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Abstract

Active learning queries labels from the oracle for the most
valuable instances to reduce the labeling cost. In many ac-
tive learning studies, informative and representative instances
are preferred because they are expected to have higher poten-
tial value for improving the model. Recently, the results in
self-paced learning show that training the model with easy
examples first and then gradually with harder examples can
improve the performance. While informative and representa-
tive instances could be easy or hard, querying valuable but
hard examples at early stage may lead to waste of labeling cost.
In this paper, we propose a self-paced active learning approach
to simultaneously consider the potential value and easiness
of an instance, and try to train the model with least cost by
querying the right thing at the right time. Experimental results
show that the proposed approach is superior to state-of-the-art
batch mode active learning methods.

Introduction
In many real world applications, the amount of unlabeled data
is far larger than that of labeled data; and label acquisition is
expensive and difficult. It is thus rather important to train an
effective model with fewer labeled examples. Active learning
is one of the main approaches to deal with this challenge.
It expects to reduce the labeling cost by selecting the most
valuable instances to query their labels from the oracle (Set-
tles 2009). During the past decades, many criteria have been
proposed for active selection of instances. Among which,
informativeness and representativeness are most frequently
used, and their integration has been validated to be effective
for selecting the most valuable instances (Wang and Ye 2013;
Huang and Zhou 2013; Huang, Jin, and Zhou 2014).

All these criteria try to estimate the potential value of
an instance on improving the model performance. However,
they neglect the fact that the potential ability of a valuable
instance may not be fully exploited at a specific stage of the
model training. This phenomenon has been well validated in
self-paced learning (SPL) (Kumar, Packer, and Koller 2010).
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Self-paced learning is inspired by the “easy to hard” pro-
cess of human learning. It learns the easier instances first, and
then gradually adds more complex instances for model into
training. A typical SPL model tries to minimize a weighted
sum of losses for all instances, where the weight reflects
the easiness of an instance to the model. By optimizing the
weights and the model alternately, instances are gradually
involved from easy to hard. It has been well validated by
many studies that this learning paradigm can lead to better
generalization performances (Khan, Mutlu, and Zhu 2011;
Tang, Yang, and Gao 2012; Basu and Christensen 2013;
Zhang et al. 2016).

Based on these observations, it can be implied that at a
specific training stage, over-complex examples may be less
useful than easy ones for improving the model. On the other
hand, while existing active learning methods focus on se-
lecting informative and representative instances, they fail to
query the right thing at the right time. Although the selected
instances have high potential value for model improving, they
may not be fully exploited at the current stage, and thus lead
to waste of labeling cost. As a result, in addition to criteria
estimating the potential value of improving the model, easi-
ness of an instance to the current model should be considered
in active selection.

In this paper, we propose a novel approach called SPAL
(Self-Paced Active Learning) to simultaneously consider po-
tential value and easiness of instances. On one hand, the
selected instances should be informative and representative;
on the other hand, they should not be over-complex for the
current model, and thus can be fully utilized. Specifically,
we maintain two weights for each unlabeled instance, one
estimates the potential value on improving the model, and
the other estimates how easily the model can fully exploit
the potential value. Then by alternately optimizing the two
weights, valuable and easy instances are selected. Further,
when the model becomes stronger after more labels queried,
harder instances can be gradually involved by increasing a
pace parameter.

Experiments are performed on 9 datasets to validate the
proposed approach. Results comparing with state-of-the-art
methods show that considering the easiness of instances can
boost the performance of active learning.

The rest of the paper is organized as follows. We first
review related work in the following section, then the SPAL
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method is proposed next, followed by the experimental study.
And at last we conclude this work.

