkamp (2008). Again, parameters of SVM
(C and γ) are learnt using 10-fold cross-validation. The sec-
ond approach is the SVM with embedded reject option (ER-
SVM) (Fumera and Roli 2002a). We used the code for this
approach available online (Fumera and Roli 2002b). We also
compare our approach with Double hinge SVM (DH-SVM)
based reject option classifier (Grandvalet et al. 2008).

Simulation Results
We report the experimental results for different values of
d ∈ [0.05, 0.5] with the step size of 0.05. For every value of
d, we find the cross-validation risk (under Ld), % rejection
rate (RR), % accuracy on the un-rejected examples (Acc).
We also report the average number of support vectors (the
corresponding αi ≥ 10−6). The results provided here are
based on 10 repetitions of 10-fold cross-validation (CV).

Now we discuss the experimental results. Figure 2 shows
the comparison plots for different datasets. We observe the
following.

1. Average Cross Validation Risk Rd: We see that SDR-
SVM performs better than ER-SVM with huge gaps in
terms of the average cross validation risk (R̂d) for all
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Figure 2: Comparison Plots for Different Datasets. Column 1 shows the risk Rd, column 2 shows accuracy on un-rejected
examples, column 3 shows the rejection rate.

datasets and for all values of d. For Parkinsons and Heart
datasets, SDR-SVM has smaller R̂d risk (for all val-
ues of d) compared to DH-SVM. For ILPD, Ionosphere
and PIMA datasets, R̂d risk of SDR-SVM is comparable
to DH-SVM. SDR-SVM performs better than Normal-
SVM based approach on Parkinsons, Heart, ILPD and
PIMA datasets. For Ionosphere dataset, SDR-SVM per-
forms comparable to Normal-SVM based approach.

2. Rejection Rate: We observe that for Inosphere, Heart
and Parkinsons datasets, rejection rate of SDR-SVM is

much smaller compared to other approaches except for
smaller values of d (0.05 and 0.1). For PIMA and ILPD
datasets, the rejection rates of SDR-SVM are comparable
to DH-SVM. The rejection rates for these two datasets
are comparatively higher for all values of d. Possible rea-
son for that could be high overlap between the two class
regions.

3. Performance on Unrejected Examples: We see that
SDR-SVM also gives good classification accuracy on un-
rejected examples. It always gives better accuracy com-
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Figure 3: Sparseness Comparison of SDR-SVM with DH-
SVM and Normal-SVM

pared ER-SVM. As compared to normal SVM based
approach, SDR-SVM does always better on ILDP and
Parkinsons datasets. For rest of the datasets, SDR-SVM
gives comparable accuracy to normal SVM based method
on unrejected examples. Compared to double hinge
SVM, SDR-SVM does comparable to DH-SVM.

Thus, overall SDR-SVM learns reject option classifiers
which attain smaller R̂d risk. It achieves this goal by
simultaneously minimizing the rejection rate and mis-
classification rate on unrejected examples.

Sparseness Results
We now show that SDR-SVM learns sparse reject option
classifiers. As discussed, by sparseness we mean that the re-
sulting classifier can be represented as a linear combination
of a very small fraction of training points. Sparseness results
for SDR-SVM are shown in Figure 3.

We see that for ILPD, Ionosphere and PIMA datasets,
SDR-SVM outputs classifiers which are much sparser com-
pared to DH-SVM and Normal-SVM based approaches. ER-
SVM does not have obvious representation for the classifier
as a linear combination of training examples.

Experiments with Noisy Data
Ldr is generalization of ramp loss function for the reject
option classification. For normal binary classification prob-
lem, ramp loss function is shown robust against label noise
(Ghosh, Manwani, and Sastry 2015). Motivated by the above
fact, we did experiments to test the robustness of Ldr against
uniform label noise (with noise rates of 10%, 20%, 30%).
Figure 4. We observe the following.

1. We observe that with 10% noise rate, increment in the
risk for SDR-SVM is not significant. As we increase the
noise rate, model in reject option classification confuses
more for classifying the examples, therefore model tries
to put more examples in rejection region for smaller val-
ues of d. Which leads to increase in width of rejection
region. Thus, for smaller values of d, risk is dominated
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Figure 4: Comparison Results in presence of uniform Label
Noise

by rejection cost for proposed approach. But as we in-
crease d, cost of rejection also increases and model in
label noise will force examples to classify to one of the
label. With increasing noise rate, SDR-SVM remains ro-
bust for higher values of d.

2. Compared to ER-SVM, SDR-SVM does significantly
better for all values of d and for all noise rates.

3. For large values of d, SDR-SVM performs better than
DH-SVM and noraml SVM in presence of label noise.

5 Conclusions
In this paper, we proposed sparse approach for learning re-
ject option classifier using double ramp loss. We propose a
DC programming based approach for minimizing the reg-
ularized risk. The approach solves successive linear pro-
grams to learn the classifier. Our approach also learns non-
linear classifier by using appropriate kernel function. Fur-
ther, we have shown the Fisher consistency of double ramp
loss Ldr. We upper bound the excess risk of Ld in terms
of excess risk of Ldr. We then derive generalization bounds
for SDR-SVM. We showed experimentally that the proposed
approach does better compared to the other approaches for
reject option classification and learns sparse classifiers. We
also experimental evidences to show robustness of SDR-
SVM against the label noise.
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