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Abstract
In this paper, we revisit the convergence of the Heavy-ball
method, and present improved convergence complexity re-
sults in the convex setting. We provide the first non-ergodic
O(1/k) rate result of the Heavy-ball algorithm with constant
step size for coercive objective functions. For objective func-
tions satisfying a relaxed strongly convex condition, the linear
convergence is established under weaker assumptions on the
step size and inertial parameter than made in the existing lit-
erature. We extend our results to multi-block version of the
algorithm with both the cyclic and stochastic update rules.
In addition, our results can also be extended to decentralized
optimization, where the ergodic analysis is not applicable.

Introduction
In this paper, we study the Heavy-ball algorithm first pro-
posed by (Polyak 1964), for solving the following uncon-
strained minimization problem

min
x∈Rm

f(x), (1)

where f is convex and differentiable, and ∇f is Lipschitz
continuous with constant L. The Heavy-ball method iterates

xk+1 = xk − γk∇f(xk) + βk(xk − xk−1), (2)

where γk is the step size and βk is the inertial parameter.
Different from the gradient descent algorithm, the sequence
generated by Heavy-ball method is not Fejér monotone due
to the inertial term βk(xk − xk−1). This poses a challenge
in proving the convergence rate of {f(xk)}k≥0 in the con-
vex case. In the existing literature, the sublinear convergence
rate of the Heavy-ball has been proved only in the sense of
ergodicity.

When the objective function is twice continuously dif-
ferentiable and strongly convex (i.e., almost quadratic),
the Heavy-ball method provably converges linearly. Under
a weaker assumption that the objective function is non-
convex but Lipschitz differentiable, (Zavriev and Kostyuk
1993) proved that the sequence generated by the Heavy-
ball method will converge to a critical point, yet without
specifying the convergence rate. The smoothness of ob-
jective function is crucial for convergence of the Heavy-
ball. Indeed, it can be divergent for a strongly convex but
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nonsmooth function as suggested by (Lessard, Recht, and
Packard 2016). Different from the classical gradient de-
scent methods, the Heavy-ball algorithm fails to gener-
ate a Fejér monotone sequence. In the convex and smooth
case, the only result about convergence rate, to our knowl-
edge, is the ergodic O(1/k) rate in terms of the objective
value (Ghadimi, Feyzmahdavian, and Johansson 2015), i.e.,
f
(∑k

i=1 x
i

k

)
− min f ∼ O

(
1
k

)
. The linear convergence of

Heavy-ball algorithm was proved under the strongly con-
vexity assumption by (Ghadimi, Feyzmahdavian, and Jo-
hansson 2015). But the authors imposed a restrictive as-
sumption on the inertial parameter βk. Specifically, when
the strongly convex constant is tiny, the convergence result
holds only for a small range of βk values. By incorporating
the idea of proximal mapping, the inertial proximal gradi-
ent algorithm (iPiano) was proposed in (Ochs et al. 2014),
whose convergence in nonconvex case was thoroughly dis-
cussed. Locally linear convergence of iPiano and Heavy-ball
method was later proved in (Ochs 2016). In the strongly
convex case, the linear convergence was proved for iPiano
with fixed βk (Ochs, Brox, and Pock 2015). In the paper
(Pock and Sabach 2016), inertial Proximal Alternating Lin-
earized Minimization (iPALM) was introduced as a variant
of iPiano for solving the two-block regularized problem. (Xu
and Yin 2013) analyzed the Heavy-ball algorithm in ten-
sor minimization problems. Stochastic versions of heavy-
ball have also been introduced (Loizou and Richtárik 2017b;
2017a). A multi-step heavy-ball algorithm was analyzed
in (Liang, Fadili, and Peyré 2016). The inertial methods
are also developed and studied in the operator research
by (Combettes and Glaudin 2017). None of the aforemen-
tioned Heavy-ball based algorithms, however, provides a
non-ergodic convergence rate.

