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Abstract
Network-structured data is becoming increasingly popular in
many applications. However, these data present great chal-
lenges to feature engineering due to its high non-linearity
and sparsity. The issue on how to transfer the link-connected
nodes of the huge network into feature representations is crit-
ical. As basic properties of the real-world networks, the local
and global structure can be reflected by dynamical transfer
behaviors from node to node. In this work, we propose a deep
embedding framework to preserve the transfer possibilities
among the network nodes. We first suggest a degree-weight
biased random walk model to capture the transfer behaviors
of the network. Then a deep embedding framework is intro-
duced to preserve the transfer possibilities among the nodes.
A network structure embedding layer is added into the con-
ventional Long Short-Term Memory Network to utilize its se-
quence prediction ability. To keep the local network neighbor-
hood, we further perform a Laplacian supervised space opti-
mization on the embedding feature representations. Experi-
mental studies are conducted on various real-world datasets
including social networks and citation networks. The results
show that the learned representations can be effectively used
as features in a variety of tasks, such as clustering, visualiza-
tion and classification, and achieve promising performance
compared with state-of-the-art models.

Introduction
Nowadays structured data in the form of networks is ubiq-
uitous in our daily lives and has an astonishing growth. Es-
pecially the pervasive use of online social networks, such
as Facebook and Twitter, generates huge network data con-
tinuously at unprecedented rates. New applications, such as
node classification (Sen et al. 2008), link prediction (Liben-
Nowell and Kleinberg 2007), and social role discovering
(Henderson et al. 2012), arise in various areas. For example,
node classification and link prediction are generally used for
similar user searching and advertisement recommendation.
However, the vast majority of existing machine learning al-
gorithms for classification and prediction are feature-based,
which means informative and discriminating attribute-value
entities are required. Rather than developing special learn-
ing algorithms for network data, it is more practical to learn
feature vector representations for nodes and edges of the
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network. Once the vectorized representation is obtained, the
data mining tasks for large networks can be well solved by
state-of-the-art machine learning algorithms. Therefore, the
issue of how to transfer the link-connected nodes of the huge
network into feature representations is critical.

Intuitively the widely studied graph embedding ap-
proaches including IsoMap (Tenenbaum, De Silva, and
Langford 2000), LLE (Roweis and Saul 2000), and Lapla-
cian Eigenmaps (Belkin and Niyogi 2001) seem to be good
solutions for the network feature learning problem. Never-
theless, the graph representation, which is the core of these
approaches, is directly derived from the data itself and per-
fectly reflects the global and local structure of the data.
On the contrary, natural networks encountered in the real
world are sparse and have many undiscovered and noisy
links (Tang and Liu 2012). We cannot get a full view of
the authentic relationship between any two nodes. So it is
unpractical to get features from the network itself by tra-
ditional graph embedding approaches. One typical solution
is to form hand-engineering features for each node by ob-
serving its interaction behavior with neighbors (Perozzi, Al-
Rfou, and Skiena 2014), such as first-order proximity and
second-order proximity (Tang et al. 2015). However, the
neighbor context information is still not enough to well de-
scribe the node due to the undiscovered and noisy links. The
networks from the real world exhibit significant dynamic
evolution behavior. It is impossible to catch the network evo-
lution process from the structured data itself. Fortunately,
the dynamic evolution process can be reflected by the trans-
fer behaviors among the nodes, such as rumor propagation
and reputation transmission.

Previous work did not systematically consider local and
global structure with its dynamical behaviors, so this paper
proposes a Deep Network Embedding framework to solve
this issue in two aspects. One is how to capture the net-
work structure and neighborhood context information from
the network structured data. The other is how to embed the
complex and non-linear network structural data into low-
dimensional vector representations, while preserving the
transfer possibilities among the nodes.

Our contributions are as follows:

• We propose a degree-weight biased random walk model
to preserve the global network context information. It cap-
tures the node’s roles and the information transfer behav-
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iors among nodes.
• To preserve the transfer possibilities among the nodes, we

design a deep network embedding framework, which sug-
gests a network structure embedding layer into the con-
ventional Long Short-Term Memory Network (LSTM) to
utilize its sequence prediction ability.

