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Abstract

We show how to solve a number of problems in numerical lin-
ear algebra, such as least squares regression, `p-regression for
any p ≥ 1, low rank approximation, and kernel regression,
in time T (A)poly(log(nd)), where for a given input matrix
A ∈ Rn×d, T (A) is the time needed to compute A · y for an
arbitrary vector y ∈ Rd. Since T (A) ≤ O(nnz(A)), where
nnz(A) denotes the number of non-zero entries ofA, the time
is no worse, up to polylogarithmic factors, as all of the recent
advances for such problems that run in input-sparsity time.
However, for many applications, T (A) can be much smaller
than nnz(A), yielding significantly sublinear time algorithms.
For example, in the overconstrained (1 + ε)-approximate
polynomial interpolation problem, A is a Vandermonde ma-
trix and T (A) = O(n logn); in this case our running time
is n · poly(logn) + poly(d/ε) and we recover the results of
Avron, Sindhwani, and Woodruff (2013) as a special case. For
overconstrained autoregression, which is a common problem
arising in dynamical systems, T (A) = O(n logn), and we
immediately obtain n ·poly(logn)+poly(d/ε) time. For ker-
nel autoregression, we significantly improve the running time
of prior algorithms for general kernels. For the important case
of autoregression with the polynomial kernel and arbitrary
target vector b ∈ Rn, we obtain even faster algorithms. Our
algorithms show that, perhaps surprisingly, most of these op-
timization problems do not require much more time than that
of a polylogarithmic number of matrix-vector multiplications.

Introduction
A number of recent advances in randomized numerical lin-
ear algebra have been made possible by the technique of
oblivious sketching. In this setting, given an n × d input
matrix A to some problem, one first computes a sketch SA
where S is a random matrix drawn from a certain random
family of matrices. Typically S is wide and fat, and there-
fore applying S significantly reduces the number of rows of
A. Moreover, SA preserves structural information about A.

For example, in the least squares regression problem one
is given an n × d matrix A and an n × 1 vector b and one
would like to output a vector x ∈ Rd for which

‖Ax− b‖2 ≤ (1 + ε) min
x
‖Ax− b‖2, (1)
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where for a vector y, ‖y‖2 =
(∑

i |yi|2
)1/2

. Typically the
n rows of A correspond to observations, and one would
like the prediction 〈Ai, x〉 to be close to the observation
bi, where Ai denotes the i-th row of A. While it can be
solved exactly via the normal equations, one can solve it
much faster using oblivious sketching. Indeed, for overcon-
strained least squares where n � d, one can choose S to
be a subspace embedding, meaning that simultaneously for
all vectors x ∈ Rd, ‖SAx‖2 = (1 ± ε)‖Ax‖2. In such ap-
plications, S has only poly(d/ε) rows, independent of the
large dimension n. By computing SA and Sb, and solving
x′ = argminx‖SAx−Sb‖2, one has that x′ satisfies (1) with
high probability. Thus, much of the expensive computation
is reduced to the “sketch space”, which is independent of n.

Another example is low rank approximation, in which one
is given an n × d matrix A and would like to find an n × k
matrix U and a k × d matrix V so that

‖UV −A‖2F ≤ (1 + ε)‖A−Ak‖2F , (2)

where for a matrix B ∈ Rn×d, ‖B‖2F =
∑n
i=1

∑d
j=1B

2
i,j ,

and where Ak = argminrank-k B‖A−B‖2F is the best rank-k
approximation to A. While it can be solved via the singu-
lar value decomposition (SVD), one can solve it much faster
using oblivious sketching. In this case one chooses S so that
the row span of SA contains a good rank-k space, meaning
that there is a matrix V ∈ Rk×d whose row span is inside
of the row span of SA, so that there is a U for which this
pair (U, V ) satisfies the guarantee of (2). Here SA only has
poly(k/ε) rows, independent of n and d. Several known al-
gorithms approximately project the rows of A onto the row
span of SA, then compute the SVD of the projected points to
find V , and then solve a regression problem to find U . Other
algorithms compute the top k directions of SA directly. Im-
portantly, the expensive computation involving the SVD can
be carried out in the much lower poly(k/ε)-dimensional
space rather than the original d-dimensional space.

While there are numerous other examples, such as `p-
regression and kernel variations of the above problems (see
Woodruff (2014) for a survey), they share the same flavor
of first reducing the problem to a smaller problem in or-
der to save computation. For this reduction to be effective,
the matrix-matrix product SA needs to be efficiently com-
putable. One typical sketching matrix S that works is a ma-
trix of i.i.d. Gaussians; however since S is dense, comput-
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ing SA is slow. Another matrix which works is a so-called
fast Johnson-Lindenstrauss transform, see Sarlós (2006). As
in the Gaussian case, S has a very small number of rows
in the above applications, and computing SA can be done
in Õ(nd) time, where Õ(f) denotes a function of the form
f · poly(log f). This is useful if A is dense, but often A
is sparse and may have a number nnz(A) of non-zero en-
tries which is significantly smaller than nd. Here one could
hope to compute SA in nnz(A) time, which is indeed possi-
ble using a CountSketch matrix, see Clarkson and Woodruff
(2013); Meng and Mahoney (2013); Nelson and Nguyen
(2013), also with a small number of rows.

