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Abstract

The variational autoencoder (VAE) is a powerful generative
model that can estimate the probability of a data point by us-
ing latent variables. In the VAE, the posterior of the latent
variable given the data point is regularized by the prior of
the latent variable using Kullback Leibler (KL) divergence.
Although the standard Gaussian distribution is usually used
for the prior, this simple prior incurs over-regularization. As
a sophisticated prior, the aggregated posterior has been in-
troduced, which is the expectation of the posterior over the
data distribution. This prior is optimal for the VAE in terms
of maximizing the training objective function. However, KL
divergence with the aggregated posterior cannot be calculated
in a closed form, which prevents us from using this optimal
prior. With the proposed method, we introduce the density ra-
tio trick to estimate this KL divergence without modeling the
aggregated posterior explicitly. Since the density ratio trick
does not work well in high dimensions, we rewrite this KL
divergence that contains the high-dimensional density ratio
into the sum of the analytically calculable term and the low-
dimensional density ratio term, to which the density ratio
trick is applied. Experiments on various datasets show that
the VAE with this implicit optimal prior achieves high den-
sity estimation performance.

1 Introduction
Estimating data distributions is one of the important chal-
lenges of machine learning. The variational autoencoder
(VAE) (Kingma and Welling 2013; Rezende, Mohamed,
and Wierstra 2014) was presented as a powerful genera-
tive model that can learn distributions by using latent vari-
ables and neural networks. Since the VAE can capture the
high-dimensional complicated data distributions, it is widely
applied to various data, such as images (Gulrajani et al.
2016), videos (Gregor et al. 2015), and audio and speech
(Hsu, Zhang, and Glass 2017; van den Oord, Vinyals, and
kavukcuoglu 2017).

The VAE is composed of three distributions: the encoder,
the decoder, and the prior of the latent variable. The encoder
and the decoder are conditional distributions, and neural net-
works are used to model these distributions. The encoder de-
fines the posterior of the latent variable given the data point,
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whereas the decoder defines the distribution of the data point
given the latent variable. The parameters of encoder and de-
coder neural networks are optimized by maximizing the sum
of the evidence lower bound of the log marginal likelihood.
In the training of VAE, the prior regularizes the encoder by
Kullback Leibler (KL) divergence. The standard Gaussian
distribution is usually used for the prior since the KL diver-
gence can be calculated in a closed form.

Recent research shows that the prior plays an important
role in the density estimation (Hoffman and Johnson 2016).
Although the standard Gaussian prior is usually used, this
simple prior incurs over-regularization, which is one of the
causes of the poor density estimation performance. This
over-regularization is also known as the posterior-collapse
phenomenon (van den Oord, Vinyals, and kavukcuoglu
2017). To improve the density estimation performance, the
aggregated posterior prior has been introduced, which is the
expectation of the encoder over the data distribution (Hoff-
man and Johnson 2016). The aggregated posterior is an opti-
mal prior in terms of maximizing the training objective func-
tion of the VAE. However, KL divergence with the aggre-
gated posterior cannot be calculated in a closed form, which
prevents us from using this optimal prior. In previous work
(Tomczak and Welling 2018), the aggregated posterior is
modeled by using the finite mixture of encoders for calcu-
lating the KL divergence in a closed form. Nevertheless, it
has sensitive hyperparameters such as the number of mixture
components, which are difficult to tune.

In this paper, we propose the VAE with implicit opti-
mal priors, where the aggregated posterior is used as the
prior, but the KL divergence is directly estimated with-
out modeling the aggregated posterior explicitly. This im-
plicit modeling enables us to avoid the difficult hyperpa-
rameter tuning for the aggregated posterior model. We use
the density ratio trick, which can estimate the density ra-
tio between two distributions without modeling each dis-
tribution explicitly, since the KL divergence is the expec-
tation of the density ratio between the encoder and aggre-
gated posterior. Although the density ratio trick is power-
ful, it has been experimentally shown to work poorly in
high dimensions (Sugiyama, Suzuki, and Kanamori 2012;
Rosca, Lakshminarayanan, and Mohamed 2018). Unfortu-
nately, with high-dimensional datasets, the density ratio be-
tween the encoder and the aggregated posterior also be-
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comes high-dimensional. To avoid the density ratio estima-
tion in high dimensions, we rewrite the KL divergence with
the aggregated posterior to the sum of two terms. The first
term is the KL divergence between the encoder and the stan-
dard Gaussian prior, which can be calculated in a closed
form. The other term is the low-dimensional density ratio
between the aggregated posterior and the standard Gaussian
distribution, to which the density ratio trick is applied.