• We leverage a Laplacian supervised embedding space op-
timization to capture the local network structure, which
makes the connected nodes close with each other in the
low-dimensional space.

• We conduct extensive experiments on various tasks
with real-world datasets, and achieve competitive perfor-
mance.

Related Work
This work focuses on engineering features from the net-
work structured data. A practical way to engineer features
for the network structured data is to design domain-specific
features based on expert knowledge. For example, Hender-
son et al. (Henderson et al. 2011) introduced the statistical
properties of the node itself (e.g., degree) and its neighbor-
hood (number of edges) to generate the recursive structural
features. With their structural features, a role discovery ap-
proach RolX (Henderson et al. 2012) is designed to mine
the similar nodes with similar social behavior. Inspired from
the representational learning for natural language process-
ing, such as Skip-gram model (Mikolov et al. 2013), Per-
ozzi et al. (Perozzi, Al-Rfou, and Skiena 2014) proposed
the DeepWalk method by treating nodes in the network as
words. Their motivation is that the distributions of vertices
in social network and words in natural language appearing
in short random walks both follow a power-law behavior.
Similarly, node2vec (Grover and Leskovec 2016) offers flex-
ibility random walk sampling strategies to capture the diver-
sity of the neighborhood. However, these methods do not
make clear what kind of network properties are preserved.
LINE (Tang et al. 2015) method defines the first-order and
second-order proximities to clearly preserve both the local
and global network structures. HOPE (Ou et al. 2016) solves
the asymmetric transitivity problem in a directed network
and preserves high-order proximities of large-scale graphs
with generalized SVD.

The network data is highly non-linear (Tang and Liu
2012) with various links, Tian et al. (Tian et al. 2014)
proposed a deep autoencoder to learn nodes’ representa-
tion which was used for graph clustering. And Wang et al.
(Wang, Cui, and Zhu 2016) designed a semi-supervised deep
model to capture the highly non-linear network structure
based on the first-order and second-order proximity. DNGR
(Cao, Lu, and Xu 2016) use the stacked denoising autoen-
coder to learn the low-dimensional node representations.

As the convolutional neural network (CNN) has achieved
great success in the image processing area, some works
were carried out with CNN (Bruna et al. 2013). Inspired
by spectral convolutions, Kipf et al. (Kipf and Welling
2016) proposed an efficient convolutional neural network
that can classify the network data. Furthermore, Niepert et
al. (Niepert, Ahmed, and Kutzkov 2016) tried to construct a

convolution operator from spatial domain instead of spectral
domain for the network data.

Besides the CNN deep model, Generative Adversarial
Networks (GAN) (Goodfellow et al. 2014) was also intro-
duced to handle the network structured data. For instance,
Wang et al. (Wang et al. 2017) and Dai et al (Dai et al. 2017)
both use the GAN model to learn the network representa-
tion. Although the above methods have achieved good per-
formance on some tasks, the structure of the network they
considered are not comprehensive. This section can not be a
complete review of all algorithms and just briefly describes
the most related studies.

Problem Definition
In this section, we define the feature engineering problem for
network data and give some concepts of network structured
data concerned in this paper.

Definition 1. The network structured data can be repre-
sented as N={V , E}. V ={v1, v2, · · · , vn} is the node set
where n is the number of nodes. E = {eij}ni,j=1 is the edge
set where eij denotes the edges from node vi to vj . A weight
wij ≥ 0 is attached to each edge eij , and wij = 0 if vi
and vj are not directly connected. For unweighted network
wij = 1, and for undirected network wij = wji.

Definition 2. (Network numerical formalization) The net-
work feature representation learning problem aims to find
a robust and low-dimensional vector presentation for each
node. This paper addresses this problem in two steps: (1)
represent the structural network data in the numerical vec-
tor space that capture the structural function and global
neighborhood context information; (2) encode the complex
and non-linear network structural representations into low-
dimensional vector representations, while preserving the
transfer possibilities among the nodes. Then this problem
can be defined as follows.

Given a network N={V , E}, numerical formalization
aims to represent each vertex vi ∈ V as D-dimensional nu-
merical vector xi ∈ RD. The numerical vector xi preserves
the neighborhood and structural role information. (Feature
learning) It aims to learn a function f : xi → yi ∈ Rd, where
d � D. The objective of the function f is to minimize the
distance between yi and yj if they are similar to each other.