Contributions
In this paper, we establish the first non-ergodic O(1/k) con-
vergence result in general convex case. More precisely, we
prove that f(xk) −min f ∼ O( 1

k ) for convex and coercive
f 1. Compared with existing result in (Ghadimi, Feyzmahda-
vian, and Johansson 2015), ours allows a larger step size γk.
We also prove a linear convergence result under a restricted

1We say f is coercive, if f(x)→ +∞ as x→ +∞.
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strongly convex condition, weaker than the strong convexity
assumption. In short, we make weaker assumptions on the
step size, on the inertial parameter, as well as on the convex-
ity of the objective function. The convergence of multi-block
extensions of Heavy-ball method is studied. The sublinear
and linear convergence rates are proved for the cyclic and
stochastic update rules, respectively. In addition, we extend
our analysis to the decentralized Heavy-ball method, where
the ergodic analysis is not applicable. Our theoretical results
are based on a novel Lyapunov function, which is motivated
by a modified dynamical system.

A Dynamical System Interpretation
It has been long known that the Heavy-ball method is equiv-
alent to the discretization of the following second-order
ODE (Alvarez 2000):

ẍ(t) + αẋ(t) +∇f(x(t)) = 0, t ≥ 0, (3)

for some α > 0. In the case βk ≡ 0, the Heavy-ball method
boils down to the standard gradient descent, which is known
to be the discretization of the following first-order ODE

αẋ(t) +∇f(x(t)) = 0, t ≥ 0. (4)

The dynamical system (3), however, misses essential infor-
mation about relation between ẍ(t) and ẋ(t). Specifically,
if we replace ẍ(t) by xk+1−2xk+xk−1

h2 with h being the dis-
cretization step size, then it holds that∥∥∥∥xk+1 − 2xk + xk−1

h2

∥∥∥∥
≤ 1

h
·
(∥∥∥∥xk+1 − xk

h

∥∥∥∥+

∥∥∥∥xk − xk−1

h

∥∥∥∥) .
Since both xk+1−xk

h and xk−xk−1

h can be viewed as the dis-
cretization of ẋ(t), we propose to modify (3) by adding the
following constraint

‖ẍ(t)‖ ≤ θ‖ẋ(t)‖, (5)

where θ > 0. In next section, we will devise a useful Lya-
punov function by exploiting the additive constraint (5) and
establish the asymptotic non-ergodic sublinear convergence
rate in the continuous setting. Finally, we will “translate”
this analysis into that in discretized setting.

Analysis of the Dynamical System
We analyze the modified dynamical system (3) + (5). The
existence of the solution is beyond the scope of this paper
and will not be discussed here. Let us assume that f is co-
ercive, α > θ, and f(x(0)) − min f > 0. We consider the
Lyapunov function

ξ(t) := f(x(t)) +
1

2
‖ẋ(t)‖2 −min f ≥ 0, (6)

and refer the readers to the relevant equations (3)-(6). A di-
rect calculation gives

ξ̇(t) = 〈∇f(x(t)), ẋ(t)〉+ 〈ẍ(t), ẋ(t)〉
= −α‖ẋ(t)‖2, (7)

which means {ξ(t)}t≥0 is non-increasing. As a result,

sup
t
{f(x(t))−min f} ≤ sup

t
ξ(t) ≤ ξ(0).

By the coercivity of f , {x(t)}t≥0 is bounded. Then by the
continuity of ∇f , {∇f(x(t))}t≥0 is bounded; using (3),
{ẍ(t) +αẋ(t)}t≥0 is also bounded. By the triangle inequal-
ity, we have

‖ẍ(t) + αẋ(t)‖ ≥ α‖ẋ(t)‖ − ‖ẍ(t)‖
≥ (α− θ)‖ẋ(t)‖. (8)

Since α > θ, we obtain the boundedness of {ẋ(t)}t≥0; by
(5), {ẍ(t)}t≥0 is also bounded. Let x∗ ∈ arg min f , we have

0 ≤ f(x(t))− f(x∗)
a)