2 Preliminaries
2.1 Variational Autoencoder
First, we review the variational autoencoder (VAE) (Kingma
and Welling 2013; Rezende, Mohamed, and Wierstra 2014).
The VAE is a probabilistic latent variable model that relates
an observed variable vector x to a low-dimensional latent
variable vector z by a conditional distribution. The VAE
models the probability of a data point x by

pθ(x) =

∫
pθ(x | z)pλ(z)dz, (1)

where pλ(z) is a prior of the latent variable vector, and
pθ(x|z) is the conditional distribution of x given z, which is
modeled by neural networks with parameter θ. For example,
if x is binary, this distribution is modeled by a Bernoulli dis-
tribution B(x | µθ(z)), where µθ(z) is neural networks with
parameter θ and input z. These neural networks are called
the decoder.

The log marginal likelihood ln pθ(x) is bounded below by
the evidence lower bound (ELBO), which is derived from
Jensen’s inequality, as follows:

ln pθ(x) = lnEqφ(z|x)
[
pθ(x | z)pλ(z)
qφ(z | x)

]
≥ Eqφ(z|x)

[
ln
pθ(x | z)pλ(z)
qφ(z | x)

]
≡ L(x; θ, φ), (2)

where E[·] represents the expectation, and qφ(z | x) is the
posterior of z given x, which are modeled by neural net-
works with parameter φ. qφ(z | x) is usually modeled by
a Gaussian distribution N (z | µφ(x), σ2

φ(x)), where µφ(x)
and σ2

φ(x) are neural networks with parameter φ and input
x. These neural networks are called the encoder.

The ELBO (Eq. (2)) can be also written as

L(x; θ, φ) = −DKL(qφ(z | x)‖pλ(z))
+ Eqφ(z|x) [ln pθ(x | z)] , (3)

where DKL(P‖Q) is the Kullback Leibler (KL) divergence
between P and Q. The second expectation term in Eq. (3)
is called the reconstruction term, which is also known as the
negative reconstruction error.

The parameters of the encoder and decoder neural net-
works are optimized by maximizing the following expecta-
tion of the lower bound of the log marginal likelihood:

max
θ,φ

∫
pD(x)L(x; θ, φ)dx, (4)

where pD(x) is the data distribution.

2.2 Aggregated Posterior
The training of VAE is maximizing the reconstruction term
with regularization by KL divergence between the encoder
and the prior. The prior is usually modeled by a stan-
dard Gaussian distribution N (z|0, I) (Kingma and Welling
2013). However, this is not an optimal prior for the VAE.
This simple prior incurs over-regularization, which is one of
the causes of the poor density estimation performance (Hoff-
man and Johnson 2016). This phenomenon is called the
posterior-collapse (van den Oord, Vinyals, and kavukcuoglu
2017).

The optimal prior that maximizes the objective function
of VAE (Eq. (4)) can be derived analytically. The maximiza-
tion of Eq. (4) with respect to the prior pλ(z) is written as
follows:

argmax
pλ(z)

∫
pD(x)L(x; θ, φ)dx

= argmax
pλ(z)

∫
pD(x)Eqφ(z|x) [ln pλ(z)] dx

= argmax
pλ(z)

∫ {∫
pD(x)qφ(z | x)dx

}
ln pλ(z)dz

= argmax
pλ(z)

−H(

∫
pD(x)qφ(z | x)dx, pλ(z)), (5)

where −H(P,Q) is the negative cross entropy between P
and Q. Since −H(P,Q) takes a maximum value when P is
equal to Q, the optimal prior p∗λ(z) that maximizes Eq. (4)
is

p∗λ(z) =

∫
pD(x)qφ(z | x)dx ≡ qφ(z). (6)

This distribution qφ(z) is called the aggregated posterior 1.
When we use the standard Gaussian prior p(z) =

N (z|0, I), the KL divergence DKL(qφ(z | x)‖p(z)) can
be calculated in a closed form (Kingma and Welling 2013).
However, when we use the aggregated posterior qφ(z) as the
prior, the KL divergence

DKL(qφ(z | x)‖qφ(z)) = Eqφ(z|x)
[
ln
qφ(z | x)
qφ(z)

]
(7)

cannot be calculated in a closed form, which prevents us
from using the aggregated posterior as the prior.