In the next section, we will introduce the network numer-
ical formalization and feature learning respectively.

Model Description
In this section, we introduce a Deep Network Embedding
framework (DNE) for representation learning as shown in
Figure 1. The DNE framework consists of three parts: (i)
Degree-Weight biased random walk (DW-RandomWalk)
for sampling sequences, (ii) A novel network structure em-
bedding layer of the Long Short-Term Memory (LSTM)
deep model (Graves 2013) for encoding high-dimensional
space into low-dimensional one, (iii) Laplacian (Belkin
and Niyogi 2001) supervised embedding space optimization
(LapEO) for capturing the local network structure.
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Figure 1: The proposed Deep Network Embedding (DNE) framework

Degree-Weight biased Random Walk
In most of the real networks, edge usually implies the sim-
ilarity of two nodes, such as friend relationships. Some lit-
eratures (Wang, Cui, and Zhu 2016) define the first-order
proximity to characterize the pairwise proximity. The draw-
back is that the social role and relationship information are
missing. As shown in Figure 2, the social role of nodes i
and k is much more similar than i and j in term of function
and structure. The information transfer more possibly exists
between nodes i and k. Here we propose a degree-weight bi-
ased proximity to characterize the transfer priority.For each
pair of nodes connected by an edge eij , the proximity sij is
calculated as follow.

sij = wij ·
min(di, dj)

max(di, dj) + α
(1)

The degree-weight biased proximity has the ability to cap-
ture the social role information among nodes. For example,
we can see that proximity sik and sij in Figure 2 is char-
acterized correctly. That means nodes with similar function
and role have high proximity probability. The α is an adjust-
ment parameter which makes the sij smooth. We use degree-
weight biased proximity sij to guide the walking process. It
tends to capture the primary structure characteristics among
the node. The transition probability is defined as follows:

P (ui → ui+1) = sui,ui+1 , ui+1 ∈ N (ui) (2)

where ui, u(i+ 1) denote two connected nodes in networks.
And the transition probabilities of each node are normal-
ized in order to make the summation equaling to 1. We call
this sampling method Degree-Weight biased Random Walk.
Nowadays, there are many excellent sampling methods on
network representation learning task, e.g., truncated random
walk (Perozzi, Al-Rfou, and Skiena 2014) and biased ran-
dom walk (Grover and Leskovec 2016). We will demonstrate
that our method is more suitable in the later section.

The Embedding Model
The sequences generated by random walk can be regarded
as time series, i.e., there is a temporal correlation among

ki

j

First-order proximity:

s(i, j) = 1,  s(i, k) = 1.

Degree-Weight biased 
proximity:
s(i, j) = 1/3,  s(i, k) = 1.

Figure 2: A toy example of subgraphs. Social role and rela-
tionship is quite different among nodes i, j and k.

the nodes in the generated sequence. In other words, such
sequences reflect the transfer behaviors among the network
nodes and can be predicted. Inspired by this, we propose to
employ a prediction model, i.e., LSTM, to process such se-
quences. LSTM is a kind of model well-suited to learn from
experience to process and predict time series. It was origi-
nally proposed by Sepp Hochreiter and Jürgen Schmidhuber
(Hochreiter and Schmidhuber 1997) in 1997, and is suitable
for the speech recognition problem with huge vocabulary of
words.

The conventional LSTM model is popularly applied to
natural language processing, mainly for sequence predic-
tion, e.g., predicting the next word or sentence (Sutskever,
Martens, and Hinton 2016) and translating English sentence
to another language (Sutskever, Vinyals, and Le 2014). In
such areas, researchers pay attention to the final result of
these tasks. However the network representation learning is
concerned with representation of hidden layer (Tian et al.
2014).

For the aim of network representation learning, we sug-
gest a new network structure embedding layer into the con-
ventional LSTM Network to utilize its sequence prediction
ability. The LSTM model itself is trained to predict the next
step in the sequences. And the embedding layer is used
to learn the representation, which maps high-dimensional
data to low-dimensional space. Let g : C 7−→ X , X ∈
R|V |×d, d � |V |, denotes the embedding layer where C is
the corpus we built by random walk, X is the d-dimensional
vector we expected.