≤ 〈∇f(x(t)), x(t)− x∗〉
b)

≤ ‖∇f(x(t))‖ · ‖x(t)− x∗‖
c)
= ‖ẍ(t) + αẋ(t)‖ · ‖x(t)− x∗‖
d)

≤ (‖ẍ(t)‖+ α‖ẋ(t)‖) · ‖x(t)− x∗‖
e)

≤ (α+ θ)‖ẋ(t)‖ · ‖x(t)− x∗‖, (9)

where a) is due to the convexity of f ; b) is due to the Young’s
inequality; c) is due to (3); d) is due to the triangle inequal-
ity; e) is because of (5). Denote

r := sup
t≥0

{
(α+ θ) · ‖x(t)− x∗‖+

‖ẋ(t)‖
2

}
.

Since {x(t)}t≥0 and {ẋ(t)}t≥0 are both bounded, we have
r < +∞. Using (9), we have

ξ(t)2 =
(
f(x(t))− f(x∗) +

1

2
‖ẋ(t)‖2

)2
≤
(

(α+ θ) · ‖x(t)− x∗‖ · ‖ẋ(t)‖+
1

2
‖ẋ(t)‖2

)2

≤
((

(α+ θ) · ‖x(t)− x∗‖+
1

2
‖ẋ(t)‖

)
· ‖ẋ(t)‖

)2

≤ r2‖ẋ(t)‖2. (10)

Combining (7) and (10), we have ξ(t)2 ≤ − r
2

α ξ̇(t), or
equivalently,

− α
r2
dt ≤ dξ

ξ2
. (11)

Taking the integral of both sides from 0 to t and noting
that ξ(0) ≥ f(x(0)) − min f > 0 (we have assumed that
f(x(0))−min f > 0), we get

− α
r2
t ≤ 1

ξ(0)
− 1

ξ(t)
,

and thus ξ(t) ≤ 1
α
r2
t+ 1

ξ(0)

. Since f(x(t)) − min f ≤ ξ(t),

we have
f(x(t))−min f ≤ 1

α
r2 t+ 1

ξ(0)

Thus we have derived the asymptotic sublinear convergence
rate for f(x(t))−min f .
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Convergence Analysis of Heavy-ball
In this section, we prove convergence rates of Heavy-ball
method. The core of the proof is to construct a proper Lya-
punov function. The expression of ξ(t) in (6) suggests the
Lyapunov function be of the form f(xk) +C‖xk+1 − xk‖2
for some C > 0. In fact, we have the following sufficient
descent lemma. All the technical proofs for the rest of the
paper, will be provided in the supplementary materials.

Lemma 1 Suppose f is convex with L-Lipschitz gradient
and min f > −∞. Let (xk)k≥0 be generated by the Heavy-
ball method with non-increasing (βk)k≥0 ⊆ [0, 1). By
choosing the step size

γk =
2(1− βk)c

L

with fixed 0 < c < 1, we have[
f(xk) +

βk
2γk
‖xk − xk−1‖2

]
−
[
f(xk+1) +

βk+1

2γk+1
‖xk+1 − xk‖2

]
≥ (1− c)L

2c
‖xk+1 − xk‖2. (12)

According to Lemma 1, a potentially useful Lyapunov func-
tion is

[
f(xk) + βk

2γk
‖xk − xk−1‖2

]
k≥0

, as it has the de-

scent property shown in (12). However, it does not fulfill
the relation in (10) 2. Therefore, we rewrite (12), so that the
new right-hand-side contains something like ‖xk+1−xk‖2+
‖xk − xk−1‖2. It turns out that a better Lyapunov function
reads

ξk := f(xk) + δk‖xk − xk−1‖2 −min f, (13)

where

δk :=
βk
2γk

+
1

2

(
1− βk
γk

− L

2

)
. (14)

We can see ξk is in line with the discretization of (6).
Given the Lyapunov function in (13), we present a key

technical lemma.

