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Abstract
Factorization Machines (FMs) are a class of popular algo-
rithms that have been widely adopted for collaborative filter-
ing and recommendation tasks. FMs are characterized by its
usage of the inner product of factorized parameters to model
pairwise feature interactions, making it highly expressive
and powerful. This paper proposes Holographic Factorization
Machines (HFM), a new novel method of enhancing the rep-
resentation capability of FMs without increasing its parame-
ter size. Our approach replaces the inner product in FMs with
holographic reduced representations (HRRs), which are the-
oretically motivated by associative retrieval and compressed
outer products. Empirically, we found that this leads to con-
sistent improvements over vanilla FMs by up to 4% improve-
ment in terms of mean squared error, with improvements
larger at smaller parameterization. Additionally, we propose
a neural adaptation of HFM which enhances its capability
to handle nonlinear structures. We conduct extensive exper-
iments on nine publicly available datasets for collaborative
filtering with explicit feedback. HFM achieves state-of-the-
art performance on all nine, outperforming strong competi-
tors such as Attentional Factorization Machines (AFM) and
Neural Matrix Factorization (NeuMF).

Introduction
In an era of information overload and content overdrive, con-
sumers naturally suffer from overchoice. After all, there are
easily a million songs, a thousand videos and hundreds of
restaurants to choose from at a given time. This is the ex-
act problem that recommender systems are designed for -
making lives easier, by automatically providing and recom-
mending the best choices to users. At the intersection of in-
formation retrieval and user profiling, collaborative filtering
(CF) algorithms (Goldberg et al. 1992) are highly popular
and effective recommendation algorithms. The core intuition
behind CF is that it tries to predict the preference of a given
user by gathering preferences from other users.

Across the rich history of CF research, techniques based
on matrix factorization (MF) (Mnih and Salakhutdinov
2008) were highly dominant. The key idea behind MF is to
factorize a user-item interaction matrix, learning latent pat-
terns of user behavior and approximating and completing the
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missing values. As such, a rating score can be approximated
for an item a user has never seen or used.

Factorization Machines (FM) (Rendle 2010) were later
proposed, combining the key ideas of factorization mod-
els (e.g., MF, SVD) with general purpose machine learn-
ing techniques such as Support Vector Machines (SVMs)
(Steinwart and Christmann 2008). The key idea between
FMs is to model pairwise feature interaction using the inner
product of two vectors (factorized parameters). FMs have
demonstrated widespread success both in general machine
learning tasks, collaborative filtering and recommendation
tasks (Rendle 2012; 2010; Zheng, Noroozi, and Yu 2017;
Tay, Luu, and Hui 2018; Pasricha and McAuley 2018).

At its core, an FM model comprises a collection of em-
bedding vectors {v1, v2 . . . vn} ∈ Rk in which the inner
product between vi and vj is used to approximate feature
interaction (xi, xj). Unfortunately, the usage of solely inner
products may be sub-optimal for FMs as inner products only
consider element-wise interactions between (vi, vj). More-
over, FMs sum over a series of inner products, which may
result in further information loss.

This paper presents an improved memory-enhanced adap-
tation of factorization machines. More specifically, we
enhance FMs with holographic reduced representations
(HRRs) (Plate 1995), replacing the inner products with HRR
operators such as circular convolution and circular correla-
tion. There are several key benefits to investigating such an
architecture:

• Operations such as circular convolution behave as com-
pressed outer products. Hence, our proposed model acts
as an outer product adaptation of FMs without actually
incurring the parameter cost of the standard outer prod-
uct. Unlike inner products which are element-wise opera-
tions, outer products model pairwise interactions between
parameters. Hence our proposed FM can be regarded as a
tensorized factorization machine, albeit compressed.

• Aside from enriched representation capability, the inter-
nal memory of the FM additionally acts as an associa-
tive memory array. Each parameter pair (vi, vj) now acts
as a key-value pair in this addressible distributed mem-
ory. As such, each input feature vector is modeled with
a memory trace and individual feature interactions can
be efficiently retrieved by an associative retrieval mech-
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anism which takes place during gradient-based optimiza-
tion. This is unlike the standard FM that sums over factor-
ized interactions. We provide more details in subsequent
sections.

