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Abstract

User interaction with voice-powered agents generates large
amounts of unlabeled utterances. In this paper, we explore
techniques to efficiently transfer the knowledge from these
unlabeled utterances to improve model performance on Spo-
ken Language Understanding (SLU) tasks. We use Embed-
dings from Language Model (ELMo) to take advantage of
unlabeled data by learning contextualized word representa-
tions. Additionally, we propose ELMo-Light (ELMoL), a
faster and simpler unsupervised pre-training method for SLU.
Our findings suggest unsupervised pre-training on a large cor-
pora of unlabeled utterances leads to significantly better SLU
performance compared to training from scratch and it can
even outperform conventional supervised transfer. Addition-
ally, we show that the gains from unsupervised transfer tech-
niques can be further improved by supervised transfer. The
improvements are more pronounced in low resource settings
and when using only 1000 labeled in-domain samples, our
techniques match the performance of training from scratch
on 10-15x more labeled in-domain data.

Introduction
Voice-powered artificial virtual agents have become popu-
lar amongst consumer devices, as they enable their users to
perform everyday tasks through intuitive and natural user in-
terfaces. SLU tasks such as intent classification and entity
tagging are critical functionalities of these agents. Fast ex-
pansion of these functionalities to new domains is important
for achieving engaging and informative interactions, as it in-
creases the range of capabilities that their users enjoy.

For SLU tasks, most of the current methods use su-
pervised learning, which relies on manually labeled data
for building high quality models. The supervised learn-
ing paradigm is therefore costly, time-consuming and does
not scale well for cases where the label space is continu-
ously expanding as new functionality is added to an agent.
Also, user interaction with voice-powered agents generates
large amounts of unlabeled text, produced by the Automatic
Speech Recognition (ASR) engine. This ASR output text
is a large and valuable resource of conversational data that
is available in practically unlimited quantities and could be
used to improve the agent’s SLU accuracy. Thus, the ability
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to learn effectively from unlabeled text is crucial to alleviat-
ing the bottlenecks of supervised learning.

The machine learning community is actively exploring
transfer learning and unsupervised learning for low resource
tasks. Goyal, Metallinou, and Matsoukas (2018) explored
transfer learning from existing annotated SLU domains for
building models for related, low-resource domains for ar-
tificial agents. However, such transfer learning techniques
rely on large annotated resources from a related function-
ality. Recent work has used language modeling (LM) as a
proxy task for learning context dependent word embeddings
from large unlabeled text corpora (Peters et al. 2018). These
embeddings allow for unsupervised knowledge transfer and
have been shown to bring performance gains for various
downstream natural language processing (NLP) tasks.

In this work, we propose an unsupervised transfer learn-
ing technique inspired from ELMo and Universal Language
Model Fine Tuning (ULMFiT) to leverage unlabeled text
for building SLU models (Peters et al. 2018; Howard and
Ruder 2018). We also explore the combination of unsuper-
vised and supervised knowledge transfer for SLU. We eval-
uate our methods on various tasks and datasets, including
data from Alexa, a popular commercial intelligent agent.
Our results show that unsupervised transfer using unlabeled
utterances can outperform both training from scratch and su-
pervised pre-training. Additionally, the gains from unsuper-
vised transfer can further be improved by supervised trans-
fer. These improvements are more pronounced in low re-
source setting and when only 1K labeled in-domain sam-
ples are available, the proposed techniques match the per-
formance of training from scratch on 10-15x more labeled
data. Concretely, our contributions are:

• We apply ELMo embeddings for unsupervised knowledge
transfer from raw ASR text and show SLU accuracy gains.

• We propose ELMo-Light (ELMoL), a light-weight ELMo
alternative that is well-suited for commercial settings,
with comparable accuracy to ELMo for most SLU tasks.

• We combine unsupervised and supervised transfer learn-
ing, and show the additive effect of the two techniques.

• We extensively evaluate our methods on benchmark SLU
datasets and data from a commercial agent (Alexa), across
various resource conditions.
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The rest of paper is organized as follows. To provide a bit
of background, we discuss related work and neural architec-
tures for SLU and then introduce the methods we use for un-
supervised transfer including the proposed ELMoL. Finally,
we describe the datasets, experimental setup, results and end
with directions for future work. Table 1 summarizes some of
the frequently used abbreviations throughout the paper.