For most problems in numerical linear algebra, one needs
to at least read all the non-zero entries of A, as otherwise
one could miss reading a potentially very large entry. For
example, in the low rank approximation problem, if there is
one entry which is infinite and all other entries are small, the
best rank-1 approximation would first fit the single infinite-
valued entry. From this perspective, the above nnz(A)-time
algorithms are optimal. However, there are many applica-
tions for which A has additional structure. For example, the
polynomial interpolation problem is a special case of re-
gression in which the matrix A is a Vandermonde matrix.
As observed in Avron, Sindhwani, and Woodruff (2013),
in this case if S ∈ Rpoly(d/ε)×n is a CountSketch matrix,
then one can compute SA in O(n log n) + poly(d/ε) time.
This is sublinear in the number of non-zero entries of A,
which may be as large as nd thus may be much larger than
O(n log n) + poly(d/ε). The idea of Avron, Sindhwani, and
Woodruff (2013) was to simultaneously exploit the sparsity
of S, together with the fast multiplication algorithm based
on the Fast Fourier Transform associated with Vandermonde
matrices to reduce the computation of SA to a small number
of disjoint matrix-vector products. A key fact used in Avron,
Sindhwani, and Woodruff (2013) was that submatrices of
Vandermonde matrices are also Vandermonde, which is a
property that does not hold for other structured families of
matrices, such as Toeplitz matrices, which arise in applica-
tions like autoregression. There are also sublinear time low
rank approximation algorithms of matrices with other kinds
of structure, like PSD and distance matrices, see Musco and
Woodruff (2017); Bakshi and Woodruff (2018).

An open question, which is the starting point of our work,
is if one can extend the results of Avron, Sindhwani, and
Woodruff (2013) to any structured matrix A. More specifi-
cally, can one solve all of the aforementioned linear algebra
problems in time T (A) instead of nnz(A) , where T (A) is
the time required to compute Ay for a single vector y? For
many applications, discussed more below, one has a struc-
tured matrix A with T (A) = O(n log n)� nnz(A).

Our Contributions. We answer the above question in the
affirmative, showing that for a number of problems in nu-
merical linear algebra, one can replace the nnz(A) term with
a T (A) term in the time complexity. Perhaps surprisingly,
we are not able to achieve these running times via oblivious
sketching, but rather need to resort to sampling techniques,
as explained below. We state our formal results:
• Low Rank Approximation: Given an n × d matrix A,
we can find U ∈ Rn×k and V ∈ Rk×d satisfying (2) in

O (T (A) log n+ n · poly(k/ε)) time.
• `p-Regression: Given an n × d matrix A and an n × 1
vector b, one would like to output an x ∈ Rd for which

‖Ax− b‖p ≤ (1 + ε) min
x
‖Ax− b‖p, (3)

where for a vector y, ‖y‖p = (
∑
i |yi|p)1/p. We show

for any real number p ≥ 1, we can solve this prob-
lem inO (T (A) log n+ poly(d/ε)) time. This includes least
squares regression (p = 2) as a special case.
• Kernel Autoregression: A kernel function is a mapping
φ : Rp → Rp′ where p′ ≥ p so that the inner product
〈φ(x), φ(y)〉 between any two points φ(x), φ(y) ∈ Rp′ can
be computed quickly given the inner product 〈x, y〉 between
x, y ∈ Rp. Such mappings are useful when it is not possi-
ble to find a linear relationship between the input points, but
after lifting the points to a higher dimensional space via φ
it become possible. We are given a matrix A ∈ Rnp×d for
which the rows can be partitioned into n contiguous p × d
block matrices A1, . . . , An. Further, we are in the setting of
autoregression, so for j = 2, . . . , n, Aj is obtained from
Aj−1 by setting the `-th column Aj` of Aj to be the (`− 1)-
st column of Aj−1, namely, to Aj−1`−1 . The first column Aj1
of Aj is allowed to be arbitrary. Let φ(A) be the matrix
obtained from A by replacing each block Aj with φ(Aj),
where φ(Aj) is obtained from Aj by replacing each column
Aj` with φ(Aj`). We are also given an (np′)×1 vector b, per-
haps implicitly. We want x ∈ Rd to minimize ‖φ(A)x−b‖2.

For general kernels not much is known, though prior
work Kumar and Jawahar (2007) shows how to find a min-
imizer x assuming i.i.d. Gaussian noise. Their running time
is O(n2t), where t is the time to evaluate 〈φ(x), φ(y)〉 given
x and y. We show how to improve this to O(ndt + dω)
time, where ω ≈ 2.376 is the exponent of fast matrix
multiplication. Note for autoregression that b has the form
[φ(c1);φ(c2); . . . ;φ(cn)] for certain vectors c1, . . . , cn that
we know. As n � d in overconstrained regression, our
O(ndt + dω) time is faster than the O(n2t + dω) time of
earlier work. For dense matrices A, describing A already re-
quires Ω(ndp) time, so in the typical case when t ≈ p, we
are optimal for such matrices. We note that prior work Ku-
mar and Jawahar (2007) assumes Gaussian noise, while we
do not make such an assumption.

While the above gives an improvement for general ker-
nels, one could also hope for much faster algorithms. In gen-
eral we would like an x for which:

‖φ(A)x− b‖2 ≤ (1 + ε) min
x
‖φ(A)x− b‖2. (4)

We show how to solve this in the case that φ corresponds to
the polynomial kernel of degree 2, though discuss extensions
to q > 2. In this case, 〈φ(x), φ(y)〉 = 〈x, y〉q . The running
time of our algorithm is O(nnz(A)) + poly(pd/ε). Note that
b is an arbitrary np′-dimensional vector, and our algorithm
runs in sublinear time in the length of b - this is possible by
judiciously sampling certain coordinates of b. Note even for
dense matrices, nnz(A) ≤ npd, which does not depend on
the large value p′. We also optimize the poly(pd/ε) term.
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Applications. Our results are quite general, recovering
the results of Avron, Sindhwani, and Woodruff (2013) for
Vandermonde matrices which have applications to polyno-
mial fitting and additive models as a special case. We refer
the reader to Avron, Sindhwani, and Woodruff (2013) for de-
tails, and here we focus on other implications. One applica-
tion is to autoregression, which is a time series model which
uses observations from previous time steps as input to a re-
gression problem to predict the value in the next time step,
and can provide accurate forecasts on time series problems.
It is often used to model stochastic time-varying processes in
nature, economics, etc. Formally, in autoregression we have:

bt =

d∑
i=1

bt−ixi + εt, (5)

where d+ 1 ≤ t ≤ n+ d, and the εt correspond to the noise
in the model. We note that b1 is defined to be 0. This model
is known as the d-th order Autoregression model (AR(d)).