2.3 Previous work: VampPrior
In previous work, the aggregated posterior is modeled by
using the finite mixture of encoders to calculate the KL di-
vergence. Given a dataset X =

{
x(1), . . . ,x(N)

}
, the ag-

gregated posterior can be simply modeled by an empirical
distribution:

qφ(z) '
1

N

N∑
i=1

qφ(z | x(i)). (8)

1Note that the aggregated posterior is NOT the product of the
prior and the likelihood, which is the way the word posterior is
usually used.
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Nevertheless, this empirical distribution incurs over-fitting
(Tomczak and Welling 2018). Thus, the VampPrior (Tom-
czak and Welling 2018) models the aggregated posterior by

qφ(z) '
1

K

K∑
k=1

qφ(z | u(k)), (9)

where K is the number of mixtures, and u(k) is the same di-
mensional vector as a data point. u is regarded as the pseudo
input for the encoder, and is optimized during the training
of the VAE through the stochastic gradient descent (SGD).
If K � N , the VampPrior can avoid over-fitting (Tomczak
and Welling 2018). The KL divergence with the VampPrior
can be calculated by the Monte Carlo approximation. The
VAE with the VampPrior achieves better density estimation
performance than the VAE with the standard Gaussian prior
and the VAE with the Gaussian mixture prior (Dilokthanakul
et al. 2016). However, this approach has a major drawback:
it has sensitive hyperparameters such as the number of mix-
tures K, which are difficult to tune.

From the above discussion, the aggregated posterior
seems to be difficult to model explicitly. In this paper, we
estimate the KL divergence with the aggregated posterior
without modeling the aggregated posterior explicitly.

3 Proposed Method
In this section, we propose the approximation method of the
KL divergence with the aggregated posterior, and describe
the optimization procedure of our approach.

3.1 Estimating the KL Divergence

As shown in Eq. (7), the KL divergence with the aggre-
gated posterior is the expectation of the logarithm of the
density ratio qφ(z | x)/qφ(z). In this paper, we introduce the
density ratio trick (Sugiyama, Suzuki, and Kanamori 2012;
Goodfellow et al. 2014), which can estimate the ratio of two
distributions without modeling each distribution explicitly.
Hence, there is no need to model the aggregated posterior
explicitly. By using the density ratio trick, qφ(z | x)/qφ(z)
can be estimated by using a probabilistic binary classifier
D(x, z).

However, the density ratio trick has a serious draw-
back: it has been experimentally shown to work poorly in
high dimensions (Sugiyama, Suzuki, and Kanamori 2012;
Rosca, Lakshminarayanan, and Mohamed 2018). Unfortu-
nately, if x is high-dimensional, qφ(z | x)/qφ(z) also be-
comes a high-dimensional density ratio. The reason is as fol-
lows. Since the qφ(z | x) is a conditional distribution of z
given x, the density ratio trick has to use a probabilistic bi-
nary classifier D(x, z), which takes x and z jointly as an in-
put. In fact,D(x, z) estimates the density ratio of joint distri-
butions of x and z, which is a high-dimensional density ratio
with high-dimensional x (Mescheder, Nowozin, and Geiger
2017).

To avoid the density ratio estimation in high dimensions,
we rewrite the KL divergence DKL(qφ(z | x)‖qφ(z)) as

follows:

DKL(qφ(z | x)‖qφ(z))

= Eqφ(z|x)
[
ln
qφ(z | x)
qφ(z)

]
=

∫
qφ(z | x) ln

qφ(z | x)
p(z)

dz

+

∫
qφ(z | x) ln

p(z)

qφ(z)
dz

= DKL(qφ(z | x)‖p(z))− Eqφ(z|x)
[
ln
qφ(z)

p(z)

]
. (10)

The first term in Eq. (10) is KL divergence between the en-
coder and standard Gaussian distribution, which can be cal-
culated in a closed form. The second term is the expectation
of the logarithm of the density ratio qφ(z)/p(z). We esti-
mate qφ(z)/p(z) with the density ratio trick. Since the latent
variable vector z is low-dimensional, the density ratio trick
works well.