Overall, we hypothesize that augmenting FMs with HRR
can lead to improvement in performance. Notably, our work
is inspired by the successful application of HRRs to stan-
dard connectionist methods, giving rise to architectures such
as the Associative Long Short-Term Memory (Danihelka
et al. 2016), Holographic Recurrent Networks (Plate 1992)
and Holographic Embeddings (Nickel, Rosasco, and Poggio
2016).

Our Contributions

The overall contributions of our paper are summarized as
follows:

• We propose a memory-enhanced factorization machine -
the Holographic Factorization Machine (HFM) for collab-
orative filtering. We show that a relative performance im-
provement of 1% − 4% in terms of mean squared error
over the vanilla FM model on nine benchmark datasets.
Performance improvement is also robust when varying
hyperparameter settings.

• We propose a further neural extension of HFM - HFM+,
which imbues the HFM with the ability to handle nonlin-
earity using fully-connected layers.

• HFM and HFM+ achieve extremely competitive perfor-
mance on nine benchmark datasets. HFM+ achieves state-
of-the-art, outperforming recently proposed models such
as NeuMF (Neural Matrix Factorization) and AFM (At-
tentional Factorization Machines).

Background
In this section, we discuss the relevant background that
forms the basis of our work.

Factorization Machines (FM)

Factorization machines (Rendle 2010) are general machine
learning methods which are commonly applied for recom-
mendation tasks due to its strength at modeling sparse cate-
gorical data. The FM operates based on the following equa-
tion:

F (x) = w0 +

n∑
i=1

wi xi +

n∑
i=1

n∑
j=i+1

〈vi, vj〉 xi xj (1)

where x ∈ Rk is a real-valued input feature vector. 〈., .〉 is
the dot product. The parameters {v1 . . . vn} are factorized
parameters (vectors of v ∈ Rk) used to model pairwise in-
teractions (xi, xj).w0 is the global bias and

∑n
i=1 wixi rep-

resents a linear regression component. The output of F (x)
is a scalar, representing the strength of the user-item interac-
tion.

Holographic Reduced Representation (HRR)
HRR was originally proposed by (Plate 1995) as a dis-
tributed form of associative memory. The key idea is a series
of encoding and decoding operations that are used to emu-
late storage and retrieval in holography. First, we introduce
the key operators in HRRs shown as follows:

[a~ b]k =

d−1∑
i=0

ai b(k−i) mod d (2)

[a ? b]k =

d−1∑
i=0

ai b(k+i) mod d (3)

where ? : Rd × Rd → Rd denotes the circular correlation
operator and ∗ : Rd × Rd → Rd denotes the circular con-
volution operator. For notational convenience, we use zero-
indexed vectors. We refer to circular convolution as CCOV
and circular correlation as CCOR for the remainder of the
paper.

Associative Memory CCOV and CCOR are inverse opera-
tors and act as encoding-decoding pairs in associative mem-
ory. Let a and b be real-valued vectors. In HRR, CCOV (~)
is used to associate two vectors to form a memory trace m.
Subsequently, a nice property is that we are able to retrieve
a noisy version of b by decoding a from m using CCOR, the
decoding operator.

m = a~ b (4)
a ? m ≈ b+ n (5)

where n is a noise term and ? is the CCOR operator. Gen-
erally, this is known as associative retrieval. Next, we for-
mally introduce the associative memory operators. A mem-
ory trace can be extended in form of a trace composition:

m = a1 ~ b1 + a2 ~ b2 + a3 ~ b3 (6)

where addition is the trace composition operator. Similarly,
decoding a1 ? m returns a noisy version of b1. As such,
individual elements can be retrieved even under the addi-
tive composition (summation) of several constituent mem-
ory traces (Plate 1995; Danihelka et al. 2016).

