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Abstract

Modular reinforcement learning (MRL) decomposes a mono-
lithic multiple-goal problem into modules that solve a por-
tion of the original problem. The modules’ action preferences
are arbitrated to determine the action taken by the agent.
Truly modular reinforcement learning would support not
only decomposition into modules, but composability of sep-
arately written modules in new modular reinforcement learn-
ing agents. However, the performance of MRL agents that
arbitrate module preferences using additive reward schemes
degrades when the modules have incomparable reward scales.
This performance degradation means that separately written
modules cannot be composed in new modular reinforcement
learning agents as-is – they may need to be modified to align
their reward scales. We solve this problem with a Q-learning-
based command arbitration algorithm and demonstrate that it
does not exhibit the same performance degradation as exist-
ing approaches to MRL, thereby supporting composability.

Introduction
Decomposition is an important tool in designing software
systems in general and, as we will see in the next section, an
important tool for dealing with the larger state spaces likely
to be encountered in real-world problems. Hierarchical re-
inforcement learning (HRL), discussed in the Related Work
section, decomposes reinforcement learning problems tem-
porally, modeling intermediate tasks as higher-level actions.
HRL has also formed the basis of reinforcement learning-
based programming systems.

MRL decomposes the original problem concurrently,
modeling an agent as a set of concurrently running rein-
forcement learning modules. MRL has been used primarily
to model multiple-goal problems and to deal with large state
spaces. We would like to use MRL as a basis for reinforce-
ment learning-based programming systems but, as we dis-
cuss in the section on composability in modular reinforce-
ment learning, current approaches to MRL have a serious
limitation – a requirement for module reward scale compa-
rability – which limits their usefulness in programming sys-
tems. The work we present in this paper solves the reward
scale comparability problem.
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Figure 1: In the grid world above, the bunny must pursue
two goals simultaneously: find food and avoid the wolf. The
bunny may move north, south, east, or west. When it finds
food it consumes the food and new food appears elsewhere
in the grid world, when it meets the wolf it is eaten and
“dies.”

The Curse of Dimensionality
As with other kinds of machine learning, reinforcement
learning must deal with the curse of dimensionality. In re-
inforcement learning the curse of dimensionality manifests
itself primarily in the size of the state space, namely, the state
space grows exponentially in the number of state features.

As an example, consider the 5×5 grid of the bunny world
in Figure 1. The bunny, food, and wolf can be in one of 25
possible locations. If the task of the bunny were only to reach
a particular location, then the number of states would be 25.
Add the task of avoiding a wolf and the state space grows
to 252 = 625. Add finding food and the state space grows
to 253 = 15625. If you model this problem as two sepa-
rate modules, one in which the bunny avoids the wolf and
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another in which the bunny finds food, then each module
solves a problem with a state space of 252 = 625 states
(bunny plus wolf and bunny plus food).

Modular Reinforcement Learning
An MRL (Russell and Zimdars 2003; Sprague and Ballard
2003b) agent is decomposed into several modules each of
which concurrently learns a different subgoal of the origi-
nal, complex, multiple-goal learning problem. In an MRL
agent each module observes the action taken by the agent,
the state transition and a reward signal specific to the mod-
ule. At each time step, the agent combines the action pref-
erences of the modules to compute the joint policy. In most
MRL algorithms the joint policy is derived from a joint Q-
function in which the Q-values for each module are added:

Qjoint(s, a) =
∑

Qi(si, a) (1)

where each module mi has its own state abstraction, si
for each s ∈ S.

Russell’s and Zimdars’ Q-decomposition (Russell and
Zimdars 2003) is equivalent to Sprague and Ballard’s GM-
Sarsa (Sprague and Ballard 2003b). Both of these investi-
gations of Q-function decomposition showed that Sarsa is
a better choice for agent modules than Q-learning because
Sarsa is on-policy. Sarsa updates its Q-function based on the
policy being followed by the agent while Q-learning updates
its Q-function assuming the module’s locally optimal pol-
icy will be followed. Because modules do not have direct
control over the policy being followed, modules using on-
policy learning algorithms like Sarsa perform better because
the global action is communicated to the modules to update
local Q-functions. Because we evaluate our algorithm using
the same problem as Sprague and Ballard, in this work we
will refer mostly to GM-Sarsa.