We can estimate the density ratio qφ(z)/p(z) as follows.
First, we prepare the samples from qφ(z) and samples from
p(z). We can sample from p(z) and qφ(z | x) since these
distributions are a Gaussian, and we can also sample from
the aggregated posterior qφ(z) by using ancestral sampling:
we choose a data point x from a dataset randomly and sam-
ple z from the encoder given this data point x. Second, we
label y = 1 to samples from qφ(z) and y = 0 to samples
from p(z). Then, we define p∗(z | y) as follows:

p∗(z | y) ≡
{
qφ(z) (y = 1)

p(z) (y = 0)
. (11)

Third, we introduce a probabilistic binary classifier D(z)
that discriminates between the samples from qφ(z) and sam-
ples from p(z). If D(z) can discriminate these samples per-
fectly, we can rewrite the density ratio qφ(z)/p(z) by using
Bayes theorem and D(z) as follows:

qφ(z)

p(z)
=
p∗(z | y = 1)

p∗(z | y = 0)
=
p∗(y = 0)p∗(y = 1 | z)
p∗(y = 1)p∗(y = 0 | z)

=
p∗(y = 1 | z)
p∗(y = 0 | z)

≡ D(z)

1−D(z)
, (12)

where p∗(y = 0) equals p∗(y = 1) since the number of
samples is the same. We model D(z) by σ(Tψ(z)), where
Tψ(z) is a neural network with parameter ψ and input z,
and σ(·) is a sigmoid function. We train Tψ(z) to maximize
the following objective function:

T ∗(z) = max
ψ

Eqφ(z) [ln(σ(Tψ(z)))]

+ Ep(z) [ln(1− σ(Tψ(z)))] . (13)

By using T ∗(z), we can estimate the density ratio
qφ(z)/p(z) as follows:

qφ(z)

p(z)
=

σ(T ∗(z))

1− σ(T ∗(z))
⇔ T ∗(z) = ln

qφ(z)

p(z)
. (14)
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Therefore, we can estimate the KL divergence with the ag-
gregated posterior DKL(qφ(z | x)‖qφ(z)) by

DKL(qφ(z | x)‖qφ(z))
= DKL(qφ(z | x)‖p(z))− Eqφ(z|x) [T

∗(z)] . (15)

3.2 Optimization Procedure
From the above discussion, we obtain the training objective
function of the VAE with our implicit optimal prior:

max
θ,φ

∫
pD(x) {−DKL(qφ(z | x)‖p(z))

+Eqφ(z|x) [ln pθ(x | z) + Tψ(z)]
}
dx, (16)

where Tψ(z) maximizes the Eq. (13). Given a dataset X ={
x(1), . . . ,x(N)

}
, we optimize the Monte Carlo approxima-

tion of this objective:

max
θ,φ

1

N

N∑
i=1

{
−DKL(qφ(z | x(i))‖p(z))

+Eqφ(z|x(i))

[
ln pθ(x

(i) | z) + Tψ(z)
]}

, (17)

and we approximate the expectation term by the reparame-
terization trick (Kingma and Welling 2013):

Eqφ(z|x(i))

[
ln pθ(x

(i) | z) + Tψ(z)
]

' 1

L

L∑
`=1

{
ln pθ(x

(i) | z(i,`)) + Tψ(z
(i,`))

}
, (18)

where z(i,`) = µφ(x
(i))+ε(i,`)�σφ(x(i)), ε(i,`) is a sample

drawn from N (z|0, I), � is the element-wise product, and
L is the sample size of the reparameterization trick. Then,
the resulting objective function is

max
θ,φ

1

N

N∑
i=1

[
−DKL(qφ(z | x(i))‖p(z))

+
1

L

L∑
`=1

{
ln pθ(x

(i) | z(i,`)) + Tψ(z
(i,`))

}]
. (19)