Lemma 2 Suppose the assumptions of Lemma 1 hold. Let
xk denote the projection of xk onto arg min f , assumed to
exist, and define

εk :=
4cδ2

k

(1− c)L
+

4c

(1− c)Lγ2
k

. (15)

Then it holds that

(ξk)2 ≤ εk × (ξk − ξk+1)

× (2‖xk − xk‖2 + ‖xk − xk−1‖2). (16)

We see that (16) is the discretization of (11) if supk{εk ·
(2‖xk − xk‖2 + ‖xk − xk−1‖2)} < +∞.

2That is, we are not able build a useful error relation for f(xk)+
βk
2γk
‖xk − xk−1‖2.

Sublinear Convergence
We present the non-ergodic O( 1

k ) convergence rate of the
function value. This rate holds when (βk)k≥0 ∈ (0, 1). We
define

R := sup
k≥0

sup
x∗∈argmin f

{‖xk − x∗‖2}. (17)

In our following settings, we can see it actually holds that
R < +∞.

Theorem 1 Under the assumptions of Lemma 1 and as-
sumptions that 0 < infk βk ≤ βk ≤ β0 < 1 and f is
coercive. We have

f(xk)−min f ≤ 4R · supk{εk}
k

. (18)

To our best knowledge, this is the first non-ergodic result
established for Heavy-ball algorithm in convex case. The
definition of εk implies supk{εk} = O(L), so it holds that

f(xk)−min f = O

(
R · L
k

)
,

which is on the same order of complexity as that in gradient
descent.

The coercivity assumption on f is crucial for Theorem 1.
When the function f fails to be coercive, we need to assume
summable (βk)k≥0 instead.

Corollary 1 Suppose the assumptions of Lemma 1 hold,
and

∑
k βk < +∞.3 Let (xk)k≥0 be generated by the

Heavy-ball algorithm and f be coercive. Then we have

f(xk)−min f ≤ 4R · supk{εk}
k

.

Linear Convergence with Restricted Strong
Convexity
We say the function f satisfies a restricted strongly convex
condition (Lai and Yin 2013), if

f(x)−min f ≥ ν‖x− x‖2, (19)
where x is the projection of x onto the set arg min f , and
ν > 0. Restricted strong convexity is weaker than the strong
convexity. For example, let us consider the function 1

2‖Ax−
b‖2 with b ∈ range(A). When A fails to be full row-rank,
1
2‖Ax − b‖2 is not strongly convex but restricted strongly
convex.

Theorem 2 Suppose the assumptions of Theorem 1 hold,
and f satisfies condition (19). Then we have

f(xk)−min f ≤ ωk,

for ωk := `
1+` ∈ (0, 1) and ` := supk

{
εk( 1

δk
+ 2

ν )
}

.

Our result improves the linear convergence established by
(Ghadimi, Feyzmahdavian, and Johansson 2015) in two as-
pects: Firstly, The strongly convex assumption is weakened
to (19). Secondly, The step size and inertial parameter are
chosen independent of the strongly convex constants.

3A classical example is βk = 1
kθ

, where θ > 1.
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Cyclic Coordinate Descent Heavy-ball
Algorithm

In this section, we consider the multi-block version of
Heavy-ball algorithm and prove its convergence rates under
convexity assumption. The minimization problem reads

min
x1,x2,...,xm

f(x1, x2, . . . , xm). (20)

The function f is assumed to satisfy

‖∇if(x)−∇if(y)‖ ≤ Li‖x− y‖. (21)

With (21), we can easily obtain

f(x1, x2, . . . , x
1
i , . . . , xm) ≤ f(x1, x2, . . . , x

2
i , . . . , xm)

+ 〈∇if(x1, x2, . . . , x
2
i , . . . , xm), x1

i − x2
i 〉

+
Li
2
‖x1

i − x2
i ‖2. (22)

The proof is similar to [Lemma 1.2.3,(Nesterov 2013)], and
we shall skip it here. We denote

∇ki f := ∇if(xk+1
1 , . . . , xk+1

i−1 , x
k
i . . . , x

k
m),

xk := (xk1 , x
k
2 , . . . , x

k
m), L :=

m∑
i=1

Li,

with the convention xk+1
0 = xk1 . The cyclic coordinate de-

scent inertial algorithm iterates: for i from 1 to m,

xk+1
i = xki − γk,i∇ki f + βk,i(x

k
i − xk−1

i ), (23)

where γk,i, βk,i > 0. Our analysis relies on the following
assumption:

A1: for any i ∈ [1, 2, . . . ,m], the parameters (βk,i)k≥0 ⊆
[0, 1) is non-increasing.