Computation of HRR There are several ways to compute
HRR operations. The most naive way is to literally compress
the outer product. However, this incurs an undesirable com-
plexity of n2. Fortunately, we are able to exploit computa-
tion in the frequency domain, exploiting Fast Fourier Trans-
forms (FFT) for computation with a log-linear runtime.

a~ b = F−1(F(a)� F(b)) (7)

a ? b = F−1(F(a)� F(b)) (8)

where F and F−1 are the FFT and inverse FFT opera-
tions respectively.� is the Hadamard product. Alternatively,
complex-valued representations can be used to achieve a
similar effect. (Danihelka et al. 2016) uses complex-valued
vectors (complex inner product, i.e., ā>b where a, b ∈ Cn)
as their encoding operation. Following (Nickel, Rosasco,
and Poggio 2016), we use the real-valued FFT and extract
the real components from its output.
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Figure 1: HRRs as Compressed Outer Products (Best viewed
in Color). The outer product of vectors a and b of d-
dimensions are compressed into a d dimensional vector.
Colours denote compression by summation patterns.

Compressed Outer Products We show that CCOV and
CCOR are equivalent to compressing an outer product. Un-
like inner products, outer product forms a similarity matrix
between two vectors. However, outer products can be un-
desirable as they can be cumbersome in the sense that they
convert vectors to matrices. CCOV and CCOR do not have this
restriction, i.e., the compressed outer product of two vectors
is still a vector. This is an extremely attractive property that
we exploit. By inspecting Equation (3), it is clear that CCOV
and CCOR are compressing the outer product into a vector
representation. Figure 1 depicts this phenomena.

Holographic Factorization Machines (HFM)
In this section, we describe HFM, our proposed architecture.

Modeling Pairwise Interactions with HRR
The main contribution in our HFM model is to replace the
inner products in FMs with HRRs (Holographic Reduced
Representations). More specifically, we replace the inner
product in FMs with (vi ~ vj) as follows:

F (x) = L(x) + h>(

n∑
i=1

n∑
j=i+1

(vi ~ vj) xi xj) (9)

where L(x) = w0+
∑n

i=1 wixi represents the linear regres-
sion part of the FM formulation. ~ is the circular convolu-
tion operation. h ∈ Rn and {v1, . . . vn} are parameters of
the HFM layer (refered to as a parameter store in Figure 2).
Alternatively, we may also use the inverse operator, ? - the
circular correlation operator:

F (x) = L(x) + h>(

n∑
i=1

n∑
j=i+1

(vi ? vj) xi xj) (10)

which uses the conjugate transpose of F(vi) instead. Finally,
the entire summation over memory traces is then be reduced
to a scalar by h.

Associative Key-Value Memory In this section, we draw
connections between HFM and associative memory models.
The goal is to provide some intuition regarding how the as-
sociative retrieval mechanism works under the hood of our
proposed model. Previously, we noted that FMs sum across
pairwise interactions which inevitably results in information
loss. In HFMs, pairwise interactions are actually retrievable.
Recall the concepts of a trace composition mentioned earlier
corresponds nicely to the summation operation in HFMs.

m = α12(v1 ~ v2) + α13(v1 ~ v3) + · · · (11)

where αij is the interaction between features (xi, xj). This
has two interpretations. Firstly, when calling v1 ? m, we re-
trieve a combination of v2, v3 · · · vn weighted by the feature
interaction strength. Conversely, there is no way to retrieve
individual feature interactions with standard FMs as infor-
mation is lost during summation. In HFM, each parameter
vector acts as a key-value pair to all other parameter vectors,
forming a distributed key-value store.

Notably, the encoding-decoding operation of associative
memories take effect during gradient-based optimization.
This stems from the fact that the gradient of CCOV is its in-
verse operation - CCOR (Nickel, Rosasco, and Poggio 2016)
(and vice versa). During the backward pass (gradient up-
dates), the model learns relationships between parameter
vectors, i.e., modeling the relationship of each user-item pair
using h>m (omitting L(x) for simplicity). During the for-
ward pass (inference), specific contributions of each interac-
tion are retrieved by decoding m with v1, v2 · · · vn. As such,
HFMs implement an associative retrieval mechanism within
the FM parameters.

End-to-End Learning for Recommendation
In this section, we describe the overall model architecture of
HFM for CF tasks. Each training instance of HFM accepts
an interaction tuple (p, q, r). Each of the user p and item
q are passed into the network as a sparse one-hot-encoded
vector. r is a real-valued number from [0, 1] which serves as
the supervision signal for the model.