We optimize this model with stochastic gradient de-
scent (SGD) (Duchi, Hazan, and Singer 2011; Zeiler 2012;
Tieleman and Hinton 2012; Kingma and Ba 2014) by iterat-
ing a two-step procedure: we first update θ and φ to maxi-
mize Eq. (19) with fixed ψ and next update ψ to maximize
the Monte Carlo approximation of Eq. (13) with fixed θ and
φ, as follows:

max
ψ

1

M

M∑
i=1

ln(σ(Tψ(z
(i)
1 )))

+
1

M

M∑
j=1

ln(1− σ(Tψ(z(j)0 ))), (20)

Algorithm 1 VAE with Implicit Optimal Priors

1: while not converged do
2: for J1 steps do
3: Sample minibatch

{
x(1), . . . ,x(K)

}
from X

4: Compute the gradients of Eq. (19) w.r.t. θ and φ
5: Update θ and φ with their gradients
6: end for
7: for J2 steps do
8: Sample minibatch

{
z
(1)
0 , . . . , z

(K)
0

}
from p(z)

9: Sample minibatch
{
z
(1)
1 , . . . , z

(K)
1

}
from qφ(z)

10: Compute the gradient of Eq. (20) w.r.t. ψ
11: Update ψ with its gradient
12: end for
13: end while

where z
(i)
1 is a sample drawn from qφ(z), z

(j)
0 is a sample

drawn from p(z), andM is the sampling size of Monte Carlo
approximation. Note that we need to compute the gradient
of Tψ(z) with respect to φ in the optimization of Eq. (19)
since Tψ(z) models ln qφ(z)/p(z). However, when Tψ(z)
equals T ∗(z), the expectation of this gradient becomes zero,
as follows:

EpD(x)qφ(z|x) [∇φT
∗(z)] = Eqφ(z) [∇φ ln qφ(z)]

=

∫
qφ(z)

∇φqφ(z)
qφ(z)

dz = ∇φ
∫
qφ(z)dz = ∇φ1 = 0.

(21)

Therefore, we ignore this gradient in the optimization 2. We
also note that Tψ(z) is likely to overfit to the log density ratio
between the empirical aggregated posterior (Eq. (8)) and the
standard Gaussian distribution. As mentioned in Section 2.3,
this over-fitting also incurs over-fitting of the VAE (Tom-
czak and Welling 2018). Therefore, we use the regulariza-
tion techniques such as dropout (Srivastava et al. 2014) for
Tψ(z), which prevents it from over-fitting. We train ψ more
than θ and φ: if we update θ and φ for J1 steps, we update ψ
for J2 steps, where J2 is larger than J1. Algorithm 1 shows
the pseudo code of the optimization procedure of this model,
where K is the minibatch size of SGD.

4 Related Work
For improving the density estimation performance of the
VAE, numerous works have focused on the regularization
effect of the KL divergence between the encoder and the
prior. These works improve either the encoder or the prior.

First, we focus on the works about the prior. Although
the optimal prior for the VAE is the aggregated posterior,
the KL divergence with the aggregated posterior cannot be
calculated in a closed form. As described in Section 2.3,
the VampPrior (Tomczak and Welling 2018) has been pre-
sented to solve this problem. However, it has sensitive hy-
perparameters such as the number of mixtures K. Since the

2There is almost the same discussion in (Mescheder, Nowozin,
and Geiger 2017).
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VampPrior requires a heavy computational cost, these hy-
perparameters are difficult to tune. In contrast to this, our ap-
proach can estimate the KL divergence more easily and ro-
bustly than the VampPrior since it does not need to model the
aggregated posterior explicitly. In addition, since the compu-
tational cost of our approach is much more lightweight than
that of VampPrior, the hyperparameters of our approach are
easier to tune than those of VampPrior.

There are approaches on improving the prior other
than the aggregated posterior. For example, non-parametric
Bayesian distribution (Nalisnick and Smyth 2017) and hy-
perspherical distribution (Davidson et al. 2018) are used for
the prior. These approaches aim to obtain the useful and in-
terpretable latent representation rather than improving the
density estimation performance, which is opposite to our
purpose. We should mention the disadvantage of our ap-
proach compared with these approaches. Since our prior is
implicit, we cannot sample from our prior directly. Instead,
we can sample from the aggregated posterior, which our im-
plicit prior models, by using ancestral sampling. That is,
when we sample from the prior, we need to prepare a data
point.