Lemma 3 Let f be a convex function satisfying (21), and
finite min f . Let (xk)k≥0 be generated by scheme (23) and
assumption A1 hold. Choosing the step size

γk,i =
2(1− βk,i)c

Li
, i ∈ [1, 2, . . . ,m]

for arbitrary fixed 0 < c < 1, we have[
f(xk) +

m∑
i=1

βk,i
2γk,i

‖xki − xk−1
i ‖2

]

−

[
f(xk+1) +

m∑
i=1

βk+1,i

2γk+1,i
‖xk+1

i − xki ‖2
]

≥ (1− c)L
2c

‖xk+1 − xk‖2, (24)

where L = mini∈[1,2,...,m]{Li}.

We consider the following similar Lyapunov function in
the analysis of cyclic coordinate descent Heavy-ball algo-
rithm

ξ̂k := f(xk) +

m∑
i=1

δk,i‖xki − xk−1
i ‖2 −min f, (25)

where

δk,i :=
βk,i
2γk,i

+
1

2

(
1− βk,i
γk,i

− Li
2

)
. (26)

Then we have the following lemma.

Lemma 4 Suppose the conditions Lemma 3 hold. Let xk de-
note the projection of xk onto arg min f , assumed to exist,
and define

ε̂k := max


4c ·

∑m
i=1

(
δ2
k+1,i + 1

γ2
k,i

)
(1− c)L

,
4c ·m · L
(1− c)L

 .

(27)

It holds that

(ξ̂k)2 ≤ ε̂k(ξ̂k − ξ̂k+1)

× (2‖xk − xk‖2 + ‖xk − xk−1‖2). (28)

Sublinear Convergence of Cyclic Coordinate
Descent Heavy-ball Algorithm
We show the O(1/k) convergence rate of cyclic coordinate
descent Heavy-ball algorithm for coercive f .

Theorem 3 Suppose the conditions of Lemma 3 hold, f is
coercive, and

0 < inf
k
βk,i ≤ βk,i ≤ β0 < 1, i ∈ [1, 2, . . . ,m].

Then we have

f(xk)−min f = O

(
4R · supk{ε̂k}

k

)
, (29)

where R is given by (17).

We readily check that supk{ε̂k} = O(mL), where m is
number of the block. Therefore, the cyclic inertial algorithm
converges with the rate O

(
m·R·L
k

)
. Compared with the re-

sults in (Sun and Hong 2015), this rate is on the same order
as that of cyclic block coordinate descent in general convex
setting.

Linear Convergence of Cyclic Coordinate Descent
Heavy-ball Algorithm
Under the same assumption of restricted strong convexity,
we derive the linear convergence rate for cyclic coordinate
descent Heavy-ball algorithm.

Theorem 4 Suppose the conditions of Lemma 3 hold, f sat-
isfies (19), and

0 < inf
k
βk,i ≤ βk,i ≤ β0 < 1, i ∈ [1, 2, . . . ,m].

Then we have

f(xk)−min f ≤ (ω̂)k (30)

for some ω̂ =
ˆ̀

1+ˆ̀ ∈ (0, 1), and ˆ̀ := supk
{
ε̂k + 2

ν +
1

mini{δk,i}
}

.
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This result can be extended to the essentially cyclic
Heavy-ball algorithm. The essentially cyclic index selection
strategy (Sun, Hannah, and Yin 2017), which generalizes the
cyclic update rule, is defined as follows: there is an M ∈ N,
M ≥ m, such that each block i ∈ {1, 2, . . . ,m} is updated
at least once in a window of M .