The underlying matrix in the AR(d) model corresponds to
the first d columns of a Toeplitz matrix, and consequently
one can compute ATA in O(nd log n) time, which is faster
than the O(ndω−1) time which assuming d > poly(log n)
for computing ATA for general matrices A, where ω ≈
2.376 is the exponent of matrix multiplication. Alternatively,
one can apply the above sketching techniques which run in
time O(nnz(A)) + poly(d/ε) = O(nd) + poly(d/ε). Ei-
ther way, this gives a time of Ω(nd). We show how to solve
this problem in O(n log2 n) + poly(d/ε) time, which is a
significant improvement over the above methods whenever
d > log2 n. There are a number of other works on Toeplitz
linear systems and regression see Van Barel, Heinig, and
Kravanja (2001, 2003); Heinig (2004); Sweet (1984); Bini,
Codevico, and Van Barel (2003); Pan et al. (2004); our work
is the first row sampling-based algorithm, and this technique
will be crucial for obtaining our polynomial kernel results.
More generally, our algorithms only depend on T (A), rather
than on specific properties of A. If instead of just a Toeplitz
matrix A, one had a matrix of the form A + B, where B is
an arbitrary matrix with T (B) = O(n log n), e.g., a sparse
perturbation to A, we would obtain the same running time.

Another stochastic process model is the vector autore-
gression (VAR), in which one replaces the scalars bt ∈ R
in (5) with points in Rp. This forecast model is used in
Granger causality, impulse responses, forecast error vari-
ance decompositions, and health research van der Krieke et
al. (2016). An extension is kernel autoregression Kumar and
Jawahar (2007), where we additionally have a kernel func-
tion φ : Rp → Rp′ with p′ > p, and further replace bt with
φ(bt) in (5). One wants to find the coefficients x1, . . . , xd
fitting the points φ(bt) without computing φ(bt), which may
not be possible since p′ could be very large or even infinite.
To the best of our knowledge, our results give the fastest
known algorithms for VAR and kernel autoregression.

Our Techniques. Unlike the result in Avron, Sindhwani,
and Woodruff (2013) for Vandermonde matrices, many of
our results for other structured matrices do not use oblivious
sketching. We illustrate the difficulties for least squares re-
gression of using oblivious sketching. In Avron, Sindhwani,

and Woodruff (2013), given an n × d Vandermonde ma-
trix A, one wants to compute SA, where S is a CountS-
ketch matrix. For each i, the i-th row of A has the form
(1, xi, x

2
i , . . . , x

d−1
i ). S has r = poly(d/ε) rows and n

columns, and each column of S has a single non-zero entry
located at a uniformly random chosen position. Denote the
entry in the i-th column as h(i), then SA decomposes into r
matrix-vector products, where each row of A participates in
exactly one matrix product. Namely, we can group the rows
of A into submatrices Ai and create a vector xi which in-
dexes the subset of coordinates j of x for which h(j) = i.
The i-th row of SA is precisely xiAi. For a submatrix Ai of
a Vandermonde matrix, the product xiAi can be computed
in O(si log si) time, where si is the number of rows of Ai.
The total time to compute SA is thus O(n log n).

Now supposeA ∈ Rn×d, d� n, is a rectangular Toeplitz
matrix, i.e., the i-th row of A is obtained by shifting the
(i − 1)-st row to the right by one position, and including
an arbitrary entry in the first position. Toeplitz matrices are
the matrices which arise in autoregression. We can think of
A as a submatrix of a square Toeplitz matrix C, and can
compute xC for any vector x in O(n log n) time. Unfortu-
nately though, an r × d submatrix Ai of a Toeplitz matrix,
r > d, may not have an efficient multiplication algorithm.
Indeed, imagine the r rows correspond to disjoint subsets
of d coordinates of a Toeplitz matrix. Then computing xAi
would take O(rd) time, whereas for a Vandermonde matrix
one could always multiply a vector times an r×d submatrix
in only O(r log r) time. Vandermonde matrices are a spe-
cial sub-class of structured matrices which are closed under
taking sub-matrices, which we do not have in general.

Rather than using oblivious sketching, we instead use
sampling-based techniques. A first important observation is
that the sampling-based techniques for subspace approxi-
mation Cohen et al. (2015b), low rank approximation Co-
hen, Musco, and Musco (2017), and `p-regression Cohen
and Peng (2015), can each be implemented with only t =
O(log n) matrix-vector products between the input matrix
A and certain arbitrary vectors v1, . . . , vt arising through-
out the course of the algorithm. We start by verifying this
property for each of these important applications, allowing
us to replace the nnz(A) term with a T (A) term. We then
give new algorithms for autoregression, for which the de-
sign matrix is a truncated Toeplitz matrix, and more gener-
ally composed with a difference and a diagonal matrix.