Next, we focus on the works about the encoder. To im-
prove the density estimation performance, these works in-
crease the flexibility of the encoder. The normalizing flow
(Rezende and Mohamed 2015; Kingma et al. 2016; Huang
et al. 2018) is one of the main approaches, which applies a
sequence of invertible transformations to the latent variable
vector until a desired level of flexibility is attained. Our ap-
proach is orthogonal to the normalizing flow and can be used
together with it.

The similar approaches to ours are the adversarial vari-
ational Bayes (AVB) (Mescheder, Nowozin, and Geiger
2017) and the adversarial autoencoders (AAE) (Makhzani
et al. 2015; Tolstikhin et al. 2017). These approaches use the
implicit encoder network, which takes as input a data point
x and Gaussian random noise and produces a latent vari-
able vector z. Since the implicit encoder does not assume
the distribution type, it can become a very flexible distri-
bution. In these approaches, the standard Gaussian distribu-
tion is used for the prior. Although the KL divergence be-
tween the implicit encoder and the standard Gaussian prior
DKL(qφ(z | x)‖p(z)) cannot be calculated in a closed form,
the AVB estimates this KL divergence by using the density
ratio trick. However, this estimation does not work well with
high-dimensional datasets since this KL divergence also be-
comes a high-dimensional density ratio (Rosca, Lakshmi-
narayanan, and Mohamed 2018). Our approach can avoid
this problem since we use the density ratio trick in a low
dimension. The AAE is an expansion of the Autoencoder
rather than the VAE. The AAE regularizes the aggregated
posterior to be close to the standard Gaussian prior by min-
imizing the KL divergence DKL(qφ(z)‖p(z)). The AAE
also uses the density ratio trick to estimate this KL diver-
gence, and this works well since this KL divergence is a
low-dimensional density ratio. However, the AAE cannot es-
timate the probability of a data point. Our approach is based
on the VAE, and can estimate the probability of a data point.

Table 1: Number and dimensions of datasets

Dimension Train size Valid size Test size

OneHot 4 1,000 100 1,000
MNIST 784 50,000 10,000 10,000
OMNIGLOT 784 23,000 1,345 8,070
FreyFaces 560 1,565 200 200
Histopathology 784 6,800 2,000 2,000

5 Experiments
In this section, we experimentally evaluate the density esti-
mation performance of our approach.

5.1 Data
We used five datasets: OneHot (Mescheder, Nowozin, and
Geiger 2017), MNIST (Salakhutdinov and Murray 2008),
OMNIGLOT (Burda, Grosse, and Salakhutdinov 2015),
FreyFaces3, and Histopathology (Tomczak and Welling
2016). OneHot consists of only four-dimensional one
hot vectors: (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, and
(0, 0, 0, 1)T. This simple dataset is useful for observing the
posterior of the latent variable, which is used in (Mescheder,
Nowozin, and Geiger 2017). MNIST and OMNIGLOT are
binary image datasets, and FreyFaces and Histopathology
are grayscale image datasets. These image datasets are use-
ful for measuring the density estimation performance, which
are used in (Tomczak and Welling 2018). The number and
the dimensions of data points of the five datasets are listed
in Table 1.

5.2 Setup
We compared our implicit optimal prior with standard Gaus-
sian prior and VampPrior. We set the dimensions of the latent
variable vector to 2 for OneHot, and 40 for other datasets.
We used two-layer neural networks (500 hidden units per
layer) for the encoder, the decoder, and the density ratio esti-
mator. We used the gating mechanism (Dauphin et al. 2016)
for the encoder and the decoder and used a hyperbolic tan-
gent as the activation function for the density ratio estima-
tor. We initialized the weights of these neural networks in
accordance with the method in (Glorot and Bengio 2010).
We used a Gaussian distribution as the encoder. As the de-
coder, we used a Bernoulli distribution for OneHot, MNIST,
and OMNIGLOT and used a Gaussian distribution for Frey-
Faces and Histopathology, means of which were constrained
to the interval [0, 1] by using a sigmoid function. We trained
all methods by using Adam (Kingma and Ba 2014) with a
mini-batch size of 100 and learning rate in

[
10−4, 10−3

]
. We

set the maximum number of epochs to 1,000 and used early-
stopping (Goodfellow, Bengio, and Courville 2016) on the
basis of validation data. We set the sample size of the repa-
rameterization trick to L = 1. In addition, we used warm-
up (Bowman et al. 2015) for the first 100 epochs of Adam.