Related Work
There are many selection criteria proposed for active learn-
ing over the past few decades. Miscellaneous criteria eval-
uate how useful an instance is for improving the model
from different aspects. Most of them estimate the infor-
mativeness or representativeness of the instance. The for-
mer has been implemented by error reduction (Tang et al.
2012), query by committee (Seung, Opper, and Sompolin-
sky 1992), uncertainty (Yan and Huang 2018), etc. While
the latter has been implemented by clustering (Dasgupta and
Hsu 2008) or density estimation (Zhu et al. 2010). Recently,
it has been validated that simultaneously considering both
the informativeness and representativeness is usually supe-
rior to using a single criterion alone (Wang and Ye 2013;
Huang and Zhou 2013; Huang, Jin, and Zhou 2014). Wang
and ye (2013) optimize a well-designed objective function,
which consists of a term estimating the uncertainty and a
term estimating the distribution difference between labeled
set and the whole data set. Huang et al. (2014) consider the
min-max view of active learning (Hoi et al. 2008), and exploit
both informativeness and representativeness with the help of
unlabeled data in the semi-supervised learning setting. While
all these methods try to estimate the potential value of an
instance for improving the model, they neglect whether the
selected example can be fully utilized by the current model.

Learning concepts from easy to hard was first proposed in
Curriculum learning (Bengio et al. 2009), in which the ‘cur-
riculum’ is defined intuitively by human. Self-paced learning
reformulates this learning process as an optimization prob-
lem in order to make it more implementable. This algorithm
alternately optimizes model and sample weights with a grad-
ually increasing pace parameter, and sequentially involves
instances from easy to hard. In the past few years, SPL has
yielded brilliant results in many applications, such as vi-
sual category discovery (Lee and Grauman 2011), long-term
tracking (Supancic and Ramanan 2013), multi-view cluster-
ing (Xu, Tao, and Xu 2015), multi-instance learning (Zhang,
Meng, and Han 2017). There are also a few works trying to
integrate this paradigm into other algorithms for better per-
formances. For example, Ma et al. (2017) propose self-paced
co-training which aggregates SPL and co-training to improve
the robustness. In (Wang et al. 2017), authors incorporate
SPL with boosting method to deal with the noise sensitive
problem.

There is one work trying to combine self-paced learning
and active learning for face identification (Lin et al. 2018).
This method on one hand employs self-paced learning to
select instances with high confidence and assign them with
pseudo labels predicted by the model; and on the other hand
employs active learning to select most uncertain instances,
and query their ground-truth labels from the oracle. However,
these two strategies are employed independently, and thus
still have the risk that the actively selected instances may
not be fully utilized by the current model. Furthermore, the
performance of this method heavily depends on the quality

of predicted labels, which could be unstable when the model
is trained with very limited labeled data.

The Proposed Method
In this section, we first discuss the objective function of the
proposed method and explain each term in the formula. Then,
the optimization strategy is introduced next. And at last we
present the steps of the algorithm.

We denote by D the dataset with n instances, which in-
cludes a small labeled set L = {(xi, yi)}nl

i=1 with nl in-
stances, and a large unlabeled set U = {xj}nl+nu

j=nl+1 with nu
instances, where nl � nu and n = nl+nu. At each iteration
of active learning, a small batch of instances Q = {xq}bq=1
with size b will be selected from U to query their labels from
the oracle.

The objective function
It has been disclosed by self-paced learning that learning from
easy to hard can boost the performance. This implies that at
a specific training stage, over-complex instances may be less
useful for improving the model, and querying their labels
can cause waste of labeling cost. While the informative and
representative instances could be easy or hard for the current
model, over-complex instances may not be fully utilized even
they have high potential value. It is thus important to query
the right thing at the right time. On one hand, the selected
instances should have high potential value for improving the
model; and on the other hand, the potential value can be fully
exploited by the current model.

To achieve this goal, we introduce a variable wj ∈ [0, 1]
for each unlabeled instance xj to estimate the potential value.
Specifically, more informative and representative instance
should receive a higher value of wj . In addition, another
variable vj ∈ [0, 1] is introduced to estimate the easiness of
instance xj for the current model. By employing a regularizer
imposed on this weight, easier sample will receive a larger vj .
Then the following objective function is proposed to optimize
the two variables along with the model:

min
f,w,v

`(f,w,v) + λg(v) + µh(L ∪Q,U\Q) + γΩ(f) ,

(1)

where f is the learning model. The first term calculates the
expected loss after the query, g(·) is a self-paced regularizer
to filter out over-complex instances, h(L∪Q,U\Q) is a func-
tion to estimate the distribution difference between labeled
and unlabeled data, and Ω(f) is for controlling the model
complexity. In summary, `(·), h(·) and g(·) are responsible
for informativeness, representativeness and easiness, respec-
tively.