Our technically more involved results are then for kernel
autoregression. First for general kernels, we show how to ac-
celerate the computation of φ(A)Tφ(A) using the Toeplitz
nature of autoregression, and observe that only O(nd) in-
ner products ever need to be computed, even though there
are Θ(n2) possible inner products. We then show how to
solve polynomial kernels of degree q. We focus on q = 2
though our arguments can be extended to q > 2. We first
use oblivious sketching to compute a d × O(log n) ma-
trix RG from which, via standard arguments, it suffices
to sample O(d log d + d/ε) row indices i proportional to
‖eiφ(A)RG‖22, where ei is the i-th standard unit vector.
Given the sampled row indices i, one can immediately find
the i-th row of φ(A), since the index i corresponds to a q-
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tuple (i1, . . . , iq) of a block φ(Aj) with columns φ(Aj`), for
` ∈ {1, 2, . . . , d}, and so eiφ(A)ek = Aji1,kA

j
i2,k
· · ·Ajiq,k.

We can also directly read off the corresponding entry from
b. The j-th row of S is also just

√
1
pi
ei if row index i

is the j-th sampled row, where pi is the probability of
sampling i. Further, the matrices RG and S can be found
in O(nnz(A) + d3) time using earlier work Clarkson and
Woodruff (2013); Avron, Nguyen, and Woodruff (2014). We
show to find the set ofO(d log d+d/ε) sampled row indices
quickly. Here we use that φ(A) is “block Toeplitz”, together
with a technique of replacing blocks of φ(A) with “sketched
blocks”, which allows us to sample blocks of φ(A)RG pro-
portional to their squared norm. We then need to obtain a
sampled index inside of a block, and for the polynomial ker-
nel of degree 2 we use the fact that the entries of φ(Aj)y
for a vector y are in one-to-one correspondence with the
entries of Aj−1Dy(Aj−1)T , where Dy is a diagonal ma-
trix with y along the diagonal. We do not need to compute
Aj−1Dy(Aj−1)T , but can compute HAj−1Dy(Aj−1)T for
a matrix H of i.i.d. Gaussians in order to sample a column
of Aj−1Dy(Aj−1)T proportional to its squared norm, after
which we can compute the sampled column exactly and out-
put an entry of the column proportional to its squared value.
Here we use the Johnson Lindenstrauss lemma to argue that
H preserves column norms. A similar identity holds for de-
grees q > 2, and that identity was used in the context of
Kronecker product regression Diao et al. (2019).

Fast Algorithms Based on Sampling
We first consider minx ‖Ax − b‖2, where A ∈ Rn×d, b ∈
Rn×1, and n > d. We show how, in O(T (A)poly(log n) +
poly(d(log n)/ε)) time, to reduce this to a problem
minx ‖SAx − Sb‖2, where SA ∈ Rr×d and Sb ∈ Rr×1
such that if x̂ = argminx‖SAx− Sb‖2, then

‖Ax̂− b‖2 ≤ (1 + ε) min
x
‖Ax− b‖2. (6)

Here r = O(d/ε2). Given SA and Sb, one can compute
x̂ = (SA)−Sb in poly(d/ε) time. For (6) to hold, it suffices
for the matrix S to satisfy the property that for all x, ‖SAx−
Sb‖2 = (1 ± ε)‖Ax − b‖2. This is implied if for any fixed
n × (d + 1) matrix C, ‖SCx‖2 = (1 ± ε)‖Cx‖2 for all x.
Indeed, in this case we may set C = [A, b]. This problem is
sometimes called the matrix approximation problem.
The REPEATED HALVING Algorithm. The following al-
gorithm for matrix approximation is given in Cohen et al.
(2015b), and called REPEATED HALVING.

Algorithm 1 Repeated Halving

1: procedure REPEATEDHALVING(C ∈ Rn×(d+1))
2: Uniformly sample n/2 rows of C to form C ′

3: If C ′ has more than O((d log d)/ε2) rows, recursively
compute a spectral approximation C̃ ′ of C ′

4: Approximate generalized leverage scores ofC w.r.t. C̃ ′

5: Use these estimates to sample rows of C to form C̃
6: return C̃
7: end procedure

Leverage Score Computation. We first clarify step 4
in REPEATED HALVING, which is a standard Johnson-
Lindenstrauss trick for speeding up leverage score compu-
tation Drineas et al. (2012). The i-th generalized leverage
score of a matrix C with n rows w.r.t. a matrix B is de-
fined to be τBi (C) = cTi (BTB)+ci = ‖B(BTB)+ci‖22,
where ci is the i-th row of C, written as a column vec-
tor. The idea is to instead compute ‖GB(BTB)+ci‖22,
where G is a random Gaussian matrix with O(log n)
rows. The Johnson-Lindenstrauss lemma and a union bound
yield ‖GB(BTB)+ci‖22 = Θ(1)‖B(BTB)+ci‖22. If B
is O((d log d)/ε2) × d, then (BTB)+ can be computed
in poly(d/ε) time. We compute GB in O((d2/ε2) log n)
time, which is an O(log n) × d matrix. Then we compute
(GB)(BTB)+, which now takes only O(d2 log n) time,
and is an O(log n) × d matrix. Finally one can compute
GB(BTB)+CT in O(nnz(C) log n) time, and the squared
column norms are constant factor approximations to the
τBi (C) values. The total time to compute all i-th generalized
leverage scores is O(nnz(C) log n) + poly(d log n/ε).
Sampling. We clarify how step 5 in REPEATED HALV-
ING works, which is a standard leverage score sampling-
based procedure, see, e.g., Mahoney (2011). Given a list of
approximate generalized leverage scores τ̃Bi (C), we sam-
ple O((d log d)/ε2) rows of C independently proportional
to form C̃. We write this as C̃ = SC, where the i-th
row of S has a 1/