Abbr. Description
UT Unsupervised Transfer
ST Supervised Transfer
IC Intent Classification
ET Entity Tagging
LM Language Model
guf Gradual Unfreezing
tlr Triangular Learning Rate

discr Discriminative Fine Tuning

Table 1: Abbreviation Table

Related Work
Deep learning models using CNNs and LSTMs are state
of the art for many NLP tasks. Examples include apply-
ing LSTMs for sentence classification (Liu et al. 2015;
Socher et al. 2013), LSTM with Conditional Random Field
(CRF) decoder for sequence labeling (Chiu and Nichols
2016) and CNN-LSTM combinations for LM (Jozefowicz
et al. 2016). LSTMs with attention have also been used for
SLU tasks including Entity tagging (ET) and intent classifi-
cation (IC) (Liu and Lane 2016).

To enable robust training of deep learning models in low
resource settings, the community is actively exploring semi-
supervised, transfer and multi-task learning techniques. In
the multi-task paradigm a network is jointly trained to op-
timize multiple related tasks, exploiting beneficial correla-
tions across tasks (Liu and Lane 2016; Collobert and Weston
2008). Liu et al. (2018) used language models (LMs) as an
auxiliary task in a multi-task setting to improve sequence la-
beling performance. Transfer learning addresses the transfer
of knowledge from data-rich source tasks to under-resourced
target tasks. Neural transfer learning has been successfully
applied in computer vision where lower network layers are
trained in high-resource supervised datasets like ImageNet
to learn generic features (Krizhevsky, Sutskever, and Hin-
ton 2012), and are then fine-tuned on target tasks, leading
to impressive results for image classification and object de-
tection (Donahue et al. 2014; Sharif Razavian et al. 2014).
In NLP, such supervised transfer learning was successfully
applied for SLU tasks, by learning IC and ET models on
high resource SLU domains, and then fine-tuning the net-
work on under resourced domains (Goyal, Metallinou, and
Matsoukas 2018). Similar ideas have also been explored for
POS tagging using for cross-lingual transfer learning (Kim
et al. 2017).

Unsupervised methods for knowledge transfer include
computing word and phrase representations from large un-
labeled text corpora. Examples include Word2Vec and Fast-

Text, where context independent word representations are
learnt based on LM-related objectives (Mikolov et al. 2013;
Bojanowski et al. 2017). Unsupervised sentence representa-
tions have been computed via predicting sentence sequences
like skip-thought (Kiros et al. 2015), and through a combi-
nation of auxiliary supervised and unsupervised tasks (Cer
et al. 2018). Recent work has introduced LM-based word
embeddings, ELMo, that are dependent on sentence context
and are shown to lead to significant accuracy gains for var-
ious downstream NLP tasks (Peters et al. 2018). Unsuper-
vised pre-training has also been used as a form of knowl-
edge transfer by first training a network using an LM objec-
tive and then fine-tuning it on supervised NLP tasks. This
has been shown to be efficient for sentence classification
(Howard and Ruder 2018; Dai and Le 2015) and (Radford et
al. 2018) for textual entailment and question answering. Our
work, building upon transfer learning ideas such as super-
vised model pre-training (Goyal, Metallinou, and Matsoukas
2018), LM-fine tuning (Howard and Ruder 2018) and con-
text dependent word embeddings (Peters et al. 2018), intro-
duces a light-weight ELMo extension and combines those
methods for improving SLU performance in a commercial
agent.

Neural Architectures for SLU

We focus on SLU for voice powered artificial agents, specif-
ically on intent classification (IC) and Entity tagging (ET)
models which are essential for such agents. Given a user re-
quest like ‘how to make kadhai chicken’, the IC model clas-
sifies the intention of the user, such as ‘GetRecipe’ while the
ET model tags the entities of interest in the utterance, such
as ‘Dish’=‘kadhai chicken’.