There is clearly a desire to model agents with multiple
goals represented as reinforcement learning modules. We
list only a few examples here. Sprague and Ballard have ap-
plied GM-Sarsa to problems in eye movement scheduling
(Sprague and Ballard 2003a; Sprague, Ballard, and Robin-
son 2007). Konidaris and Barto applied an algorithm de-
rived from GM-Sarsa to adaptive robot control (Konidaris
and Barto 2006). Aissani and colleagues used GM-Sarsa
to develop a system for dynamic scheduling of mainte-
nance tasks in the petroleum industry (Aissani, Beldjilali,
and Trentesaux 2009; Chaari et al. 2014). Rowe and col-
leagues used GM-Sarsa for interactive narrative planning
(Rowe and Lester 2013).

All of the work applying MRL has been done by single
teams of researchers applying MRL to research problems.
Thus, modules were authored together with comparable re-
ward scales. To support reusability in a software engineering
sense we need to support the separate authoring of modules.
Separately authored modules may use reward scales that are
internally consistent within modules but incomparable to the
rewards used in other modules. In this paper we show that
existing approaches to MRL degrade when modules use in-
comparable reward scales and present an algorithm that does
not exhibit the same degradation.

Composability in Modular Reinforcement
Learning

Our ultimate goal with modular reinforcement learning is
to facilitate the integration of reinforcement learning into a
programming language in order to support intelligent agent
software engineering, as we outlined in earlier work (Simp-
kins et al. 2008). To support software engineering we would
like MRL components to be truly modular. In particular, we
would like the components to be reusable without modifi-
cation – composable. Unfortunately, current approaches im-
plicitly require a global, monolithic reward signal, which de-
tracts from composability. In particular, an agent program-
mer cannot locally define the reward function for a module
because the reward scales of other modules must be taken
into account. For example, if a Bunny (Figure 1) agent pro-
grammer creates a FindFood module and then decides to
use an AvoidWolf module written by another programmer
but the AvoidWolf module uses a reward scale several times
higher than FindFood, then a MRL algorithm that uses ad-
ditive rewards will favor AvoidWolf to the near exclusion of
FindFood. One of the modules would need to be modified
to align the reward scales of all the modules. As we sum-
marize briefly in the following section, Bhat and colleagues
showed that this limitation is inherent in existing approaches
to modular reinforcement learning (Bhat, Isbell, and Mateas
2006).

Ideal Action Selection is Impossible
Aside from the practical challenges cited above, Bhat, et.,
al. (Bhat, Isbell, and Mateas 2006) showed that ideal action
selection from modules that vote on the agent’s single action
is impossible in full generality because the problem reduces
to Arrow’s Paradox (Arrow 1963): an agent is a “society” of
modules, and action selection is social choice. The problem
is that we want the action selection mechanism to have the
following reasonable properties:
• Universality: the ability to handle any possible set of

modules.
• Unanimity: guarantee that if every module prefers action

A, action A will be selected.
• Independence of Irrelevant Alternatives: each mod-

ule’s preference for actions A and B are independent of
the availability of any other action C. This property pre-
vents any particular module from affecting the global ac-
tion choice by dishonestly reporting its own preference
ordering.

• Scale Invariance: ability to scale any module’s Q-values
without affecting the arbitrator’s choice. This is the cru-
cial property that allows separately authored modules
with incomparable reward signals.

• Non-Dictatorship: no module gets its way all the time.
If |A| ≥ 3, then there does not exist an arbitration func-

tion that satisfies each of the properties listed above (Roberts
1980). So even simple agents with more than three actions
are too complex for theoretically ideal arbitration. This pa-
per contributes a novel formulation of MRL and an algo-
rithm that implements it.
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Reformulating MRL
Bhat, et., al., (Bhat, Isbell, and Mateas 2006) argued for a
“benevolent dictator”, a special module executing a com-
mand arbitration function for action selection but left the
arbitration algorithm unspecified. Here we present a com-
mand arbitration algorithm embodying the ideas in (Bhat,
Isbell, and Mateas 2006) and show that it performs compet-
itively with other MRL algorithms and shows superior ro-
bustness to module modification. This robustness to module
modification is the chief enabler of truly modular reinforce-
ment learning in which modules can be transferred from one
system to another without having to re-engineer the reward
signals to fit the new host system.