√
pj(i) in the j(i)-th position, where

j(i) is the row of C sampled in the i-th trial, and pj(i) =

τ̃Bi (C)/
∑
i′=1,...,n τ̃

B
i′ (C) is the probability of sampling

j(i) in the i-th trial. Here S is called a sampling and rescal-
ing matrix. Sampling independently from a distribution on
n numbers with replacement O((d log d)/ε2) times can be
done in O(n + (d log d)/ε2) time Vose (1991), giving a to-
tal time spent in step 5 of O(n log n + (d log d)(log n)/ε2)
across all O(log n) recursive calls. As argued in Cohen et
al. (2015b), the error probability is at most 1/100, which
can be made an arbitrarily small constant by appropriately
setting the constants in the big-Oh notation above.
Speeding up REPEATED HALVING. We now show how to
speed up the REPEATED HALVING algorithm. Step 2 of RE-
PEATED HALVING can be implemented just by choosing
a subset of row indices in O(n) time. Step 3 just involves
checking if the number of uniformly sampled rows is larger
than O((d log d)/ε2), which can be done in constant time,
and if so, a recursive call is performed. The number of re-
cursive calls is at most O(log n), since Step 1 halves the
number of rows. So the total time spent on these steps is
O(n log n+ (d log d)(log n)/ε2).

In step 4 of REPEATED HALVING, we compute general-
ized leverage scores of C with respect to a matrix C̃ ′, and is
only (non-recursively) applied when C̃ ′ has O((d log d)/ε2)
rows. As described when computing leverage scores with
B = C̃ ′, we must do the following:

1. ComputeGC̃ ′ ∈ RO(logn)×d in timeO((d2/ε2) log n)

2. Compute ((C̃ ′)T C̃ ′)+ in time O(d3/ε2)

3. Compute (GC̃ ′)((C̃ ′)T C̃ ′)+ in time O(d2 log n)

4. Compute GC̃ ′((C̃ ′)T C̃ ′)+CT
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Since GC̃ ′((C̃ ′)T C̃ ′)+ has O(log n) rows that already
be computed, one can compute GC̃ ′((C̃ ′)T C̃ ′)+CT in
O(log n)T (C) time, where T (C) is the time needed to mul-
tiply C by a vector (note that computing yCT is equiva-
lent to computing CyT ). In our application to regression,
C = [A, b]. Consequently, T (C) ≤ T (A) + n. As the num-
ber of recursive calls is O(log n), it follows that the total
time spent for step 4 of REPEATED HALVING, across all re-
cursive calls, is O(T (A) log n+ n log n+ (d2 log2 n)/ε2 +
d3(log n)/ε2). The fifth step of REPEATED HALVING is to
find the sampling and rescaling matrix as described above,
which can be done in O(n log n + (d log d)(log n)/ε2) to-
tal time, across all recursive calls. Thus, the total time is
O(T (A) log n + n log n + (d2 log2 n)/ε2 + d3(log n)/ε2).
We summarize our findings with the following theorem.
Theorem 1. Given an n × d matrix A, an n × 1 vector b,
an accuracy parameter 0 < ε < 1, and a failure probability
bound 0 < δ < 1, one can output a vector x̂ ∈ Rd for which
‖Ax̂ − b‖2 ≤ (1 + ε) minx ‖Ax − b‖2 with probability at
least 1− δ, in total time

O((T (A) log n+ poly(d log n/ε)) log(1/δ)).

Proof. From the discussion above, our modified version of
REPEATED HALVING produces a vector x̂ for ‖Ax̂− b‖2 ≤
(1 + ε) minx ‖Ax − b‖2 with probability at least 99/100.
Repeating r = O(log(1/δ)) times independently, obtain-
ing candidate solutions x̂1, . . . , x̂r, and choosing the x̂i for
which ‖Ax̂i − b‖2 is smallest, one reduces the failure prob-
ability to δ via standard Chernoff bounds. The time to com-
pute ‖Ax̂i − b‖2 given x̂i is at most T (A) +O(n), which is
negligible compared to other operations in a repetition.

Low Rank Approximation. We look at the low-rank ap-
proximation problem, where for A ∈ Rn×d one tries to find
a matrix Z ∈ Rn×k with orthonormal columns such that

‖A− ZZTA‖2F ≤ (1 + ε)‖A−Ak‖2F . (7)

Here, Ak is the best rank k approximation to A. It is
shown in Cohen et al. (2015a) that the low-rank approxima-
tion problem can be solved by finding a subset of rescaled
columns C ∈ Rn×d′ with d′ < d, such that for every rank k
orthogonal projection matrix X:

‖C −XC‖2F = (1± ε)‖A−XA‖2F . (8)

Basic Recursive Algorithm. In Cohen, Musco, and
Musco (2017), a slightly different version of Algorithm 1
with ridge leverage score approximation is used to solve (8):

Algorithm 2 Repeated Halving
1: procedure REPEATEDHALVING(A ∈ Rn×d)
2: Uniformly sample d/2 columns of A to form C ′

3: If C ′ has more than O(k log k) columns, recursively
compute a constant approximation C̃ ′ for C ′ with
O(k log k) columns

4: Get generalized ridge leverage scores of A w.r.t. C̃ ′
5: Use estimates to sample columns of A to form C
6: return C
7: end procedure