Next, we specify the implementations of `(·), h(·) and g(·)
in detail. For simplicity, we employ the least squared loss to
estimate the expected losses of instances. And we will get
the following form of `(·):

`(f,w,v) =

nl∑
i=1

(yi − f(xi))
2 +

nu∑
j=1

vjwj(ŷj − f(xj))
2.

(2)
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One challenge here is the ground-truth labels of the se-
lected data are unknown before querying. Inspired by (Wang
and Ye 2013), we consider the upper bound of the risk by
taking ŷj = −sign(f(xj)) as the pseudo label of xj ∈ U .
Then we have the following expected loss with self-paced
weights:

`(f,w,v) =

nl∑
i=1

(yi − f(xi))
2

+

nu∑
j=1

vjwj(f(xj)
2 + 2|f(xj)|+ 1).

(3)

Obviously, by optimizing the above formulation, the infor-
mative instance with a small |f(xj)| will receive a large wj .
In other words, the uncertain instances will be preferred in
the active selection.

Then, with the most representative instances selected, the
distributions of labeled and unlabeled data should be close
after the query. The model trained on the queried instances
is expected to generalize well on the unseen data coming
from the same distribution. We implement h(·) based on
Maximum Mean Discrepancy (MMD) (Borgwardt et al. 2006;
Gretton et al. 2006), which is a commonly used method for
estimating the difference between two distributions.

Formally, we have:

h(L ∪Q,U\Q) = MMD2
φ(L ∪Q,U \Q)

=

∥∥∥∥∥ 1

nl + b

∑
xi∈L

φ(xi) +
∑
xj∈U

wjφ(xj)


− 1

nu − b
∑
xj∈U

(1− wj)φ(xj)

∥∥∥∥∥
2

H

,

(4)

where φ : X → H is a mapping from the feature space to the
Reproducing Kernel Hilbert Space (RKHS). wj is served as
the indicator variable here which is relaxed to a continuous
value [0, 1].

According to the discussion in previous work,
MMD2

φ(p, q) will vanish if p = q. Therefor, our pur-
pose is to ensure the selected instances can lead to a small
value for the above formulation.

With the similar derivations in (Chattopadhyay et al. 2012),
we can have a more simple formulation for the above prob-
lem:

min
w

h(L ∪Q,U\Q) = min
w
wTK1w + kw , (5)

where

K1 =
1

2
KUU ,

k =
nu − b
n

1nl
KLU −

nl + b

n
1nu

KUU ,

K is the kernel matrix and KAB denotes the sub-matrix of
K between set A and B. 1nl

and 1nu
are vectors with all

elements being 1. By minimizing the above formulation, the
representative instance will receive a large wj .

Next we discuss how to implement the self-paced regular-
izer g(·), whose role is to control the optimization of weight
vector v in order to ensure the easy instance can receive a
large vj . Here we simply employ the strategy used in (Jiang
et al. 2014) as:

g(v) =
1

2
||v||22 −

nu∑
j=1

vj . (6)

Note that λ in Eq. 1 is the pace parameter. When λ is small
at early stage, only a small subset of easy examples with
small losses will be utilized. With more instances queried,
the model becomes stronger, then harder examples can be
involved as λ iteratively increases during the learning process.
It can be shown in the next subsection that by minimizing the
above formulation, easy example will receive a large value
of vj .

Lastly, with a commonly used `2 norm for controlling the
model complexity, i.e., Ω(f) = ||f ||2, we can rewrite the
objective function in Eq. 1 as follows.

min
f,w,v

nl∑
i=1

(yi − f(xi))
2 +

nu∑
j=1

[vj · wj(ŷj − f(xj))
2

+ λ(
1

2
v2j − vj)] + µ(wTK1w + kw) + γ||f ||2

s.t. wj ∈ [0, 1], vj ∈ [0, 1] ∀j = 1 · · ·nu .
(7)

As a result, we formulate the active selection procedure
as a concise optimization problem, which incorporates the
easiness, informativeness and representativeness into an uni-
fied framework for self-paced active learning. Next, we will
discuss the optimizing strategy of our method.