This formulation relaxes the non-dictatorship requirement
of ideal action selection if you think of the arbitrator as a
special module. By Arrow’s theorem, other properties will
still hold. In the next section we present a reformulation of
MRL based on this idea.

Formalization
Our reformulation of MRL adds a command arbitrator
which has a state space that may be the same as or different
from the modules’ state spaces, an action set that represents
choosing a module, ACA = 1...n for an agent with n mod-
ules, and a reward signal that represents the agent’s overall
goal. The arbitrator’s reward function, RCA(s), is indepen-
dently defined rather than being derived from the module
rewards. Note that RCA(s) may or may not be equal to the
sum of the rewards of the agent’s modules. In fact, the mod-
ules’ rewards, Ri(s, a), may not have any relation to the ar-
bitrator’s reward RCA(s).

The agent’s policy is defined indirectly by the arbitrator’s
policy, πCA(s, a), which assigns probabilities to the selec-
tion of a module for each state, where the selected module’s
preferred action becomes the agent’s action in that state.

For the agent author, this formulation adds the require-
ment of authoring a dedicated reward signal for the arbitra-
tor. For our bunny agent, this is LiveLongProsper:

• Why avoid predator, why eat? To live longer.
• Encodes the tradeoffs between modules – perhaps food is

more important to some bunnies.
• The arbitrator could be hand-authored, or could be an-

other RL agent.

For the small cost of authoring a reward signal that repre-
sents the “greater good” you get true modularity, that is, the
ability to combine separately authored modules with incom-
parable rewards. This new reward signal is now the metric
we use to measure the performance of the agent.

In our MRL framework an agent is an arbitrator plus a
list of modules. Formally, an agent consists of the following
elements (we use CA in subscript to refer to the command
arbitrator and numbers or i to refer to modules):

1. A reward function for the command arbitrator, RCA(s),
2. An action set A for the agent as a whole, shared by each

module,
3. A set of reinforcement learning modules, M

4. A state abstraction function, moduleStatei for each
module mi

5. A reward function, Ri(s) for each module mi

In the next section we present our Arbi-Q algorithm which
implements the arbitrator in this framework.

The Arbi-Q Command Arbitration Algorithm
Our command arbitrator is itself a reinforcement learner.
The state space for the arbitrator may be the world state, in
which no state abstraction is used for the arbitrator, or may
employ a state abstraction like the modules. The arbitrator’s
action set, ACA, is a set of integer indexes to the agent’s list
of modules. As with any reinforcement learner, the arbitrator
learns a policy. In the case of the arbitrator this policy, πCA

is a mapping from states to modules. The modules’ policies
are mappings from abstracted module state to actions in the
world, that is, the agent’s actions. The arbitrator’s policy de-
fines which module chooses the agent’s action in a particular
state.

Our Arbi-Q implementation uses the Sarsa algorithm
(Rummery and Niranjan 1994) to learn the arbitrator’s pol-
icy, but any reinforcement learning algorithm may be used.
At each time step the arbitrator uses its policy to select a
module, then the module uses its local policy to select an ac-
tion that the agent executes. The results of executing the ac-
tion are communicated to the arbitrator as a consequence of
the module selection, and to the modules as a consequence
of action selection. Each module uses a state abstraction
function to transform the world state into the the subset of
the state relevant to the module, and a reward function that
is based on the module’s state abstraction. In this way the
modules are coupled to the world in which they operate – the
modules can only operate in worlds which contain the state
features expected by its state abstraction function – but the
modules are not coupled to other modules or to an arbitra-
tor. The Arbi-Q algorithm is sketched in Algorithm 1. While
the algorithm presented here shows the modules learning at
the same time the arbitrator is learning, it is also possible to
pre-train the modules and hold them constant while train-
ing the arbitrator. Because Arbi-Q uses Sarsa to learn its
module-selection policy it inherits the convergence proper-
ties of Sarsa (Singh et al. 2000).

Algorithm 1 Arbi-Q (sketch)
QCA ← random initial values
for each module i do
Qi ← random initial values

end for
for each time step do

Command arbitrator chooses a module m from QCA

a← ε−greedy action for sm from Qm

Execute a, observe effects rCA and s′
Update QCA(sCA,m) from action m and RCA(sCA)
for each module i do

Update Qi(si, a) from action a and Ri(si, a)
end for

end for
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Experiments
Our principal claim is that Arbi-Q is robust to modules
with incomparable reward scales, which would be an au-
thoring error in existing MRL approaches. Our experiments
show that GM-Sarsa/Q-decomposition degrades when mod-
ules are modified to have incomparable reward scales and
that Arbi-Q is robust to such modification.