Stochastic Coordinate Descent Heavy-ball
Algorithm

For the stochastic index selection strategy, in the k-th itera-
tion, we pick ik uniformly from [1, 2, . . . ,m] and iterate{

xk+1
ik

= xkik − γk∇ikf(xk) + βk(xkik − x
k−1
ik

),

xk+1
i = xki , if i 6= ik.

(31)

In this section, we make the following assumption
A2: the parameters (βk)k≥0 ⊆ [0,

√
m) is non-increasing.

Assumption A2 is quite different from previous require-
ment that (βk)k≥0 which are constrained on [0, 1). This dif-
ference comes from the uniformly stochastic selection of the
index.

Lemma 5 Let f be a convex function whose gradient is Lip-
schitz continuous with L, and finite min f . Let (xk)k≥0 be
generated by scheme (31) and assumption A2 be satisfied.
Choose the step size

γk =
2(1− βk/

√
m)c

L

for arbitrary fixed 0 < c < 1. Then we can obtain[
Ef(xk) +

βk
2
√
mγk

E‖xk − xk−1‖2
]

−
[
Ef(xk+1) +

βk+1

2
√
mγk+1

E‖xk+1 − xk‖2
]

≥ (1− c)L
2c

E‖xk+1 − xk‖2. (32)

Similarly, we consider the following function

ξ̄k := f(xk) + δ̄k‖xk − xk−1‖2 −min f, (33)

where

δ̄k :=
βk

2
√
mγk

+
1

2

(
1− βk/

√
m

γk
− L

2

)
. (34)

Different from the previous analyses, the Lyapunov function
considered here is Eξ̄k instead of ξ̄k. Naturally, the sufficient
descent property is established in the sense of expectation.

Lemma 6 Suppose the conditions of Lemma 5 hold. Let xk
denote the projection of xk onto arg min f , assumed to exist,
and define

ε̄k :=
4cδ2

k

(1− c)L
+

8cm

(1− c)Lγ2
k

. (35)

Then it holds

(Eξ̄k)2 ≤ ε̄k · (Eξ̄k − Eξ̄k+1)

× (E‖xk − xk‖2 + E‖xk − xk−1‖2). (36)

Sublinear Convergence of Stochastic Coordinate
Descent Heavy-ball Algorithm
Due to that the sufficient descent condition involves expec-
tations, even using the coercivity of f , we cannot obtain
the boundedness of the generated points. Therefore, we first
present a result by assuming the smoothness of f only.

Theorem 5 Suppose that the assumptions of Lemma 5 hold.
Then we have

min
0≤i≤k

E‖∇f(xk)‖ = o

(
1√
k

)
. (37)

We remark that Theorem (5) also holds for nonconvex func-
tions. To obtain the sublinear convergence rate on the func-
tion values, we need a boundedness assumption. Precisely,
the assumption is

A3: the sequence (xk)k≥0 satisfies

R̄ := sup
k

{
E‖xk − xk‖2

}
< +∞.

Under assumption A3, we are able to show the non-
ergodic convergence sublinear convergence rates of the ex-
pected objective values.

Theorem 6 Suppose that the assumptions of Lemma 5 and
A3 hold. Then we have

Ef(xk)−min f = O

(
4R̄ · supk{ε̄k}

k

)
. (38)

Linear Convergence of Stochastic Coordinate
Descent Heavy-ball Algorithm
The linear convergence rate of stochastic coordinate descent
Heavy-ball algorithm is similar to previous ones. By assum-
ing the restricted strongly convex condition, the linear con-
vergence rate of the expected objective values can be proved.

Theorem 7 Suppose that the assumptions in Lemma 5 hold,
and the function satisfies the restricted strongly convex con-
dition (19). Let (xk)k≥0 be generated by the scheme (31).
Then we have

Ef(xk)−min f ≤ (w̄)k, (39)

where w̄ :=
¯̀

1+¯̀ ∈ (0, 1), and ¯̀ := supk{ε̄k + 1
ν + 1

δ̄k
}.