Optimization
We use alternative optimization strategy (Bezdek and Hath-
away 2003) to optimize the objective function in Eq. 7.

Optimize f with the fixed v and w Firstly, we intro-
duce the method to optimize f with fixed v and w. For
simplicity, f is implemented with the kernel form f(xi) =∑
xk∈L θkk(xk,xi), where k(·) is the kernel function. Then

the task is to learn θ, which leads to the following optimiza-
tion problem:

min
θ

nl∑
i=1

(yi −
∑
xk∈L

θkk(xk,xi))
2+

nu∑
j=1

[
vj · wj

( ∑
xk∈L

θkk(xk,xj)
)2

+

2vj · wj

∣∣∣∣∣ ∑
xk∈L

θkk(xk,xj)

∣∣∣∣∣
]

+ γθTKLLθ .

(8)

The alternating direction method of multipliers
(ADMM) (Boyd et al. 2011) is employed to solve
this problem. There are mainly three key steps when
performing ADMM to solve Eq. 8. Firstly, we construct
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auxiliary variable z. Then, the augmented Lagrangian for
the original function is constructed. Finally, we optimize
the original variable θ, auxiliary variable z, and the dual
variable δ in augmented Lagrangian alternately. Following
we discuss the three steps in detail.

For the auxiliary variable, we let zj =∑
xk∈L θkk(xk,xj) for each xj ∈ U . Note that we

filter out some less important samples whose weight
wj · vj is less than a specified small threshold for efficiency
in optimizing θ. Then the optimization problem can be
rewritten as:

min
θ

nl∑
i=1

(yi −
∑
xk∈L

θkk(xk,xi))
2 + γθTKLLθ

+

nu∑
j=1

[
vj · wj(zj)2 + 2vj · wj |zj |

]
s.t. zj −

∑
xk∈L

θkk(xk,xj) = 0 ∀j = 1 · · ·nu .

(9)

The augmented Lagrangian is:
nl∑
i=1

(yi −
∑
xk∈L

θkk(xk,xi))
2 +

nu∑
j=1

[
vj · wj(zj)2

+2vj · wj |zj |+ δj(zj −
∑
xk∈L

θkk(xk,xj))

+
ρ

2
(zj −

∑
xk∈L

θkk(xk,xj))
2
]

+ γθTKLLθ ,

(10)

where ρ is a parameter in ADMM.
Finally, by denoting ◦ as the element-wise product of vec-

tors, (·)+ as setting the negative entries of the argument vec-
tor to 0, yl = [y1, · · · , ynl

]T , η = v◦w, ε = [ε1, · · · , εnu
]T ,

and εj =
√
ηj + ρ

2 . Then we can get the following updating
rules:

θk+1 = A−1rT ,

zk+1 = diag(ε)−1ζ,

δk+1 = δk + ρ(zk+1 −KT
LU (θk+1)) ,

(11)

where
A =KLLK

T
LL +

ρ

2
KLUK

T
LU + γKLL,

r =yTl K
T
LL +

1

2
δk
T
KT
LU +

ρ

2
zk

T
KT
LU ,

ζ = arg min
1

2
||ζ − o||22 +

nu∑
j=1

ξj |ζj |

=sign(o) ◦ (|o| − ξ)+,

o =
1

2
diag(ε)−1(ρ ·KT

LUθ
k+1 − δk),

ξ =diag(ε)−1η .

Optimizew with the fixed f and v To optimizew for the
fixed f and v, Eq. 7 becomes:

min
wT v=b,w∈[0,1]nu

nu∑
j=1

[vj · wj(ŷj − f(xj))
2]

+ µ(wTK1w + kw) .

(12)

Algorithm 1 The SPAL Algorithm

1: Input:
2: Training set L and U ;
3: Initializing:
4: Initialize v = 1nu

, w = 1nu
;

5: Repeat until convergence:
6: Update f by solving Eq. 8 through ADMM;
7: Update w by solving Eq. 13;
8: Update v by solving Eq. 14;
9: Q← top b instances of U with largest vj · wj values;

10: U = U \Q; L = L ∪Q;
11: Train the model based on L.