3This dataset is available at https://cs.nyu.edu/∼roweis/data/
frey rawface.mat
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Figure 1: Comparison of posteriors of latent variable on OneHot. We plotted samples drawn from qφ(z | x), where x is a one
hot vector: (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, or (0, 0, 0, 1)T. We used test data for this sampling. Samples in each color
correspond to each latent representation of one hot vectors. (a) Standard VAE (VAE with standard Gaussian prior). (b) AVB.
(c) VAE with VampPrior. (d) Proposed method.
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(a) Standard VAE.
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(b) AVB.
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(c) VAE with VampPrior.
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(d) Proposed method.

Figure 2: Comparison of the evidence lower bound (ELBO) with validation data on OneHot. We plotted the ELBO from 100 to
1,000 epochs since we used warm-up for the first 100 epochs. The optimal log-likelihood on this dataset is − ln(4) ≈ −1.386.
We plotted this value by a dashed line for comparison. (a) Standard VAE (VAE with standard Gaussian prior). (b) AVB. (c)
VAE with VampPrior. (d) Proposed method.

For MNIST and OMNIGLOT, we used dynamic binariza-
tion (Salakhutdinov and Murray 2008) during the training
of VAE to avoid over-fitting. For image datasets, we calcu-
lated the log marginal likelihood of the test data by using
the importance sampling (Burda, Grosse, and Salakhutdinov
2015). We set the sample size of the importance sampling to
10. We ran all experiments eight times each.

With VampPrior, we set the number of mixtures K to 50
for OneHot, 500 for MNIST, FreyFaces, and Histopathol-
ogy, and 1,000 for OMNIGLOT. In addition, for im-
age datasets, we used a clipped relu function that equals
min(max(x, 0), 1) to scale the pseudo inputs in [0, 1] since
the range of data points of these datasets is [0, 1] 4.

With our approach, we used dropout (Srivastava et al.
2014) in the training of the density ratio estimator since it
is likely to over-fit. We set the keep probability of dropout to
50%. We updated the parameter of the density ratio estima-
tor: ψ for 10 epochs during the updating of the parameters
of VAE: θ and φ for one epoch. We set the sampling size of
Monte Carlo approximation in Eq. (20) to M = N .

In addition, we compared our approach with adversarial
variational Bayes (AVB) on OneHot. We set the dimension
of the Gaussian random noise input of AVB to 10, and other
settings are almost the same as those for our approach.

4We referred to https://github.com/jmtomczak/vae vampprior

5.3 Results

Figures 1a–1d show the posteriors of latent variable of each
approach on OneHot, and Figures 2a–2d show the evidence
lower bound of each approach on OneHot.

These results show the difference between these ap-
proaches. We can see that the evidence lower bound (ELBO)
of the standard VAE (VAE with standard Gaussian prior)
on OneHot was worse than the optimal log-likelihood on
this dataset: − ln(4) ≈ −1.386. The over-regularization in-
curred by the standard Gaussian prior can be given as a rea-
son. The posteriors were overlapped, and it became diffi-
cult to discriminate between samples from these posteriors.
Hence, the decoder became confused when reconstructing.
This caused the poor density estimation performance.

On the other hand, the ELBOs of AVB, VAE with Vamp-
Prior, and our approach are much closer to the optimal log-
likelihood than the standard VAE. We note that the ELBOs
of the AVB and our approach are the estimated values, and
that these approaches may overestimate the ELBO on One-
Hot since the training data and validation data of OneHot
are the same. First, we focus on the AVB. Although there is
still the strong regularization by the standard Gaussian prior,
the posteriors barely overlapped, and the data point was easy
to reconstruct from the latent representation. The reason is
that the implicit encoder network of AVB can learn com-
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Table 2: Comparison of test log-likelihoods on four image datasets.