Improved Running Time. With a similar argument as for
least squares regression, we obtain the following theorem.
Theorem 2. There is an iterative column sampling algo-
rithm that, in time O (T (A) log n+ n · poly(k/ε)), returns
Z ∈ Rn×k satisfying: ‖A−ZZTA‖2F ≤ (1+ε)‖A−Ak‖2F .
`p-Regression. Another important problem is the `p-

regression problem. Given A ∈ Rn×d and b ∈ Rn×1, we
want to output an x ∈ Rd satisfying (3). We first consider
the problem: for C = [A, b] ∈ Rn×(d+1), find a matrix S
such that for every x ∈ R(d+1)×1,

(1− ε)‖Cx‖p ≤ ‖SCx‖p ≤ (1 + ε)‖Cx‖p. (9)

The following APPROXLEWISFORM Algorithm is given
in Cohen and Peng (2015) to solve (9), and for them it suf-
fices to set the parameter θ in the algorithm description to
a small enough constant. This is because in Step 7 of AP-
PROXLEWISFORM, they run the algorithm of Theorem 4.4
in their paper, which runs in at most n time provided θ is
a small enough constant and n > dC

′
for a large enough

constant C ′ > 0. We refer the reader to Cohen and Peng
(2015) for the details, but remark that by setting θ to be
a constant, Step 5 of APPROXLEWISFORM can be imple-
mented in T (A) time. Also, due to space constraints, we do
not define the quadratic form Q in what follows; the algo-
rithm for computing it is also in Theorem 4.4 of Cohen and
Peng (2015). The only property we need is that it is com-
putable in m logm log logm · dC time, for an absolute con-
stant C > 0, if it is applied to a matrix with at most m rows.
Theorem 4.4 of Cohen and Peng (2015) can be invoked
with constant ε, giving the so-called Lewis weights up to a
constant factor, after which one can sample O(d(log d)/ε2)
rows according to these weights. Note that our running time
is O(T (A) log n + poly(d/ε)) even for constant θ, since in
each recursive call we may need to spend T (A) time, un-
like Cohen and Peng (2015), who obtain a geometric series
of nnz(A) + nnz(A)/2 + nnz(A)/4 + · · · + 1 ≤ 2nnz(A)
time in expectation. Here, we do not know if T (A) decreases
when looking at submatrices of A.

Algorithm 3 ApproxLewisForm

1: procedure APPROXLEWISFORM(C ∈ Rn×(d+1))
2: If n ≤ d + 1, apply Theorem 4.4 in Cohen and Peng

(2015) to return Q.
3: Uniformly sample n/2 rows of C to form Ĉ

4: Let Q̂ = APPROXLEWISFORM(Ĉ, p, θ)
5: Let ui be an nθ/p multiplicative approximation of
cTi Q̂ci

6: Nonuniformly sample rows of C, taking an expected
pi = min(1, f(p)nθ/2dp/2 log du

p/2
i ) copies of row i

(each scaled down by p−1/pi ), producing C ′
7: Apply Theorem 4.4 in Cohen and Peng (2015) to C ′,

and return the quadratic form Q.
8: return Q
9: end procedure

Combined with sampling by Lewis weights we obtain an
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approximation for C with only poly(d/ε) rows. Applying
our earlier arguments to this setting yields the following:
Theorem 3. Given ε ∈ (0, 1), a constant p ≥ 1, A ∈
Rn×d and b ∈ Rn×1, there is an algorithm that, in time
O (T (A) log n+ poly(d/ε)), returns x̂ ∈ Rd×1 such that

‖Ax̂− b‖p ≤ (1 + ε) min
x
‖Ax− b‖p.

Applications
Autoregression and General Dynamical Systems. In the
original AR(d) model, we have:

bd+1

bd+2

...
bn+d

 =


bd . . . b1
bd+1 . . . b2

...
. . .

...
bn+d−1 . . . bn



x1
x2
...
xd

+


εd+1

εd+2

...
εn+d

 (10)

Here we can create an n× d matrix A where the i-th row
is (bi+d−1, bi+d−2, . . . , bi). One obtains the `2-regression
problem minx ‖Ax − b‖2 with bT = (bd+1, . . . , bn+d). In
order to apply Theorem 1, we need to bound T (A). The fol-
lowing lemma follows from the fact that A is a submatrix of
a Toeplitz matrix.
Lemma 4. T (A) = O(n log n).

Combining Lemma 4 with Theorem 1, we can conclude:
Theorem 5. Given an instance minx ‖Ax − b‖2 of autore-
gression, with probability at least 1−δ one can find a vector
x̂ so that ‖Ax̂− b‖2 ≤ (1 + ε) minx ‖Ax− b‖2 in total time
O
(
(n log2 n+ (d2 log2 n)/ε2 + d3(log n)/ε2) log(1/δ)

)
.

General Dynamical Systems. When dealing with more
general dynamical systems, the A in Theorem 5 would be-
come A = TUD, where T is a Toeplitz matrix, U is
a matrix that represents computing successive differences,
and D = diag

{
1, 1h , . . . ,

1
hd−1

}
. Note that T is n × d, as

for linear dynamical systems, U is d × d and the opera-
tion xU corresponds to replacing x with (x2 − x1, x3 −
x2, x4 − x3, . . . , xd − xd−1, 0), and D is a d × d diago-
nal matrix, and so U and D can each be applied to a vec-
tor in O(d) time. Consequently by Lemma 4, we still have
T (A) ≤ T (T )+T (U)+T (D) = O(n log n), and we obtain
the same time bounds in Theorem 5.

Kernel Autoregression. Let φ : Rp → Rp′ be a kernel
transformation, as defined in the introduction. The kernel
autoregression problem is: φ(bt) =

∑d
i=1 φ(bt−i)xi + εt,

where now note that εt ∈ Rp′ . Note that there are still only
d unknowns x1, . . . , xd. One way of solving this would be
to compute φ(bt) for each t, represented as a column vector
in Rp′ , and then create the linear system by stacking such
vectors on top of each other:

φ(bd+1)
φ(bd+2)

...
φ(bn+d)

 =


φ(bd+1) . . . φ(b1)
φ(bd+2) . . . φ(b2)

...
. . .