By denoting c = µk + aT , where aj = vj(f(xj)
2 +

2|f(xj)|), the above function can be further rewritten as:

min
wT v=b,w∈[0,1]nu

wT (µK1)w + cw . (13)

This is a quadratic programming problem, and can be effi-
ciently solved with existing toolbox.

Optimize v with the fixed f andw Finally, when optimiz-
ing v with fixed f and w, we have the following problem:

min
v∈[0,1]nu

nu∑
j=1

[
vj ˜̀

j + λ(
1

2
v2j − vj)

]
, (14)

where

˜̀
j = wj(ŷj − f(xj))

2 ∀j = 1 · · ·nu.

With linear soft weighting regularizer g(v), this problem
has the closed form solution for vj :

v∗j =

{
−

˜̀
j

λ + 1 ˜̀
j < λ

0 ˜̀
j ≥ λ .

(15)

It can be observed that, The weight v is updated based on
the current losses of instances. By adopting the self-paced
regularizer g(v), the solution of vj is inversely proportional
to its weighted loss ˜̀

j . Thus the easily learned samples with
smaller losses can receive higher value of vj . The pace param-
eter λ can be taken as the threshold to filter out over-complex
instances. Note that when the pace parameter λ = ∞, all
entries of v will be 1; at this point, our method will degener-
ate to the active learning approach that does not consider the
easiness.

We summarize the framework of SPAL in Algorithm 1. At
each iteration, f ,w and v will be optimized alternately until
converge. Instance with high potential value can be identified
by the optimized wj , while easy instance for the current
model will receive a large vj . We thus select the instances
with the largest vj · wj to ensure they not only have high
potential value for improving the model, but also can be fully
utilized by the current model. After updating the model with
L ∪Q, we evaluate the performance on the test set.
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Figure 1: Performance comparison.

Experiments
In this section, we first introduce the compared methods and
datasets in the experiments, followed by the implementation
settings. Then we illustrate and analyze the performance com-
parison results with other methods. Finally, the experiment
with different ratios of initially labeled data is performed to
examine the robustness of our method.

Settings
To validate the effectiveness of our approach, we conduct
experiments to compare the following methods:

• ASPL: Select a batch of most uncertain instances to query
and a batch of high confidence samples to assign pseudo-
labels (Lin et al. 2018).

• BMDR: Select a batch of informative and representative
instances by optimizing the ERM risk bound for active
learning (Wang and Ye 2013).

• Random: Select a batch of instances randomly.

• SPAL: The method proposed in this paper.

We perform the experiments on 9 datasets, whose sizes
are summarized in Table 1. For each dataset, we randomly
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Table 1: Datasets used in the experiments.

Dataset thyroid antivirus clean1
# Instances 215 373 476

Dataset tictactoe image krvskp
# Instances 958 2086 3196

Dataset phoneme gisette phishing
# Instances 5404 7000 11055

sample 40% instances as the test set, and the rest 60% in-
stances for the training. Further, 5% of the training set is used
as the initially labeled data, while the rest instances consist
of the unlabeled pool for active selection. The data partition
is repeated randomly for 10 times. We fix batch size b = 5
for all methods.

Note that the ASPL will add two batches of instances into
L in each iteration, with half from querying and half from
prediction. This causes that the end point of ASPL is earlier
than others. Thus we also stop other methods to ensure the
numbers of queried instances are the same. For the relatively
large datasets, we report the performances of early stage to
demonstrate that at a specific training stage, over-complex
examples may be less useful than easy ones for improving
the model. It is thus important to query the right thing at the
right time.

The parameters of BMDR are set to the recommended
values in their paper. Specifically, the regularized weight
γ = 0.1 and the trade-off parameter µ = 1000. For ASPL,
it targets for specific application and can not be applied to
binary classification problem directly, so we simplify it to
select two batches of samples with the same batch size, one
is the most uncertain instances for querying and the other is
the most confident instances for assigning predicted labels.
For the proposed method SPAL, we fix µ = 0.1, and γ = 0.1.
For the SPL parameter λ, we initialize it with a certain value
which is selected from {0.1, 0.01}, and follow the method
used in (Lin et al. 2018) to update it linearly with a small
fixed value. In our experiments, we fix λpace = 0.01 for all
datasets. Specifically, we have the following updating rule
for λ at tth iteration:

λt = λinitial + (t− 1) ∗ λpace .