For the LSTM traning, we use the sequence generated by
DW-RandomWalk to predict its next node. It is worth not-
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ing that this is a fake task (Mikolov et al. 2013). We just
want to obtain the nodes’ representation through predictive
procedure. The embedding layer is the real output we expect.

For network data, our goal is to maximize the likelihood
of predicting the next node, i.e,:

P(Xt+1|Xt) (3)

where Xt = (x1, x2, . . . , xt), Xt+1 = (x2, x3, . . . , xt+1).
We add a softmax function as softmax(xi) = exi∑

i e
xi

af-

ter the output layer. For each input sequence, the goal is to
predict its next node, so we use cross entropy to evaluate the
loss:

L = −
∑
Y lnO (4)

where Y is the predicted target node, and O is the output of
the softmax layer.

We use Adaptive Moment Estimation (Adam) (Kingma
and Ba 2014) to optimize the objective function and Back-
propagation (Williams and Peng 1990) to update parameters
including the representation Φ.

Embedding Space Optimization
The embedding model is able to capture the global struc-
tural information and transition context of the network. Be-
cause it not only considers the information at time tc, but
also considers the information before t, e.g. tc−1, tc−2,....
However, it does not preserve the local structure of the net-
work. We should guarantee the connected nodes still close
with each other in the new embedding space. To this end,
we propose a Laplacian supervised Embedding space Op-
timization (LapEO) to preserve the local network structure.
The idea is motivated from Laplacian Eigenmaps (Belkin
and Niyogi 2001), which attempts to make connected nodes
as close as possible in low-dimensional space. Network rep-
resentation learning is to learn a function to map the data in
high-dimensional space to low-dimensional space and main-
tains structural consistency (Grover and Leskovec 2016). In
other words, the neighborhood context of each node in the
original space and the new space should be as similar as pos-
sible. So we propose the loss function of the Laplacian opti-
mization as follow.

Lreg =
∑
i,j

(yi − yj)2Aij = 2 · Tr(Y TLY ) (5)

where Y ∈ R|V |×d is the node representation, A is the adja-
cency matrix, L = D − A is Laplacian matrix, D ∈ Rn×n

is a diagonal matrix, Di,i =
∑

j Ai,j .
We optimize the loss functions L and Lreg in an

Expectation-Maximization-like iterative way. That means
we choose an individual way and use different optimization
algorithms. There are two main reasons. The first one is that
the parameters of LSTM model are difficult to update when
there are two loss functions. The other reason is that the rep-
resentation is shared between these two stages. The embed-
ding space optimization can be performed after each LSTM
epoch to accelerate the LSTM training procedure.

Experiments
In this section, we empirically validate the effectiveness of
the proposed algorithm in comparison to various state-of-
the-art algorithms.

Datasets
The following datasets are employed for our experiments.
The datasets contain various numbers of nodes and edges
which could give sufficient validation for all the methods,
especially the Pubmed and BlogCatalog are large networks.

• BlogCatalog (Tang and Liu 2009) is social network
dataset about blogger authors. It commonly be used as the
ground-truth for multi-label classification task.

• CoRA, CiteSeer and PubMed (Sen et al. 2008) are collec-
tions of scientific publications from different databases.

• The 20-Newsgroups (Lang 1995) dataset is a collection of
20,000 newsgroup documents, partitioned into 20 differ-
ent categories.

Baseline Methods
We compare our method with several baseline methods, in-
cluding DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
LINE (Tang et al. 2015), SDNE (Wang, Cui, and Zhu 2016),
Struc2Vec (Ribeiro, Saverese, and Figueiredo 2017), and
GraphGAN (Wang et al. 2017). There are also some other
embedding methods, however, we can not show all of them
here. The above methods are recently proposed and give ex-
tensive experiments with other methods in the corresponding
papers.