We use a multi-task deep neural network architecture for
jointly learning the IC and ET models, hence exploring ben-
eficial correlations between the two tasks. Our architecture
is illustrated in Figure 1. It consists of a bottom shared bidi-
rectional LSTM (bi-LSTM) layer on top of which we train
a bi-LSTM-CRF for ET and a bi-LSTM for IC. The two
top layers are optimized separately for ET and IC, while the
common bottom layer is optimized for both tasks. The ob-
jective function for the multi-task network combines the IC
and ET objectives.

Specifically let rct denote the common representation
computed by the bottom-most bi-LSTM for each word input
at word t. The ET forward LSTM layer learns a represen-
tation rET,f

t = φ(rct , r
ET,f
t−1 ), where φ denotes the LSTM

operation. The IC forward LSTM layer learns rIC,f
t =

φ(rct , r
IC,f
t−1 ). Similarly, the backward LSTM layers learn

rET,b
t and rIC,b

t .
To obtain the entity tagging decision, we feed the ET bi-

LSTM layer’s output per step, denoted as [rentityt ]Tt=1 into
the CRF layer, and produce a entity label sequence [Ŝt]

T
t=1.

For the intent decision, we concatenate the last step from the
forward LSTM with the first step of the backward LSTM to
get the intent representation rintent, and feed it into a soft-
max layer for classification:
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Figure 1: Multi-task architecture for IC and ET

rentityt = rET,f
t ⊕ rET,b

t , rintent = rIC,f
T ⊕ rIC,b

1

[Ŝt]
T
t=1 = CRF ([rentityt ]Tt=1)

Î = softmax(WIr
intent + bI)

where ⊕ denotes concatenation. WI , bI are the weights and
biases for the intent softmax layer and CRF (·) denotes the
CRF layer. Ŝt is the predicted entity tag per step, and Î is
the predicted intent label for the utterance.

Methods for Unsupervised Transfer
When building ET and IC models for a target new SLU
domain like recipes, we typically have between few hun-
dreds and few hundred thousand labeled utterances available
for supervised training. We also have manually labeled ET
and IC data from existing source SLU domains, like music,
weather etc, which is a few million combined. Finally, we
have billions of unlabeled utterances produced by the ASR
engine from live user-agent interaction in our system. In this
section, we describe Unsupervised Transfer (UT) learning
techniques that leverage this large corpus of unlabeled ASR
text to improve the accuracy of the IC and ET tasks. We also
combine UT with supervised transfer learning from the ex-
isting labeled data from source domains, to obtain additional
gains.

Embeddings from Language Model (ELMo)
Peters et al. (2018) introduced contextualized word embed-
dings, called ELMo, computed by first training an LM us-
ing a state-of-the-art architecture with multiple CNNs over
characters and L bi-LSTM layers on top to model the sen-
tence (the network is also referred to as CNN-BIG-LSTM
(Jozefowicz et al. 2016)). After the model is trained on a
large corpus, the outputs of the different layers are used as
embeddings for downstream tasks. Specifically, let’s denote
with xt the context-independent word representations from
the CNN layer at word t and with hLM

t,i the contextual word
representations obtained by concatenating the forward and
backward LSTM activations at word t and layer i. The con-
textual ELMo embeddings at t are computed through linear
combination as:

ELMot = γ(s0 · xt + ΣL
i=1si · hLM

t,i )

where γ is a scalar parameter for scaling the ELMo vector
We trained ELMo embeddings using L = 2 bi-LSTM

layers on ASR text, and used them as input to the down-
stream SLU architecture of Figure 1. ELMo parameters were
kept frozen, as in Peters et al. (2018), and parameters si and
γ were jointly optimized on the ET and IC tasks. An ad-
vantage of this unsupervised pre-training is that the CNN-
BIG-LSTM weights do not experience catastrophic forget-
ting, therefore the SLU architecture can be trained without
losing the knowledge gained from unlabeled data. However,
computing ELMo embeddings at runtime introduces many
additional parameters (e.g., weights from the large CNN-
BIG-LSTM). In practice, we observed that using ELMo in-
creases the inference time by 1.6x and triples the memory
requirement at runtime because of additional parameters,
which makes this solution less attractive for a commercial
SLU system.