CVX (Grant and Boyd 2014) and MOSEK 1 are used to
solve the QP problem. We follow (Wang and Ye 2013) to
employ a regularized linear model to implement the classifi-
cation model for all methods.

Performance comparison
We plot the average accuracy curves of the proposed SPAL
and compared methods with queried instances increasing in
Figure 1. To further validate the significance of our method,
we also conduct paired t-tests at 95 percent significance level
when 20%, 40%, 60%, 80%, 100% of the preset number
of queries is reached. We present the win/tie/loss counts of
SPAL versus the other methods in Table 2.

1http://www.mosek.com/

Table 2: Win/Tie/Loss counts of SPAL versus the other meth-
ods with 20%, 40%, 60%, 80%, 100% of the preset number
of queries based on paired t-tests at 95 percent significance
level.

Dataset SPAL versus In AllRandom BMDR ASPL
thyroid 4/1/0 5/0/0 2/3/0 11/4/0

antivirus 4/1/0 5/0/0 0/5/0 9/6/0
clean1 4/1/0 1/4/0 3/2/0 8/7/0

tictactoe 4/1/0 4/1/0 1/4/0 9/6/0
image 4/1/0 4/1/0 4/1/0 12/3/0
krvskp 5/0/0 5/0/0 2/3/0 12/3/0

phoneme 5/0/0 4/1/0 0/5/0 9/6/0
gisette 5/0/0 3/2/0 5/0/0 13/2/0

phishing 5/0/0 5/0/0 1/4/0 11/4/0
In All 40/5/0 36/9/0 18/27/0 94/41/0

It can be observed from the figure that the proposed SPAL
approach outperforms the other methods in most cases. When
comparing with BMDR, our method is always superior. It
implies that considering the easiness of the instances can save
the labeling cost by filtering out instances that are over com-
plex for the classification model. ASPL works well on some
datasets but fails on the others. Note that in addition to the
queried instances, ASPL also adds a batch of instances with
predicted labels. That is why its performance is less stable.
Because the predicted labels could be unreliable when the
model is not well trained. As expected, the random strategy
is usually the worst one.

Table 2 shows that our method can outperform the base-
line methods significantly in most cases. Note that, although
ASPL achieves better performance than random and BMDR
by using extra self-annotated instances in model training, it
still has the risk that the labeled instances may not be fully
utilized by the model. We believe this is the reason why our
method can outperform the others.

Study on different initially labeled ratios
In this subsection, we further perform the experiments with
different ratios of initially labeled data to examine the perfor-
mances of compared approaches. Specifically, we compare
the methods when the 1%, 5%, 10% and 20% of the training
set is initially labeled while other settings remain unchanged.
Because of the space limitation, we report the average value
of the accuracy curve instead of plotting the whole curve. For
each case, the best result and its comparable performances
are highlighted in boldface based on paired t-tests at 95 per-
cent significance level. The mean and standard deviation of
accuracies are presented in Table 3.

We can observe that SPAL achieves the best performance
for most cases, and for the few cases that our method is not
the best, it is comparable to the best performance. These
results imply that our method is rather stable and can out-
perform the others with different ratios of initially labeled
data. Table 3 shows that ASPL method prefers larger initially
labeled ratio. Note that ASPL uses more training data than
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Table 3: Influence of different initially labeled ratios (mean ± std). The best performance and its comparable performances based
on paired t-tests at 95 percent significance level are highlighted in boldface.

Dataset Different
labeled ratios

Methods
SPAL Random BMDR ASPL

thyroid

1% 0.879± 0.019 0.854± 0.020 0.837± 0.016 0.783± 0.137
5% 0.929± 0.016 0.899± 0.035 0.889± 0.032 0.920± 0.015

10% 0.933± 0.014 0.913± 0.030 0.916± 0.023 0.931± 0.018
20% 0.935± 0.013 0.929± 0.022 0.928± 0.015 0.938± 0.013

antivirus

1% 0.973± 0.009 0.956± 0.013 0.921± 0.025 0.964± 0.009
5% 0.982± 0.007 0.970± 0.011 0.954± 0.017 0.978± 0.008