While we only consider the uniform probability selection
strategy here, the same convergence results can be easily ex-
tended to the non-uniform probability selection strategy.

Applications to Decentralized Optimization
We apply the analysis to the following decentralized opti-
mization problem

min
x∈Rn

{
m∑
i=1

fi(x)

}
,
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Figure 1: Objective values of inertial algorithms v.s. number of epochs for linear regression and logistic regression tasks. Panels
(a)-(d): Heavy-ball algorithms comparisons for linear regression with Gaussian data (a); for linear regression with Bernoulli
data (b); for logistic regression with Gaussian data (c); for logistic regression with Bernoulli data (d). Panels (e)-(h): Cyclic
coordinate descent Heavy-ball algorithms comparisons for linear regression with Gaussian data (e); for linear regression with
Bernoulli data (f); for logistic regression with Gaussian data (g); for logistic regression with Bernoulli data (h). Panels (i)-
(l): Stochastic coordinate descent Heavy-ball algorithms comparisons for linear regression with Gaussian data (i); for linear
regression with Bernoulli data (j); for logistic regression with Gaussian data (k); for logistic regression with Bernoulli data (l).

where fi is differentiable and ∇fi is Li-Lipschitz. Denote
by x(i) ∈ Rn the local copy of x at node i and X :=
(x(1), x(2), . . . , x(m))>. In the community of decentral-
ized algorithms, rather than directly solving the problem,
following penalty formulation instead has been proposed

min
X∈Rm×n

{
F (X) = f(X) +

X>(I −W )X

2α

}
, (40)

where W = (wi,j) ∈ Rm×m is the mixing matrix, and
f(X) :=

∑m
i=1 fi(x(i)), and I is the unit matrix. It is

easy to see that ∇F is Lipschitz with the constant LF :=

maxi{Li}+ 1−λmin(W )
α , here λmin(W ) is minimum eigen-

value of W . Researchers consider the decentralized gradient
descent (DGD) (Nedic and Ozdaglar 2009), which is essen-
tially the gradient descent applied to (40) with stepsize being
equal to α. This algorithm can be implemented over a con-
nected network, in which the agents communicate with their
neighbors and make full use of the computing resources of

all nodes. Alternatively, we can use the Heavy-ball method
by choosing the stepsize α, that is,

Xk+1 = Xk − α∇F (Xk) + β(Xk −Xk−1)

= WXk − α∇f(Xk) + β(Xk −Xk−1).

For node i, the local scheme is then

xk+1(i) =
∑

j∈N (i)

wi,jx
k(j)− α∇fi(xk(i))

+ β(xk(i)− xk−1(i)),

where xk(i) is the copy of the variable xk in node i in the kth
iteration and N (i) denotes the neighbors of node i. In the
global scheme, it is basically Heavy-ball algorithm. Thus,
we can apply our theoretical findings to this algorithm. To
guarantee the convergence, we just need

0 < α <
2(1− β)

LF
=

2(1− β)

maxi{Li}+ 1−λmin(W )
α

.
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After simplification, we then get

α ·max
i
{Li} < 1 + λmin(W )− 2β.

In a word, we need the requirements

0 ≤ β < 1 + λmin(W )

2
, 0 < α <

1− 2β + λmin(W )

maxi{Li}
.

The convergence result for decentralized Heavy-ball method
directly follows from our previous theoretical findings and
can be summarized as below.

Corollary 2 Assume that fi is convex and differentiable,
and ∇fi is Lipschitz with Li. Let 0 ≤ β < 1+λmin(W )

2 ,
and the sequence (Xk)k≥0 be generated by the decentral-
ized Heavy-ball method. For any fixed stepsize 0 < α <
1−2β+λmin(W )

maxi{Li} , we have

F (Xk)−minF = O

(
1

k

)
. (41)

This justifies the superiority of our non-ergodic anal-
ysis. As aforementioned in the introduction, all the
existing convergence results are about the sequence{
F
(∑k

i=1X
i

k

)
−minF

}
. However, for decentralized

Heavy-ball algorithm, it is meaningless to discuss the er-
godic rates, because the nodes only communicate with their
neighbors. However, our results, in this case, still hold.