...
φ(bn+d−1) . . . φ(bn)



x1
x2
...
xd

+


εd+1

εd+2

...
εn+d


(11)

One can then compute a (1+ε)-approximate least squares
solution to (11). Now the design matrix φ(A) in the re-
gression problem is the vertical concatenation of p′ matri-
ces A, and an analogous argument shows that T (φ(A)) =

O(np′ log(np′)), which gives us the analogous version of
Theorem 5, showing least squares regression is solvable in
O(np′ log2(np′)) + poly((d log n)/ε) with constant proba-
bility. While correct, this is prohibitive since p′ may be large.

Speeding up General Kernels. Let φ(A) denote
the design matrix in (11), where the i-th block is
φ(A)i = [φ(bi+d−1);φ(bi+d−2); . . . ;φ(bi)]. Here b is
[φ(bd+1); . . . ;φ(bn+d)], which we know. We first com-
pute φ(A)Tφ(A). To do so quickly, we again ex-
ploit the Toeplitz structure of A. More specifically,
we have that φ(A)Tφ(A) =

∑
i(φ(A)i)Tφ(A)i. In

order to compute (φ(A)i)Tφ(A)i, we must compute
d2 inner products, namely, 〈φ(bd−j+i), φ(bd−j′+i)〉 for
all j, j′ ∈ {1, 2, . . . , d}. Using the kernel trick,
〈φ(bd−j+i), φ(bd−j′+i)〉 = f(〈bd−j+i, bd−j′+i〉) for some
function f that we assume can be evaluated in constant time,
given 〈bd−j+i, bd−j′+i〉. Note that the latter inner product
can be computed in O(p) time and thus we can compute
(φ(A)i)Tφ(A)i for a given i, inO(d2p) time. Thus, naı̈vely,
we can compute φ(A)Tφ(A) in O(nd2p) time.

We can reuse most of our computation across different
blocks i. As we range over all i, the inner products we
compute are those of the form 〈φ(bd−j+i), φ(bd−j′+i)〉 for
i ∈ {1, . . . , n} and j, j′ ∈ {1, 2, . . . , d}. Although a naı̈ve
count gives nd2 different inner products, this overcounts
since for each point φ(bd−j+i) we only need its inner prod-
uct with O(d) points other than with itself, and so O(nd)
inner products in total. This is total time O(ndp).

Given these inner products, we quickly evaluate
φ(A)Tφ(A). The crucial point is that not only is each entry
in φ(A)Tφ(A) a sum of n inner products we already com-
puted, but one can quickly determine entries from other en-
tries. Indeed, given an entry on one of the 2d − 1 diagonal
bands, one can compute the next entry on the band in O(1)
time by subtracting off a single inner product and adding one
additional inner product, since two consecutive entries along
such a band share n− 1 out of n inner product summands.

Thus, each diagonal can be computed in O(n + d) time,
and so in total φ(A)Tφ(A) can be computed in O(nd+ d2)
time, given the inner products. We can compute φ(A)Tφ(A)
in O(ndp) time assuming d ≤ n. We then define R =
(φ(A)Tφ(A))−1, which can be computed in an additional
O(dω) time, where ω ≈ 2.376 is the exponent of fast ma-
trix multiplication. Thus, R is computable in O(ndp + dω)
time. Note this is optimal for dense matrices A, since just
reading each entry of A takes O(ndp). We can compute
φ(A)T b ∈ Rd using the kernel trick, which takes O(ndp)
time. By the normal equations, x = Rb, which can be com-
puted in dω time. Overall, we obtain O(ndp+ dω) time.

The Polynomial Kernel. We focus on the polynomial
kernel of degree q = 2. Using the subspace embedding
analysis for TensorSketch in Avron, Nguyen, and Woodruff
(2014), combined with a leverage score approximation al-
gorithm in Clarkson and Woodruff (2013), we can find a
matrix R in O(nnz(A) + dω) time, where ω ≈ 2.376 is
the exponent of matrix multiplication, with the following
guarantee: if we sample O(d log d+ d/ε) rows of φ(A) pro-
portional to the squared row norms of φ(A)R, forming a
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sampling and rescaling matrix S, then ‖Sφ(A)x − Sb‖2 =
(1± ε)‖φ(A)x− b‖2 simultaneously for all vectors x. Here
the i-th row of S contains a 1/

√
pj in the j-th entry if the

j-th row of φ(A) is sampled in the i-th trial, and the j-th
entry is 0 otherwise. Here pj =

‖ejφ(A)R‖22
‖φ(A)R‖2F

, where ej is the
j-th standard unit vector. We show how to sample indices
i ∈ [np′] proportional to the squared row norms of φ(A)R.