10% 0.985± 0.007 0.976± 0.012 0.963± 0.018 0.984± 0.009
20% 0.987± 0.008 0.980± 0.011 0.976± 0.013 0.986± 0.008

clean1

1% 0.708± 0.030 0.687± 0.031 0.681± 0.025 0.654± 0.026
5% 0.749± 0.034 0.719± 0.032 0.725± 0.022 0.727± 0.038

10% 0.768± 0.036 0.742± 0.029 0.739± 0.028 0.760± 0.026
20% 0.788± 0.024 0.775± 0.025 0.776± 0.020 0.780± 0.028

tictactoe

1% 0.763± 0.013 0.727± 0.019 0.722± 0.024 0.756± 0.027
5% 0.786± 0.017 0.748± 0.021 0.761± 0.022 0.775± 0.020

10% 0.810± 0.015 0.766± 0.024 0.749± 0.027 0.803± 0.011
20% 0.839± 0.010 0.794± 0.027 0.769± 0.028 0.838± 0.013

image

1% 0.933± 0.007 0.896± 0.011 0.916± 0.007 0.909± 0.013
5% 0.944± 0.008 0.916± 0.009 0.929± 0.006 0.933± 0.010

10% 0.953± 0.007 0.928± 0.009 0.938± 0.005 0.949± 0.007
20% 0.961± 0.004 0.941± 0.007 0.947± 0.004 0.960± 0.005

krvskp

1% 0.942± 0.004 0.899± 0.012 0.910± 0.005 0.936± 0.003
5% 0.964± 0.004 0.928± 0.010 0.937± 0.006 0.962± 0.004

10% 0.974± 0.004 0.943± 0.009 0.949± 0.008 0.972± 0.004
20% 0.980± 0.003 0.956± 0.006 0.958± 0.006 0.979± 0.004

phoneme

1% 0.829± 0.007 0.808± 0.008 0.812± 0.009 0.823± 0.012
5% 0.844± 0.008 0.826± 0.008 0.829± 0.006 0.841± 0.007

10% 0.851± 0.004 0.837± 0.007 0.838± 0.008 0.850± 0.005
20% 0.861± 0.006 0.845± 0.007 0.845± 0.007 0.859± 0.005

gisette

1% 0.945± 0.003 0.930± 0.005 0.931± 0.005 0.927± 0.003
5% 0.947± 0.003 0.942± 0.004 0.943± 0.005 0.933± 0.005

10% 0.951± 0.004 0.946± 0.004 0.947± 0.003 0.935± 0.003
20% 0.952± 0.003 0.950± 0.003 0.950± 0.004 0.938± 0.003

phishing

1% 0.934± 0.003 0.919± 0.007 0.918± 0.006 0.931± 0.002
5% 0.937± 0.003 0.924± 0.009 0.930± 0.004 0.935± 0.003

10% 0.936± 0.003 0.925± 0.008 0.926± 0.008 0.934± 0.003
20% 0.935± 0.003 0.927± 0.006 0.927± 0.007 0.932± 0.004

the other approaches, because it adds two batches with one
from querying and one from prediction. When there is more
labeled data, the model prediction is more reliable, and thus
ASPL can benefit more from the extra pseudo labels. For
BMDR, its performance is still worse than ours even in dif-
ferent initial ratios of labeled data which implies that it is
important to further consider the easiness of instances even
they have high potential value.

In addition, we also observe some trends in the table that
the proposed method SPAL favors the case with less labeled
data. One possible reason is that many examples are over-
difficult for a simple model, and thus we need a self-paced
strategy to select the easy ones at such an early learning stage
to get cost-effective queries. We believe this is an advantage
because active learning is especially important when labeled

data is limited.

Conclusion
In this paper, we propose a novel batch mode active learning
approach SPAL to query the right thing at the right time. On
one hand, informativeness and representativeness are con-
sidered such that the selected instances have high potential
value for improving the model; on the other hand, easiness
is exploited to make sure the potential value can be fully uti-
lized by the model. These two aspects are incorporated into
an unified framework of self-paced active learning. Experi-
ments show that, our method is superior to the state-of-the-art
batch mode active learning methods. In the future, we plan to
further examine the effectiveness of the proposed framework
when the easiness of instances are known.
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