ELMo-Light (ELMoL) for SLU tasks
We introduce ELMo-Light (ELMoL) which is a light-weight
alternative for computing contextualized word embeddings
within our SLU architecture. We base our model on two ob-
servations. First, typical conversational requests to artificial
agents use brief and simple language therefore a smaller LM
architecture may be sufficient. Second, the purpose of the
lower shared layer of our SLU is to learn generic represen-
tations for IC and ET, and could be additionally pre-trained
with an LM objective on a larger corpus.

Specifically, we train an LM network consisting of char-
acter level CNNs and a single bi-LSTM layer on unlabeled
ASR text to compute contextual word representation hLM

t,i at
word t, as shown in Fig 2(a). Then, we combine these con-
textual embeddings with non-contextual word embeddings
xt, and feed them as input to our upper SLU model layers
for IC and ET, optimizing the linear weights on the down-
stream tasks, similarly to ELMo:

ELMoLt = γ(s0 · xt + s1 · hLM
1,i )

This model is illustrated in Fig 2(b). Compared to our
original architecture of Fig 1(a), the proposed ELMoL
model introduces only three additional trainable parameters
(γ, s0, s1). This is because the single bi-LSTM LM weights
are re-purposed as the lower layer of our SLU architecture
and are further fine-tuned on the in-domain data along with
the rest of the SLU network. The character level CNNs of the
LM are removed from the final architecture and their output
is used as fixed non-trainable embeddings. Therefore, EL-
MoL embeddings do not incur additional latency or memory
costs and are well suited for our SLU system.

Techniques for effectively training ELMoL In contrast
to ELMo, for the ELMoL model we do not freeze the
weights of lower bi-LSTM layer. Freezing them would only
leave a single trainable bi-LSTM layer for each of the IC and
ST tasks during the supervised training stage, which empiri-
cally negatively impacts the final accuracy. Instead, after un-
supervised LM pre-training is complete for the lower layers,
we update all layers of the network using the target domain
labeled IC and ET data.
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(a) ELMoL LM Pre-training (b) ELMoL embeddings used in the SLU multi-task model

Figure 2: Left: ELMoL embeddings from simplified LM. Right: ELMoL embeddings used in the SLU model

We empirically noticed that making the lower layer train-
able causes catastrophic forgetting, e.g., the knowledge
transferred through pre-trained weights is erased by the gra-
dient updates during supervised training. To counter this
issue, we apply a combination of techniques from the lit-
erature (Howard and Ruder 2018), specifically gradual
unfreezing (guf ), discriminative fine-tuning (discr) and
slanted triangular learning rates (tlr). guf means updat-
ing only the top layer for a few epochs keeping lower layers
frozen, and then progressively updating bottom layers. It can
be combined with discr, e.g, using different learning rates
across network layers. Here, we use a lower learning rate
for the bottom layer to avoid large updates in the transferred
knowledge of the lower layer weights. tlr refer to learning
rates that are initially slow which discourages drastic up-
dates in early stages of learning, then it rapidly increase al-
lowing more exploration of the parameter space and then
slowly decrease enabling learned parameters to stabilize.

Combining Supervised Transfer (ST) with UT
Goyal, Metallinou, and Matsoukas (2018) used supervised
transfer learning in a similar SLU model by pre-training
a multi-task network on labeled data from source domains
and fine-tuning the weights on ET and IC tasks of an under-
resourced target domain, updating the top layers to reflect
the labels of the new domain. We combine this supervised
pre-training technique with unsupervised ELMo and our
proposed ELMoL embeddings. We explore the following
two variations for combining unsupervised pre-training with
supervised transfer learning.

ELMo+ST This method is similar to Goyal, Metallinou,
and Matsoukas (2018), the only difference being that instead
of FastText embeddings, we use ELMo embeddings while
pre-training the network on labeled data from source do-
main(s). This method, therefore, becomes a 3 step process.
The first step involves training the external LM network us-
ing unlabeled data. In the second step, we use the embed-
dings from LM, trained in the first step, to pre-train our
multi-task IC/ET architecture using labeled data from source
domains. Finally, in the third step, we fine tune the weights
in multi-task IC/ET architecture on labeled data from target

domain. The LM weights are frozen in steps 2 and 3.