MNIST OMNIGLOT FreyFaces Histopathology

Standard VAE -85.84 ± 0.07 -111.39 ± 0.11 1382.53 ± 3.57 1081.53 ± 0.70
VAE with VampPrior -83.90 ± 0.08 -110.53 ± 0.09 1392.62 ± 6.25 1083.11 ± 2.10
Proposed method ≈ -83.21 ± 0.13 ≈ -108.48 ± 0.16 ≈ 1396.27 ± 2.75 ≈ 1087.42 ± 0.60
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Figure 3: Relationship between the test log-likelihoods and
number of pseudo inputs of VampPrior on Histopathology.
We plotted the test log-likelihoods of our approach by a
dashed line for comparison. The semi-transparent area and
error bar represent standard deviations.

plex posterior distributions. Next, we focus on the VAE with
VampPrior and our approach. The VampPrior and our im-
plicit optimal prior model the aggregated posterior that is the
optimal prior for the VAE. These priors made the posteriors
of these approaches different from each other, and the data
point was easy to reconstruct from the latent representation.

Table 2 compares the test log-likelihoods on four image
datasets. We used bold to highlight the best result and the
results that are not statistically different from the best re-
sult according to a pair-wise t-test. We used 5% as the p-
value. We did not compare with AVB since the estimated log
marginal likelihood of AVB with high-dimensional datasets
such as images is not accurate (Rosca, Lakshminarayanan,
and Mohamed 2018).

First, we focus on the VampPrior. We can see that test log-
likelihoods of VampPrior are better than those of standard
VAE. However, we found two drawbacks with the Vamp-
Prior. One is that the pseudo inputs of VampPrior are diffi-
cult to optimize. For example, the pseudo inputs have an ini-
tial value dependence. Although the warm-up helps in solv-
ing this problem, it seems difficult to solve completely. The
other is that the number of mixtures K is a sensitive hyper-
parameter. Figure 3 shows the test log-likelihoods with var-
ious K on Histopathology. The high standard deviation of
the VampPrior indicates its high dependence of the pseudo
input initial values. In addition, even though we choose the
optimal K, the test log-likelihood of the VampPrior is worse
than that of our approach.

Next, we focus on our approach. Our approach obtained

the equal to or better density estimation performance than
the VampPrior. Since our approach models the aggregated
posterior implicitly, it can estimate the KL divergence more
easily and robustly than the VampPrior. In addition, it has a
much more lightweight computational cost than the Vamp-
Prior. In the training phase on MNIST, our approach was
almost 2.83 times faster than the VampPrior. Therefore, al-
though our approach has as many hyperparameters, like
the neural architecture of the density ratio estimator, as the
VampPrior, these hyperparameters are easier to tune than
those of the VampPrior.

These results indicate that our implicit optimal prior is
a good alternative to the VampPrior: our implicit optimal
prior can be optimized easily and robustly, and its density
estimation performance is equal to or better than that of the
VAE with the VampPrior.

6 Conclusion

In this paper, we proposed the variational autoencoder
(VAE) with implicit optimal priors. Although the standard
Gaussian distribution is usually used for the prior, this sim-
ple prior incurs over-regularization, which is one of the
causes of poor density estimation performance. To improve
the density estimation performance, the aggregated poste-
rior has been introduced as a sophisticated prior, which is
optimal in terms of maximizing the training objective func-
tion of VAE. However, Kullback Leibler (KL) divergence
between the encoder and the aggregated posterior cannot be
calculated in a closed form, which prevents us from using
this optimal prior. Even though explicit modeling of the ag-
gregated posterior has been tried, this optimal prior is diffi-
cult to model explicitly.

With the proposed method, we introduced the density ra-
tio trick for estimating this KL divergence directly. Since the
density ratio trick can estimate the density ratio between two
distributions without modeling each distribution explicitly,
there is no need to model the aggregated posterior explicitly.
Although the density ratio trick is useful, it does not work
well in a high dimension. Unfortunately, the KL divergence
between the encoder and the aggregated posterior is high-
dimensional. Hence, we rewrite the KL divergence into the
sum of two terms: the KL divergence between the encoder
and the standard Gaussian distribution that can be calculated
in a closed form, and the low-dimensional density ratio be-
tween the aggregated posterior and the standard Gaussian
distribution, to which the density ratio trick is applied. We
experimentally showed the high density estimation perfor-
mance of the VAE with this implicit optimal prior.
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