Bunny-Wolf World
We use a world derived from Sprague and Ballard (Sprague
and Ballard 2003b). In Bunny-Wolf world, our agent is
a bunny that must eat food and avoid being eaten by a
wolf. The bunny world is a continuing world rather than an
episodic world. There is no specified start state and there is
no termination of episodes. When the bunny finds and eats
food, a new food item appears elsewhere. When the wolf
eats the bunny the bunny “respawns” in a new location, sim-
ilar to video games. We can represent such a bunny agent in
our formulation as follows:

• Module 1: FindFood. The bunny agent must find food in
order to continue living. When the bunny finds food it gets
a reward of 1.0. In each step that it does not eat the bunny
gets a reward of -0.1 to represent increasing hunger.

• Module 2: AvoidWolf. The bunny agent must avoid the
wolf. Meeting the wolf gives the bunny a reward of -1.0.
In each time step that the bunny avoids the wolf the bunny
receives a reward of 0.1 to represent that it successfully
lived another day.

• Agent’s overall goal (implemented in arbitrator): Live-
LongProsper – get as much food per time step as possi-
ble, which will require balancing food finding with wolf
avoidance. The arbitrator’s reward function is 0.0 for
meeting the wolf, 1.0 for finding food, and 0.5 for each
step in which the wolf is avoided but no food is eaten. This
is the same as the score used to evaluate algorithm perfor-
mance (discussed below). Using the score makes sense
because maximizing a global “score” is the overall goal
of the agent.

To facilitate comparison between Arbi-Q and GM-Sarsa
we use a performance metric – a score – that is indepen-
dent of the reward received by any modules or agents as a
whole. The learning of the modules is still guided by their
reward functions, but an independent score is necessary for
comparison between algorithms to avoid coupling their re-
ward scales. The score we use is 0.0 for meeting the wolf,
1.0 for finding food, and 0.5 for each step in which the wolf
is avoided but no food is eaten. We validate Arbi-Q’s perfor-
mance by comparing it with GM-Sarsa, as we discuss below.

We evaluate each algorithm similarly to Sprague and Bal-
lard (Sprague and Ballard 2003b), running each algorithm
for n steps, suspending learning every n/100 steps to eval-
uate performance. Performance is evaluated by running the
greedy policy in the world for 1000 episodes and calculating
the average score per time step. Each algorithm used a dis-
count rate of 0.9 and ε-greedy action selection during train-
ing with ε linearly discounted from 0.4, as in Sprague and

Ballard’s experiments. For baselines, GM and Arbi-Q algo-
rithms used modules with similarly scaled rewards. For ro-
bustness validation, we scaled the AvoidWolf module reward
by 10 to simulate the swapping out of separately-authored
learning modules. Although we also compared to mono-
lithic, or “flat”, reinforcement learners, we do not present
a comparison to a flat Q or Sarsa learner here because GM-
Sarsa has already been shown to be superior to a flat Q or
Sarsa learner on this problem (Sprague and Ballard 2003b).

Results
Empirical results show that the performance of GM-Sarsa
degrades when the reward scales of the modules are not
comparable. The learning curves depicted in Figure 2 show
that GM-Sarsa bunny agent with incomparable reward scales
for its modules converges to a lower score than with compa-
rable rewards.

Figure 2: Performance of GM-Sarsa/Q-decomposition on
the bunny-wolf problem. The learning curves show that
Greatest Mass command arbitration degrades significantly
when its module rewards are incomparable.