Parameter Settings
For the compared methods, we set the optimal parameters as
suggested in their original papers. For example, DeepWalk,
we set window size as 10, walk length as 40 and walks per
vertex as 40. For LINE, the number of negative samples is
set as 5 and the total number of samples is 10 billion. For
SDNE, we set the number of layers in the model as 3, the
hyper-parameter α and β as 0.1 and 10. For Struc2Vec, we
set window size as 10, walk length as 80, walks per vertex as
10. All methods get representation with dimensions of 128.
For our method, we set walk length to be 100. We use differ-
ent γ( walks per node) for different datasets. For BlogCata-
log and Pubmed datasets, we set walks per node as 30. For
other datasets, we set walks per node as 100. LSTM learn-
ing rate is 0.001. For convenience, we set LSTM timesteps
equal to walk length l .

Experiments Results
In this section, we evaluate the learned representations of
different methods through three downstream tasks: cluster-
ing, classification and visualization.

Clustering Most of the data in the real world are un-
labeled, so learning the representation is particularly im-
portant for unsupervised learning task. In order to evalu-
ate the effectiveness of our representation in unsupervised
learning tasks, we design clustering experiment on three
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Table 1: The result of clustering

3-NG 6-NG 9-NG
DeepWalk 0.351 0.300 0.197

LINE 0.625 0.461 0.215
SDNE 0.423 0.365 0.254

GraphGAN 0.543 0.315 0.201
Struc2Vec 0.412 0.307 0.211

DNE 0.709 0.527 0.425

datasets: 3-NG, 6-NG and 9-NG, which are separated from
20-Newsgroup.

In the clustering task, we execute each baseline method
to generate representations for the nodes, which are used as
features for clustering. Then we cluster the nodes into cate-
gories with K-Means algorithm. And we record the perfor-
mance with NMI (Normalized Mutual Information) score.
The results of clustering are shown in Table 1

The results show that our method outperforms the oth-
ers. Methods, such as DeepWalk and GraphGAN, only con-
sider whether two nodes are connected and do not take the
weight of edges into account. Therefore, these baselines are
not applicable to the weighted dense networks. However,
our method overcomes these obstacles. The proposed DW-
random walk method not only considers the connection be-
tween two nodes, but also the weights of edges and the de-
grees of nodes. In combination with LSTM and LapEO, we
can better preserve the network’s global and local informa-
tion. Therefore DNE is robust in the clustering task both on
a weighted and unweighted dense network.

Visualization In visualization task, we focus on using the
learned representation to reveal the network data intuitively.
We execute our model and baseline methods on 3-NG
dataset which comes from the 20-Newsgroup dataset. This
dataset has 600 nodes each of which belongs to one of three
categories which are comp.graphics, rec.sport.baseball
and talk.politics.guns. We map the representations learned
by different network embedding methods into the 2-D
space using the visualization tool t-SNE(Van, Hinton, and
Maaten 2017). Figure 3 shows the visualization results on
3-NG dataset. Each point represents a document and col-
ors indicate different categories. The visualizations of Deep-
Walk, Struc2Vec and GraphGAN is not meaningful, where
the documents belonging to the same categories are not
clustered together. For example, DeepWalk and Struc2Vec
make the points belonging to different categories mix with
each other. GraphGAN overlaps the nodes of different cat-
egories with each other. For LINE and SDNE, although the
data can generally be divided into three clusters, the bound-
ary is not clear enough. Obviously, the visualization of our
method DNE performs better than baselines. This experi-
ment demonstrates DNE model can learn more meaningful
and robust representations.

Classification We divide the classification into two cat-
egories according to the number of labels in datasets that
nodes have: multi-label classification which the node has
more than one labels and multiclass classification which the

node only has one definite label.In the multi-label classifica-
tion task, i.e., BolgCatalog, every blogger author is assigned
one or more interested topics as labels. The training phase
with learn a classifier with a certain fraction of nodes and all
their labels. The test task is to predict the labels for the re-
maining nodes. In multi-label classification experiments, we
randomly sample a portion (from 10% to 90%) of the labeled
nodes, and use them as training data. The rest of the nodes
are used as test data. We report the average performance in
terms of Micro-F1 and Macro-F1. The results are shown
in Tabel 2. As we can see that although the performance
of DeepWalk is very competitive, we still outperform it. It
demonstrates that LSTM deep learning model more power-
ful than Skip-Gram model. Our model achieves most gains
of 27.57%(Micro-F1) and 24.26%(Macro-F1) with 90%
train nodes. That illustrate that the learned network repre-
sentations of DNE can better generalize to the multilabel
classification task than baselines.