Experimental Results
We report the numerical simulations of Heavy-ball method
applied to the linear regression problem

min
x∈Rn

{
1

2

m∑
i=1

(yi −A>i x)2

}
, (42)

and the logistic regression problem

min
x∈Rn

{
m∑
i=1

log
(
1 + exp(−yiA>i x)

)
+
λ

2
‖x‖2

}
, (43)

where (Ai, yi) ∈ Rn ⊕ R, i = 1, 2, . . . ,m. All experiments
were performed using MATLAB on an desktop with an In-
tel 3.4 GHz CPU. We tested the three Heavy-ball algorithms
with different inertial parameters. We fixed the stepsize as
γ = 1

L in all numerical tests. For the stepsize, we need
2(1−βk) > 1, i.e., 0 ≤ βk < 0.5. Therefore, inertial param-
eters are set to βk ≡ β = 0, 0.1, 0.2, 0.3, 0.4. For linear re-
gression problem, L = λmax(

∑m
i=1A

>
i Ai), where λmax(·)

denotes the largest eigenvalue of a matrix; whereas for lo-
gistic regression, we have L = λmax(

∑m
i=1A

>
i Ai) + λ.

With schemes of the algorithms, for cyclic coordinate gradi-
ent descent, the function values are recorded after the whole
epoch is updated; while for stochastic coordinate gradient
descent, functions values are updated after per iteration. The
special case β = 0 corresponds to the gradient descent, or
cyclic coordinate gradient descent, or stochastic coordinate
gradient descent. And we set n = 100 and m = 150. The

data Ai and yi were generated by the Gaussian random and
Bernoulli random distributions, respectively. The maximum
number of iterations was set to 1000. For logistic regression,
we set λ = 10−3. We tested the three Heavy-ball algorithms
for both two regression tasks with Gaussian and Bernoulli
data.

As illustrated by Figure 1, larger β leads to faster con-
vergence for both Heavy-ball algorithm and cyclic coordi-
nate descent algorithm when β ∈ [0, 0.4]. However, for
the stochastic block coordinate descent scheme, the inertial
method helps insignifically. This is because for the stochas-
tic case, in the kth iteration, the inertial terms contribute only
when ik = ik−1. This case, however, happens with proba-
bility N · 1

N2 = 1
N and N is the number of the blocks; as N

is large, ik = ik−1 happens at low probability for just one it-
eration, let alone the whole iterations. Therefore, the inertial
method is actually inactive at most iterations for stochastic
block coordinate descent scheme.

To improve the practical performance of stochastic block
coordinate descent Heavy-ball algorithm, another inertial
scheme proposed in (Xu and Yin 2013) can be recruited,
in which, a new storage yk is used. In each iteration, the al-
gorithm employs γk(xkik − y

k
ik

) to replace γk(xkik − x
k
ik

) in
scheme (31) and then updates ykik = xkik with keeping other
coordinates of yk. In this scheme, the inertial term can be
active for all iterations. However, the convergence of such
algorithm is beyond the proof techniques proposed in this
paper, and of course, deserves further study.

Conclusion
In this paper, we studied the non-ergodic computational
complexity of the Heavy-ball methods in the convex setting.
Under different assumptions, we proved the non-ergodic
sublinear and linear convergence rates for the algorithm,
respectively. In both cases, we made much more relaxed
assumptions than appeared in the existing literatures. Our
proof was motivated by the analysis on a novel dynamical
system. We extended our results to the multi-block coor-
dinate descent Heavy-ball algorithm for both cyclic and
stochastic update rules. The application to decentralized
optimization demonstrated the advantage of our analysis
techniques.
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