As Figure 3 shows, Arbi-Q does not exhibit any perfor-
mance degradation when the agent’s modules have incom-
parable reward scales. Arbi-Q does not use the Q-values of
its modules directly. Instead, Arbi-Q learns when it should
listen to a particular module. More precisely, Arbi-Q de-
velops a probability distribution for each state which says
which module has the best advice in that state. Using the ex-
ample above with incomparable reward scales, the modules
would learn the same local policies using the same Q-values
as above, but the arbitrator would learn a policy based on Q-
values for selecting modules that chose actions that resulted
in particular rewards for the agent as a whole. The result-
ing Q-values for the arbitrator represent module selection,
not action selection. So Arbi-Q learns that when the wolf
is close AvoidWolf should decide the bunny agent’s action,
and when the wolf is comfortably distant FindFood should
decide the bunny agent’s action.
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Figure 3: Performance of Arbi-Q on the bunny-wolf prob-
lem. Arbi-Q converges to similar scores as GM-Sarsa and
shows no degradation in performance when modules have
incomparable rewards. By solving the module reward scale
comparability problem, Arbi-Q better supports modular re-
inforcement learning agents with separately written mod-
ules.

Arbi-Q is Robust to Algorithm Choice
Sprague and Ballard, and Russell and Zimdars showed
that Greatest-Mass (Sprague and Ballard 2003b) (or Q-
decomposition (Russell and Zimdars 2003)) action selec-
tion achieved better learning performance when modules
used Sarsa instead of Q-Learning because Sarsa is on-policy
and Q-learning is off-policy. The reason for this sensitiv-
ity to module learning algorithm is that the arbitrator uses
the modules’ q-functions directly. Modules using off-policy
learning algorithms (Q-learning) update their q-functions
based on the optimal future actions for the modules rather
than for the agent as a whole, which biases the action selec-
tion of an arbitrator using an additive q-function away from
the optimal joint policy. Modules using on-policy learning
(Sarsa) update their q-functions based on the actual action
taken by the agent, resulting in convergence to the optimal
global policy as long as the reward scales are comparable
(Russell and Zimdars 2003).

Although our primary aim here is to achieve robustness
to incomparable reward scales in modules, Arbi-Q is also
robust to the algorithm used in the modules. Unlike Greatest-
Mass/Q-decomposition, Arbi-Q exhibits the same learning
performance whether its modules use Sarsa or Q-Learning,
and whether the arbitrator uses Sarsa or Q-learning to learn
the delegation policy, as shown in Figure 4.

Discussion
Arbi-Q achieves composability by decoupling module re-
ward scales at the cost of requiring a separately authored
reward function. While it is not obvious how to author arbi-
trator reward, a few rules of thumb have proved useful in
practice: (1) thinking of the arbitrator reward function as
representing greater good, ”why” find food, ”why” avoid

Figure 4: Performance of Arbi-Q on the bunny-wolf problem
using Q-learning for the modules and Q-learning to learn
the command arbitration policy. Arbi-Q exhibits the same
learning performance using Q-learning, suggesting that it is
not only robust to modules with incomparable reward scales,
but to modules using different algorithms to learn their local
policies.

wolf – to live longer; and (2) thinking of the arbitrator re-
ward function as score in a video game, e.g., Pac Man eats
food pellets, eats cherries, and either runs from or chases
ghosts, but the reason for doing these things is to maximize
a score.

Each module, as well as the arbitrator, may use state
abstraction (a subset of the word state which results in a
smaller state space). These state abstractions are often ob-
vious for modules but may may not be obvious for the arbi-
trator. If the reward function of the command arbitrator uses
the original world state rather than a state abstraction, then
its state space is the same size as a monolithic reinforcement
learner. It would seem that a chief benefit of MRL has been
lost. However, in most cases there is still a benefit. In partic-
ular, the savings in learning speed compared to a monolithic
reinforcement learner is the ratio of actions to the number of
modules. The Q-table of a monolithic reinforcement learner
would have |S| × |A| entries. The Q-table of arbitrator has
|S| × n entries where n is the number of modules. So in our
bunny-wolf example, with four actions and two modules,
even with a naive reward function using no state abstrac-
tion the arbitrator’s Q-table is half the size of a monolithic
reinforcement learner’s Q-table. In general, though, greater
efficiency can be achieved by using a state abstraction for
the arbitrator. Problems for which an arbitrator cannot (eas-
ily) be defined with a small enough state space relative to the
monolithic state space or where the action set is not signifi-
cantly larger than the number of modules to yield sufficient
improvements in convergence speed may not be good fits for
our algorithm.
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Related Work
Hierarchical reinforcement learning (HRL) employs a tem-
poral decomposition of the Q function. In the case of HRL,
the designer typically specifies a delegation hierarchy of
components with points of adaptation where a policy is
learned to perform the delegation. The designer programs
the policies of some of these components, which constitute
a partial specification of the agent’s behavior, and some of
the components use reinforcement learning to adapt to the
hierarchy by learning the control policies for their parts of
the problem. The adaptive components relieve the designer
from writing the parts of the program that are hard to spec-
ify, or require difficult to write adaptivity, and the partial pro-
gram constrains the learning problem faced by the adaptive
components, which speeds convergence. Components can
be reused in other contexts, providing for modularity in tem-
poral problem decompositions.