ELMoL+ST This is also a three step method where in the
first step, the lower layer of multi-task IC/ET architecture
is pre-trained using a language model objective. This step
is essentially the same as the first step of ELMoL training
without ST. In the second step, we train the entire architec-
ture on labeled source data using guf and discr. This step,
therefore, becomes a two step process itself in which we first
train the upper layers of the architecture keeping the lower
layer frozen with weights from step 1. Once the upper lay-
ers stabilize, we train the entire network with labeled source
data, keeping the lower layer learning rate much lower than
the higher layer (discr). Finally, in the third step of the pro-
cess, we fine tune all the layers on labeled data from target
domain using all 3 techniques guf, discr and tlr.

While we combine ST with UT to see if it can provide
an additive effect and bump performance even further, we
would like to point out that the main focus of this paper is
unsupervised transfer learning and therefore, comparison of
ST+UT with other semi-supervised techniques do not form
a part of our experiments.

Datasets
Internal Labeled and Unlabeled SLU datasets
We use two internal SLU domains as our target domains,
denoted as Domain A (5 intents, 36 entities) and Domain B
(22 intents, 43 entities). We have a total of 43K and 100K la-
beled training samples for Domains A and B respectively. In
addition to these two target labeled datasets, we pool labeled
datasets from tens of other domains of our SLU system. In
total, we use around 4 million utterances which are labeled
in terms of the intents and entities of their respective do-
mains. We refer to this labeled dataset as Internal Labeled
Source Dataset (ILSD). ILSD spans data from a range of
functionalities like playing media (music, movies, books),
question answering, performing tasks like setting calendar
events, alarms and notifications, etc. The total number of in-
tents and entities in this dataset are of the order of hundreds
each. We also collect unlabeled ASR text from the live ut-
terances of users interacting with our agent. Specifically, we
use a large set of 250 million de-duplicated tokens collected
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over a year. We refer to this dataset as Internal Unlabeled
Dataset (IUD).

Public Labeled and Unlabeled datasets
For benchmarking our proposed methods we use two la-
beled public SLU datasets: ATIS and SNIPS. ATIS is a
common SLU benchmark from the travel planning domain
which contains 5K utterances (Hemphill, Godfrey, and Dod-
dington 1990). SNIPS is a more recent SLU benchmark
created by the company snips.ai for benchmarking com-
mercial NLU engines offered by companies like Google,
Amazon, etc (Coucke et al. 2017). SNIPS includes 7 com-
monly used intents like asking for the weather, playing mu-
sic, booking restaurants and contains 13K training utter-
ances. We also used two unlabeled datasets, the 1B Word
Benchmark (1BWB) and the 1M SLU Benchmark data
(1MSLU). The 1BWB is a common text benchmark dataset
used in the LM literature (Chelba et al. 2014), it is extracted
from News Crawl and contains 750 million tokens. We ad-
ditionally collected an SLU text dataset by combining vari-
ous public SLU corpora, including training splits from ATIS,
SNIPS, DSTC2 (Henderson, Thomson, and Williams 2014),
and others. We call this dataset 1M SLU Benchmark data
(1MSLU) and it contains 1 million tokens in total. These
datasets were used as additional resources to the internal
ASR data for training language models for unsupervised
knowledge transfer. Statistics of the target datasets are in Ta-
ble 2.

#Training
Samples

#Dev
Samples

#Test
Samples

Vocab
Size #Int. #Ent.

Domain-A 43168 3680 4752 62600 5 36
Domain-B 100000 8227 8695 62600 22 43

ATIS 4478 500 893 868 26 79
SNIPS 13084 700 700 11823 7 39

Table 2: Internal and public target datasets statistics

Experiments and Results
Baselines
Our first baseline uses no form of unsupervised pre-training
and works only with the target data at hand. We refer to
this baseline as NoUT. Our second baseline uses pre-trained
FastText word embeddings (Bojanowski et al. 2017). We
chose this baseline because pre-trained word embeddings
is a very popular means of unsupervised pre-training in the
NLP literature. This baseline is referenced as Fasttext.