In single-label node classification task, we employ Cora,
Citeseer and Pubmed datasets. And we record the perfor-
mance in terms of Accuracy. For classification experiment,
we execute our model and baseline methods on the whole
network to generate nodes representations for a one-vs-rest
logistic regression classifier. We randomly sample 10% to
90% of the nodes as the training samples and use the left
nodes to test the performance. The results are shown in Tabel
3, 4, and 5 respectively. For the PubMed dataset, we cannot
get a result for the GraphGAN method with the current com-
putational resources. From the results, it is evident we can
see DNE achieves promising performance compared with
others. For example, on CiteSeer, our method gives about
2% gain in accuracy over DeepWalk (ranked in the second
place) under all training ratio settings.

Parameter Sensitivity
In this section, we will investigate the parameter sensitivity,
w.r.t. Walks per node γ, Walk length l and Expected repre-
sentation dimension d, in order to guide us in selecting the
optimal parameters . We conduct the node classification task
on Cora with 5:5 train-test ratio and use the Accuracy to
illustrate the performance of our model. We examine each
parameter by fixing the other two parameters.

Figure 4a shows the results about dimension d. As the di-
mension increases, the accuracy first rises rapidly and then
slowly declines. The number 128 is the most appropriate di-
mension. Figure 4b reveals the effect of γ and l on model’s
performance. The accuracy score is positively related to γ
: as γ increases, the accuracy score rises linearly. γ corre-
sponds to the capacity of the corpora, and the bigger γ is,
the richer the corpora is. The length l of sequences generated
by DW-Random Walk affects the global information of the
node. LSTM can deal with long-term dependence sequence
problems, so an increase in sequence length does not dimin-
ish the performance of the model.

Performance w.r.t. Random Walks
In this section we compared the performance of three types
of Random Walks on the results, i.e., DW-RandomWalk,
Truncated-RandomWalk, and Biased-RandomWalk. We
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(a) DNE (b) DeepWalk (c) LINE (d) SDNE (e) GraphGAN (f) Struc2Vec

Figure 3: Visualization of 3-NG dataset. Each point represents one document. Different colors correspond to different cate-
gories, i.e., Red: comp.graphics, Blue: rec.sport.baseball, Green: talk.politics.guns

Table 2: The result of Multilabel classification on BlogCatalog

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%)

DeepWalk 33.12 36.20 37.60 39.30 40.00 40.30 40.50 41.50 42.00
LINE 31.03 33.41 34.56 35.42 35.97 36.18 36.74 36.82 36.89
SDNE 30.81 31.94 32.56 32.98 33.12 33.31 33.47 33.57 33.95

GraphGAN 23.43 24.83 25.30 25.62 25.67 25.51 25.69 25.73 25.34
Struc2Vec 10.73 11.63 12.57 13.24 13.86 14.25 14.56 14.87 14.56

DNE 34.30 37.13 37.91 39.39 39.97 40.66 40.88 41.32 42.13

Macro-F1(%)

DeepWalk 17.79 20.02 21.62 22.57 23.18 24.66 24.73 25.11 27.37
LINE 11.97 14.62 16.00 17.22 18.20 18.92 19.43 19.95 20.43
SDNE 14.94 15.55 16.03 16.11 16.31 16.41 16.54 16.69 16.87

GraphGAN 9.53 10.08 10.32 10.44 10.38 10.27 10.44 10.44 9.88
Struc2Vec 5.13 5.19 5.09 5.07 5.00 4.67 4.53 4.31 4.11

DNE 17.52 21.54 22.88 23.58 24.32 24.90 25.49 25.64 28.37

Table 3: The result of Node Classification on Cora

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy(%)

DeepWalk 71.77 73.85 74.98 76.12 77.65 77.54 78.84 79.17 80.40
LINE 46.02 51.18 54.00 55.22 56.38 56.89 57.24 57.97 59.29
SDNE 38.89 39.30 39.26 38.85 38.72 38.64 38.92 38.70 38.67

GraphGAN 24.58 26.64 27.44 27.75 28.72 29.33 29.42 29.62 28.71
Struc2Vec 31.67 34.19 35.87 36.91 38.20 38.53 39.59 40.40 40.33