Instead of sampling indices i ∈ [np′] proportional to the
exact squared row norms of φ(A)R, it is well-known (see,
e.g., Woodruff (2014)) that it suffices to sample them pro-
portional to approximations τ̃i to the actual squared row
norms τi, where τi

2 ≤ τ̃i ≤ 2τi for every i. As in Drineas
et al. (2012), to do the latter, we can instead sample in-
dices according to the squared row norms of φ(A)RG,
where G ∈ Rd×O(logn) is a matrix of i.i.d. Gaussian ran-
dom variables. To do this, we can first compute RG in
O(d2 log n) time, and now we must sample row indices pro-
portional to the squared row norms of φ(A)RG. Note that
if we sample an entry (i, j) of φ(A)RG proportional to
its squared value, then the row index i is sampled accord-
ing to its squared row norm. Since RG only has O(log n)
columns vi, we can do the following: we first approximate
the squared norm of each φ(A)vi. Call our approximation
γi with 1

2‖φ(A)vi‖22 ≤ γi ≤ 2‖φ(A)vi‖22. Since we need to
sample s = O(d log d + d/ε) total entries, we sample each
entry by first choosing a column i ∈ [d] with probability

γi∑d
j=1 γj

, and then outputting a sample from column i pro-

portional to its squared value. We show (1) how to obtain
the γi and (2) how to obtain s sampled entries, proportional
to their squared value, from each column φ(A)vi.

For the polynomial kernel of degree 2, the matrix φ(A)

is in Rnp2×d, since each of the n points is expanded to p2
dimensions by φ. Then φ(A) is the vertical concatenation of
B1, . . . , Bn, where eachBi ∈ Rp2×d is a subset of columns
of the matrix Ci ◦ Ci ∈ Rp2×d2 , where Ci ∈ Rp×d and
Ci ◦ Ci consists of the Kronecker product of Ci with itself,
i.e., the ((a, b), (c, d))-th entry ofCi◦Ci isCia,bC

i
c,d. Notice

thatBi consists of the subset of d columns ofCi correspond-
ing to b = d. Fix a column vector v ∈ {v1, . . . , vd} defined
above. Let S be the TensorSketch of Pham and Pagh (2013);
Avron, Nguyen, and Woodruff (2014) withO(1) rows. Then
Sφ(z) can be computed in O(nnz(z)) time for any z. For
block Bi, ‖SBiv‖22 = (1 ± 1/10)‖Biv‖22 with probability
at least 2/3. We can repeat this scheme O(log n) times in-
dependently, creating a new matrix S with O(log n) rows,
for which Sφ(bi) can be computed in O(nnz(bi) log n) time
and thus Sφ(A) can be computed in O(nnz(A) log n) time
overall. Further, we have the property that for each block
Bi, ‖SBiv‖med = (1 ± (1/10))‖Biv‖22, with probability
1 − 1/n2, where the med operation denotes taking the me-
dian estimate on each of the O(log n) independent repeti-
tions. By a union bound, with probability 1−O(1/n),

‖SBiv‖med = (1± (1/10))‖Biv‖22, (12)

simultaneously for every i = 1, . . . , n. Notice φ(A) is a
block-Toeplitz matrix, truncated to its first d columns, where
each block corresponds to φ(bi) for some i. Suppose we re-

place the blocks φ(bi) with Sφ(bi), obtaining a new block
Toeplitz matrix A′, truncated to its first d columns, where
now each block has size O(log n). The new block Toeplitz
matrix can be viewed as O(log n) disjoint standard (blocks
of size 1) Toeplitz matrices with n rows, and truncated to
their first d columns. Thus, T (A′) = O(n log2 n). The i-
th block of coordinates of size O(log n) is equal to SBiv,
and by (12) we can in O(log n) time compute a number
`i = (1 ± (1/10))‖Biv‖22. Since this holds for every i, we
can compute the desired estimate γj to ‖φ(A)vj‖22 if v = vj .
The time is O(nnz(A) log n+ n log2 n).

After computing the γj , suppose our earlier sampling
scheme samples v = vj . Then to output an entry of φ(A)v
proportional to its squared value, we first output a block
Bi proportional to ‖Biv‖22. Note that given the `i, we can
sample such a Bi within a (1 ± 1/10) factor of the actual
sampling probability. Next, we must sample an entry of Biv
proportional to its squared value. The entries of Biv are in
one-to-one correspondence with the entries of CiDv(C

i)T ,
where Dv ∈ Rd×d is the diagonal matrix with the entries of
v along the diagonal. Let H ∈ RO(logn)×p be a matrix of
i.i.d. normal random variables. We first compute HCi. This
can be done in O(pd log n) time. We then compute HCiDv

inO(d log n) time, and then (HCiDv)(C
i)T inO(pd log n)

time. By the Johnson-Lindenstrauss lemma (see, e.g., John-
son and Lindenstrauss (1984)), each squared column norm
of HCiDv(C

i)T is the same as that of CiDv(C
i)T up to a

factor of (1± 1/10), for an appropriate O(log n) number of
rows of H . So we first sample a column j of CiDv(C

i)T

proportional to this approximate squared norm. Next we
compute CiDv(C

i)T ej in O(pd + d2) time, and then in
O(p) time we output an entry of the j-th column propor-
tional to its squared value. Thus we find our sample.

To bound the overall time, note that we only need to com-
pute the γj values once, for j = 1, . . . , O(log n) and for
each j this takes O(nnz(A) log n+ n log2 n) time. So in to-
tal across all indices j this takesO(nnz(A) log2 n+n log3 n)
time. Moreover, this procedure also gave us the values `i for
each vj . Suppose we also sort the partial sums

∑i′

i=1 `i for
each 1 ≤ i′ ≤ n and corresponding to each vj . This takes
O(n log2 n) time and fits within our time bound. Then for
each of ourO(d log d+d/ε) samples we need to take, we can
first sample j based on the γj values and sample i based on
the sorted partial sums of `i values inO(log n) time via a bi-
nary search. Having found i, we perform the procedure in the
previous paragraph which takesO(pd log n+d2) time. Thus,
the time for sampling is O((pd2 log n+ d3)(1/ε+ log d)).

The overall time is, up to a constant factor,
O
(
nnz(A) log2 n+n log3 n+(pd2 log n+d3)( 1

ε +log d)
)
.
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