Experimental Setup
Network Hyper-parameters The experimental setup was
kept same for all 4 datasets with minor adjustments in hyper-
parameters. We use 200 hidden units for all three LSTM lay-
ers in our multi-task architecture. We use Adam optimizer
(Kinmga and Ba 2015) with initial learning rate 0.0001
for internal datasets (Domain-A and Domain-B) and 0.0005
for ATIS and SNIPS. Both IC and ET losses are weighted
equally in the total loss. Training is done upto 25 epochs
with early-stopping based on sum of IC and ET scores on

development set. Dropout probability is 0.5 for ATIS and
SNIPS and 0.2 for internal datasets and we use L2 regular-
ization on all weights with lambda=0.0001.

Network Input Embeddings The embedding layer di-
mension depends on the type of embedding being used.
For NoUT and FastText, the embedding dimension is 400.
NoUT has all 400 trainable while FastText has 300 pre-
trained and 100 trainable. ELMo uses 1024 dimension em-
bedding while ELMoL has 200 dimension embedding. EL-
MoL embedding is reduced to 200 in order to keep the num-
ber of parameters same as NoUT or FastText. This is because
to linearly combine embedding and LSTM output, the em-
bedding dimension has to be the same as the forward and
backward LSTM output. First 100 dimensions of those em-
beddings are word-level trainable embeddings and the rest
are fixed output of character-level CNN.

LM Training for ELMo To train the LM for ELMo, we
follow Peters et al. (2018) very closely. For internal datasets,
we train a CNN-BIG-LSTM LM, halving the embedding
and hidden layer dimensions, on IUD from scratch for 10
epochs. As an alternative, we also fine-tune the LM already
trained on 1B Word Benchmark on IUD for 5 epochs. The
LM to be used for embeddings is decided based on perplex-
ity on a heldout set (1% of IUD). For ATIS and SNIPS, we
use 1M SLU Benchmark to both train from scratch and fine-
tune the LM trained on 1B Word Benchmark for 25 and 10
epochs respectively.

LM Training for ELMoL ELMoL language model train-
ing is carried out similar to ELMo. The main difference is
in the LM architecture being used. Keeping it similar to the
lower layer of multi-task model, there is only 1 LSTM layer
with 200 hidden units. Context independent CNN layer has
10, 20, 20, 20, 20 and 10 channels of width 1,2,3,4,5 and 6
respectively. For internal domains, the model was trained on
IUD with a batch size of 128 for 25 epochs. For ATIS and
SNIPS, we train the on 1M SLU Benchmark with batch size
of 32 for 50 epochs. While using guf, there are two impor-
tant hyper-parameters, learning rate for first round of train-
ing (when lower layer is frozen) which we keep as 0.0001
for internal datasets and 0.0005 for public datasets. The sec-
ond important hyper-parameter is the number of epochs after
which lower layer is unfrozen. This is usually between 10-
15 epochs. The learning rate for second round of training
(with all layers unfrozen) is decided based on the dev per-
formance and varies across datasets. We also use discr and
tlr in second round of training. For discr, we use the setting
followed by Howard and Ruder (2018) and keep the lower
layer learning rate 2.5 times lesser than the upper layer. For
tlr, we keep the starting learning rate 10 times lesser than
the peak learning rate and this peak is located at 1/8th of the
total number of updates.

Simulating Low Resource Data Settings We simulate
low resource settings by carrying out experiments on smaller
training sets sampled from all four target datasets (Domain
A, Domain B, ATIS, SNIPS). Samples of size 100, 200,
500, 1000, 2000, 5000 and 10000 are drawn from the target
training sets. We then compare the different methods using
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smaller training sets. These sets are drawn five times and the
performance is averaged out.

Evaluation Metrics We use three metrics for evaluation:
• Intent Classification Accuracy (ICA): For IC we use accu-

racy, which is simply the fraction of utterances with cor-
rectly predicted intent.

• Entity F1 (EF1): For ET, we use standard F1 score calcu-
lated by the CoNLL-2003 evaluation script.

• Sentence Error Rate (SER): We use SER as a metric for
joint evaluation of IC and ET to reflect overall erroneous
outputs. It is the fraction of utterances with either IC error
or at least one ET error (lower is better).

• For LM evaluation, we use the standard perplexity score.