DNE 71.86 74.38 75.12 76.06 77.03 78.87 78.22 79.89 81.18

Table 4: The result of Node Classification on Citeseer

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy(%)

DeepWalk 50.16 52.42 54.53 55.53 56.12 57.02 57.68 58.63 59.42
LINE 32.75 35.29 36.84 37.72 38.12 38.65 39.30 38.98 41.10
SDNE 31.27 32.90 33.56 33.53 33.63 33.94 34.34 34.09 34.77

GraphGAN 19.89 20.74 20.96 21.16 21.24 21.60 21.53 21.39 22.46
Struc2Vec 25.92 26.94 27.99 28.56 28.50 29.64 30.26 30.33 31.92

DNE 51.72 54.32 55.47 56.08 57.15 58.22 59.75 59.45 61.56

sample the node sequences on the BlogCatalog dataset with
the three different Random Walk methods, and then used
the DNE model to learn the representation. Figure 5 shows
the results. We can see that our DW-RandomWalk method
outperforms the others. Biased-RandomWalk is lightly
better than Truncated-RandomWalk. Especially in case the
number of labeled nodes is small, the performance of DW-
RandomWalk method is significantly better than the oth-

ers. In fact, when trained with only 20% of the nodes la-
beled, DW-RandomWalk performs better than Truncated-
RandomWalk and Biased-RandomWalk. It can be seen
that considering the properties (such as weight and degree)
of the network during random walks helps improve the per-
formance of the model. DW-RandomWalk utilizes both
two important properties of the network, i.e., the degree of
the node and weight of the edge, which allows exploring
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Table 5: The result of Node Classification on Pubmed

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy(%)

DeepWalk 70.75 72.29 73.47 73.59 74.58 75.71 75.69 75.83 76.65
LINE 53.49 54.43 54.96 55.19 55.43 55.56 55.68 55.39 55.18
SDNE 39.57 40.02 40.52 40.45 41.20 41.58 41.64 41.56 41.69

GraphGAN - - - - - - - - -
Struc2Vec 47.84 49.12 49.61 49.85 49.93 50.06 50.16 50.38 50.73

DNE 73.74 74.45 75.40 75.42 75.57 76.09 76.43 76.70 77.23
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(b) Walks per node
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Figure 4: Parameter sensitivity analysis of our model on Cora with train ratio as 50%
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Figure 5: The results of different Random Walks

the functional role of nodes. The degree of the node can of-
ten reflect its importance in the network. By considering the
degrees and weights jointly, we can traverse more diverse
neighbor nodes And by introducing degree and weight in-
formation, we also avoid other hyper-parameters, such as p
and q for the Biased-RandomWalk.

Discussion and Conclusion
Network structured data poses a great challenge for the
traditional machine learning algorithms. Recent years re-
searchers pay attention to designing feature vectors for
learning algorithms. Structural function and neighborhood
context are potential knowledge of the network structured
data. And information transferring characterizes the struc-
tural roles of the nodes and connections, also the network
evolution behaviors. This work introduces embedding layers
to the traditional LSTM model to learn the representation for
each network node. To the best of our knowledge, it is the

first time of employing a prediction model to generate new
node representations.

Random walk shows its nice ability on capturing the
global neighborhood context in the former researches, such
as Deepwalk (Perozzi, Al-Rfou, and Skiena 2014) and
node2vec (Grover and Leskovec 2016). This paper further
suggests a degree-weight biased random walk model to cap-
ture the functional and global network context information.
In the network domain, the social role of the node is mostly
dependent on the degree. And the weight denotes the rela-
tionships among nodes. The new walk stage can guide the
walking process to capture the major social role and global
structural context. The prediction model is mainly used to
embed the network structure properties. Besides, it can also
preserve the transfer possibilities among the nodes. To cap-
ture the local network structure, we propose a Laplacian
supervised embedding space optimization method follow-
ing the embedding layer of the model. Laplacian Eigen-
maps ensure that two connected nodes are close in low-
dimensional space, so it can extract local information from
the network. Our proposed DNE method could generate a
robust representation. Experiments on multiple datasets are
conducted to evaluate the network representation generated
by the method. The results show that our method is a valu-
able complement to the state-of-the-art.
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