The current state of the art in HRL is based on the the-
ory of Semi-Markov Decision Processes (SMDPs). In an
SMDP some actions are allowed to take more than one time
step. These multi-step actions, sometimes called macros,
subroutines, options, or hierarchical machines represent a
form of procedural abstraction that may allow a programmer
to write reinforcement learning agents in a manner similar to
writing other kinds of computer programs.

Precup’s Options (Precup, Sutton, and Singh 1998; Sut-
ton, Precup, and Singh 1999; Precup 2000) framework de-
velops a detailed theory of temporal abstraction abstrac-
tion based on SMDPs. Dietterich’s MAXQ (Dietterich 1998;
2000) and Hierarchical Abstract Machines (Parr and Rus-
sell 1998) models decompose an MDP into a hierarchies
of smaller MDPs. These smaller MDPs represent subrou-
tines in the MAXQ framework or HAMs in the Hierarchi-
cal Abstract Machines framework. Andre’s Programmable
Hierarchical Abstract Machines (Andre and Russell 2000;
2002) develops a programming language for HAMs called
ALisp (Adaptive Lisp), and Marthi and colleagues (Marthi
et al. 2005) extend ALisp (Concurrent ALisp) for single re-
inforcement learning agents with multiple simultaneous ac-
tions, such as as robots with multiple effectors or a con-
troller for multiple characters in a computer game. Zhang,
Song and Ballard (Zhang, Song, and Ballard 2015) build
on Sprague’s and Ballard’s earlier work on GM-Sarsa to
develop three algorithms for deriving a global policy from
independent modules. All of these algorithms still rely on
the internal Q-values of the modules and thus require com-
parable reward scales. Rohanimanesh and Mahadevan ex-
tended the options HRL framework to concurrent settings
in which multiple agents executing multiple simultaneous
actions (Rohanimanesh and Mahadevan 2001; 2002). Their
work differs from ours in that their framework applies to a
single agent taking multiple actions or multiple agents tak-
ing simultaneous actions, whereas we are concerned with
a single agent executing a single action that is decided by
multiple reinforcement learning modules. Marthi and col-
leagues (Marthi et al. 2005) suggest extending their work
in concurrent ALisp to include the Q-decomposition algo-
rithm of Russell and Zimdars (Russell and Zimdars 2003),
but this line of research was not pursued. Lau and colleagues

developed a MRL system that uses a central coordinator for
multiple concurrent MPDs (Lau, Lee, and Hsu 2012). Lau’s
work differs form ours in that they develop a constraint sys-
tem in the central coordinator that limits the allowable ac-
tions of the component reinforcement learners, thereby con-
straining their learning. Our approach does not require the
arbitrator to know details of component learners, and com-
ponent learners require no explicit or implicit knowledge of
the arbitrator or the other components.

Due to the curse of dimensionality, abstraction of vari-
ous kinds has long been an active area of research in re-
inforcement learning. One thread in abstraction is to use
examples to guide abstraction. Zang and colleagues used
examples of nearly optimal action sequences, or trajecto-
ries, to dynamically discover options from data, delivering
speedups of up to 30 times in some cases (Zang et al. 2009).
Learning from demonstration (Ng, Russell, and others 2000;
Zang et al. 2010b) uses human input to improve reinforce-
ment learning performance. Zang and colleagues developed
a value function approximation algorithm that leveraged hu-
man input to speed convergence for function approximation-
based reinforcement learning algorithms (Zang et al. 2010a).
Cobo Rus and colleagues’ Abstraction from Demonstra-
tion technique uses human demonstrations to infer state
abstractions and builds policies based on those state ab-
stractions (Rus et al. 2011; Rus, Isbell, and Thomaz 2012;
Rus et al. 2014).