Significance Test We use t-test to establish the statistical
significance of a method over another (p-value = 0.05).

Language Modeling Results
Table 3 shows the perplexity numbers for language models
of ELMo and ELMoL trained on different datasets. The up-
per part of the table shows performance on Internal Datasets,
with LMs trained on IUD, 1BWB and their combination
and evaluated on held out development sets. Overall, ELMo
LM achieves the best performance when first trained on
1BWB and then fine-tuned on either IUD or IMSLU. The
ELMoL LM perplexity is higher than ELMo, which is ex-
pected because of the much smaller ELMoL LM architec-
ture. However, we find that this difference in perplexity be-
tween ELMo and ELMoL does not result in a large SLU per-
formance difference when used in downstream tasks which
we discuss in next section.

Internal Datasets IUD
Holdout

Domain-A
Dev

Domain-B
Dev

ELMo IUD 45.2 19.4 35.8
1BWB+

IUD 44.9 19.1 34.9

ELMoL IUD 56.7 24.2 43.2

Public Datasets 1MSLU
Holdout

ATIS
Dev

SNIPS
Dev

ELMo 1MSLU 38.0 16.6 60.7
1BWB+
1MSLU 31.0 15.2 50.8

ELMoL 1MSLU 40.6 17.7 60.2

Table 3: Perplexity of ELMo and ELMoL language model
trained on different datasets.

UT Results for Internal SLU tasks
The results of Unsupervised Transfer Learning (UT) on in-
ternal datasets, Domain A and Domain B are shown in Ta-
ble 4. Both ELMo and ELMoL beat the NoUT and Fast-
Text baseline significantly on both Domain A and Domain
B (p<0.05, when comparing ELMo and ELMoL vs NoUT
and FastText). ELMo gives a performance improvement of
∼ 2 absolute SER points on Domain A and ∼ 1.5 absolute

SER points on Domain B over Fasttext. With much smaller
architecture and 1.6x faster inference, ELMoL does not per-
form significantly worse compared to ELMo for three out of
the four datasets we examined (ATIS, Domains A and B) ex-
cept SNIPS where ELMo significantly outperforms ELMoL.
It is short of ELMo by just ∼ 0.3 SER points on Domain A
and ∼ only 0.5 SER points on Domain B.

In Figures 3b and 3e, we plot the SER performance as
a function of training data size using smaller training sets
for Domain A and Domain B. In both plots, we observe
the trend that SER performance using 10000 samples with
NoUT approximately matches performance using 5000 sam-
ples with Fasttext, using 2000 samples with ELMoL and
using 1000 samples with ELMo. Hence, unsupervised pre-
training reduces the number of labeled target samples re-
quired for achieving same level of performance as Fasttext
by 5 times using ELMo and 3 times using ELMoL. This en-
ables building accurate models for a new SLU domain faster
by reducing labeling time and effort through leveraging UT.

Domain-A Domain-B
ICA EF1 SER ICA EF1 SER

NoUT 91.96 76.58 39.79 91.68 74.70 30.93
Fasttext 92.34 77.74 38.76 92.27 76.59 29.30
ELMo 93.71 78.59 36.58 92.46 78.43 27.95

ELMoL 93.23 78.23 36.86 92.35 78.34 28.42

Table 4: Performance of UT methods on internal datasets.
Training set sizes are 43K and 100K for domains A and B.

UT Results for Benchmark SLU Tasks
Table 5 shows the performance of Unsupervised Transfer
on ATIS and SNIPS and Figure 3a and 3d plot the SER
numbers using smaller training sets for these two datasets
(low resource simulation). Similar to the trends we observed
on internal datasets, we notice that both ELMo and EL-
MoL significantly outperform the baselines (p<0.05, when
comparing ELMo and ELMoL vs NoUT and FastText) and
ELMoL’s performance is only slightly lower than that of
ELMo. State-of-the-art (SOTA) for each of the two datasets
is presented in the last row. For ATIS, Liu and Lane (2016)
achieve the SOTA by using more complex attention-based
models without transfer learning. We are able to get close
to their accuracy with simpler models using UT. For SNIPS,
we outperform the SOTA performance (Coucke et al. 2017).

ATIS SNIPS
ICA EF1 SER ICA EF1 SER

NoUT 95.41 94.30 17.13 98.43 88.78 24.14
Fasttext 96.75 95.35 15.01 98.57 91.78 19.57
ELMo 97.42 95.62 12.65 99.29 93.90 14.57

ELMoL 97.30 95.42 13.38 98.83 93.29 15.62
SOTA 98.43 95.87 - - 93 -

Table 5: Performance of UT methods on benchmark
datasets. SOTA indicates state-of-the-art referring to Liu and
Lane (2016) for ATIS and Coucke et al. (2017) for SNIPS.
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Figure 3: Performance of different methods of UT using varying amounts of training data on ATIS (a), SNIPS (d), Domain-A
(b), Domain-B (e). Performance on Domain A and B using UT+ST is presented in (c) and (f). The y-scale of (b) and (e) is kept
same as (c) and (f) respectively for comparison. Best viewed in color.

ELMoL Training: Ablation Study
In Table 6, we evaluate the gains provided by various train-
ing strategies employed for ELMoL to prevent catastrophic
forgetting. Vanilla refers to the base ELMoL method, while
guf, discr and tlr are training techniques we described in
Section . Improvements from each of these techniques are
consistent across datasets.

ATIS SNIPS Domain-A Domain-B
vanilla 14.46 17.14 37.59 28.78

guf 13.79 16.39 37.26 28.72
guf +

discr+tlr 13.38 15.62 36.86 28.42

Table 6: Performance of training techniques in ELMoL. All
the above numbers are SER scores.

UT+ST Results for SLU
Table 7 shows the performance when combining each of the
UT methods presented earlier along with supervised transfer
(ST). Comparing with the performance of Table 4, we see a
consistent improvement of all UT methods when combining
with ST. Specifically, ELMo+ST achieves SER 35.86 and
27.46 compared to 36.58 and 27.95 for ELMo for Domains
A and B respectively. Similarly, ELMoL+ST achieves SER
36.38 and 28.11 compared to 36.86 and 28.42 for ELMoL

for Domains A and B respectively. This indicates that gains
from UT and ST are additive, and transferring knowledge
from all available data, both labeled and unlabeled, is bene-
ficial for the final SLU accuracy.

Domain-A Domain-B
ICA EF1 SER ICA EF1 SER

NoUT+ST 92.80 76.85 38.97 91.57 75.53 30.32
Fasttext+ST 93.15 77.27 37.58 92.36 76.73 28.95
ELMo+ST 93.79 78.76 35.86 92.88 78.49 27.46

ELMoL+ST 93.53 78.56 36.38 92.84 77.03 28.11

Table 7: Performance when ST is combined with UT.

ELMo vs ELMoL: Performance Comparison
The proposed ELMoL model is faster in terms of both train-
ing time and inference time, and smaller in total model
size compared to standard ELMo. Assuming ELMoL takes
1 unit of time, ELMo would take 1.8x more time to train
and 1.6x more time during inference. Fast training and in-
ference times are critical in deployed SLU systems as they
enable rapid domain development and timely response to
the users request during runtime. Also, ELMoL requires 4x
lesser memory than ELMo (37 million parameters in EL-
MoL compared to 140 million in model with ELMo), which
is advantageous for SLU systems deployed in embedded de-
vices or other resource constrained systems.
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Conclusions and Future Work
We describe unsupervised transfer (UT) learning techniques
for leveraging unlabeled text data for SLU tasks. Specifi-
cally, we showed that the recently proposed ELMo embed-
dings (Peters et al. 2018) improve IC and ET accuracy in
multi-task setting. We also proposed a light-weight alterna-
tive to ELMo, called ELMo-Light (ELMoL). We showed
that ELMoL performance is comparable to ELMo, and it
is faster at runtime and better suited for practical SLU sys-
tems. Our UT techniques achieved large gains over using
only labeled in-domain data for training, with gains being
more pronounced for low resource settings. Finally, we also
showed that gains from ST and UT are additive. In future,
we plan to apply the transfer techniques across different lan-
guages. We would also like to experiment with alternative
architectures such as transformer and adversarial networks.
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