Another thread in abstraction seeks to use models from
the physical world to create abstractions of (simulated)
physical state spaces. Cobo Rus and colleagues created ab-
stractions of state spaces by organizing state spaces into
classes of objects and using non-optimal Q-functions to es-
timate the risk of ignoring certain classes of objects. Cobo
Rus’s Object-Focused Q-Learning (OFQ) achieved expo-
nential speedups in some cases (Rus, Isbell, and Thomaz
2013). Scholz and colleagues developed Physics-Based Re-
inforcement Learning (Scholz et al. 2014), which uses com-
putational physics engines such as Box2D (Catto 2013) as
model representations, resulting in more sample-efficient
learning compared to traditional object-oriented MDP ap-
proaches. Physics-based reinforcement learning was then
applied successfully in robotic mobile manipulation (Scholz
et al. 2015) and robot navigation (Scholz et al. 2016) appli-
cations.

Contributions, Limitations, and Future Work
The primary contribution of our reformulation of MRL and
the Arbi-Q command arbitration algorithm is the reusability
afforded by reward scale decoupling. Our algorithm makes
it possible for modules written by different programmers
with different reward scales to be used together within the
same MRL agent. So our MRL algorithm supports software
engineering, in which it is important not only to decom-
pose problems into sub-problems, but to be able to com-
pose new solutions from solutions to separately authored
sub-problems. This property is important to us because we
are integrating reinforcement learning into a programming
language. We have implemented an experimental language
and conducted programmer studies with promising results
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(Simpkins, Rugaber, and Isbell 2017) that suggest continued
development. Nevertheless, the present work on modular re-
inforcement learning has limitations.

The first limitation of Arbi-Q is that the agent’s action al-
ways comes from one of the modules. It may be that the
best action in a given state is not chosen by any module. Ap-
proaches to module cooperation such as negotiated-W learn-
ing (Humphrys 1997) have been shown to be inferior to GM-
Sarsa (and thus Arbi-Q) for problems such as the one pre-
sented here, but it is worth investigating mixed approaches
to action selection. The recent work of Zhang, Song and Bal-
lard (Zhang, Song, and Ballard 2015) may provide a promis-
ing direction.

The second limitation is that achieving a substantial re-
duction in total state space depends on the state abstraction
of the arbitrator, which depends on the agent-level reward
function. Techniques for authoring arbitrator reward func-
tions need to be investigated.

A third limitation is that we use fairly standard tabu-
lar Q-learning algorithms. Future work should investigate
newer function approximation approaches such as hierarchi-
cal Deep Q-Networks (Kulkarni et al. 2016).

Finally, we have demonstrated our algorithm’s perfor-
mance on a small domain chosen so that we can compare it
directly to previous work. Future work should evaluate our
approach on larger domains with varied characteristics.
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C. 2000. Convergence results for single-step on-
policy reinforcement-learning algorithms. Machine learning
38(3):287–308.
Sprague, N., and Ballard, D. 2003a. Eye movements for
reward maximization. In Advances in neural information
processing systems, None.
Sprague, N., and Ballard, D. 2003b. Multiple-goal reinforce-
ment learning with modular sarsa(o). In IJCAI’03: Proceed-
ings of the 18th international joint conference on Artificial
intelligence, 1445–1447. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Sprague, N.; Ballard, D.; and Robinson, A. 2007. Modeling
embodied visual behaviors. ACM Transactions on Applied
Perception (TAP) 4(2):11.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-

tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.
Zang, P.; Zhou, P.; Minnen, D.; and Isbell, C. L. 2009. Dis-
covering Options from Example Trajectories. In Proceed-
ings of the Twenty-sixth International Conference on Ma-
chine Learning (ICML).
Zang, P.; Irani, A.; Zhou, P.; Isbell, C. L.; and Thomaz, A.
2010a. Using Training Regimens to Teach Expanding Func-
tion Approximators. In Proceedings of the Ninth Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS).
Zang, P.; Tian, R.; Isbell, C. L.; and Thomaz, A. 2010b.
Batch versus interactive learning by demonstration. In Pro-
ceedings of the Ninth International Conference on Develop-
ment and Learning (ICDL).
Zhang, R.; Song, Z.; and Ballard, D. H. 2015. Global policy
construction in modular reinforcement learning. In AAAI,
4226–4227.

4982