Embedding Layer This layer transforms the one-hot en-
coded representation into a dense real-valued representation
(a.k.a embeddings). As such, this layer is parameterized by
Wp ∈ R|P |×k and Wq ∈ R|Q|×k respectively. P is the set
of all users and Q is the set of all items.

HFM Layer This layer is mainly used to model the in-
teraction between user and item embeddings (or latent fea-
tures). We concatenate the user and item embedding to form
a feature vector of 2k dimensions. The HFM models pair-
wise interactions between each latent feature which have
been described in earlier sections. The output of this layer
is a scalar value, which represents the score of the user-item
pair.

Optimization and Learning Our model is then trained
end-to-end using stochastic gradient descent (in particular,
Adam optimizer (Kingma and Ba 2014)), minimizing the bi-
nary cross-entropy loss. We scale the output between [0, 1]
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Figure 2: Proposed Model Architectures for Recommendation. HFM extends FM with Holographic reduced representations
(HRR), exploiting rich compressed tensor products instead of inner products. Nonlinear HFMs (HFM) pass the concatenated
memory trace into a MLP layer, enhancing its representation capability with nonlinear transformations.

with the sigmoid function σ.

J(θ) = −y (log(p)) + (1− y) log(1− p) + λ||θ||L2 (12)

where y is the ground truth label, p = σ(F (x)) is the output
of the model and ||θ||L2 is the regularization term weighted
by λ.

On the Formulation of the FM Function Finally, a no-
table difference from (Rendle 2010; 2012; Xiao et al. 2017)
is that we use the concatenation of user and item embed-
ding as input to the FM function, i.e., the FM model oper-
ates on latent dimensions. This follows DeepCoNN (Zheng,
Noroozi, and Yu 2017) which was proposed for the review
rating problem. This difference in choice is largely due to
the difference in problem formulation. For FM and AFM
(Xiao et al. 2017), the authors considered a sparse categor-
ical regression problem using a myriad of categorical fea-
tures. Naturally, the input to these models are sparse fea-
ture vectors in which the learned feature embeddings actu-
ally correspond to the FM parameters. In their case, the FM
model actually reverts to the MF model when only consid-
ering user-item interaction (Rendle 2012). Hence, it is more
appropriate for our work to follow (Zheng, Noroozi, and Yu
2017).

Nonlinear HFMs (HFM+)
One of the biggest weaknesses of FMs is that they are in-
herently linear models and may have problems on complex
datasets. As such, we propose to enhance HFMs with non-
linear transformations which gives rise to HFM+, our second
architecture. One of the biggest differences with NFM is that
our approach applies multi-layered perceptron to the interac-
tion matrix instead of a pooling layer. Recall that each pair-
wise interaction returns a vector of n dimensions. We flatten

this interaction matrix and pass them into a FC layer. Let
S ∈ Rn× (n−1)

2 be the interaction matrix and s ∈ R
n(n−1)

2 be
the flattened version of S. The output of the nonlinear (and
second order) part of the HFM is now:

L(x) = W3(σr(W2(σr(W1(s+ b1)) + b2))) + b3 (13)

where W∗, b∗ with ∗ = {1, 2, 3} are the parameters of this
layer. The final output of HFM+ is now:

F (x) = w0 +

n∑
i=1

wi xi + L(x) (14)

whereL(x) is the nonlinear component of the HFM+ model.
To the best of our knowledge, this formulation is novel in the
sense that we unflatten and concatenate the entire memory
trace.

Empirical Evaluation
In this section, we describe our experiments and report em-
pirical results. First, we define the research questions (RQ)
that our experiments are designed to answer.

• RQ1 - Does HFM+ and HFM achieve state-of-the-art per-
formance on CF benchmarks?

• RQ2 - Does HRR improve the performance on FMs?
What is the relative improvement on different settings?

• RQ3 - What are the impacts of some key hyperparameters
(e.g., number of latent dimensions) on performance.

Datasets
In this spirit of experimental rigor, we compare our method
against others using nine publicly available benchmark
datasets.
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• Netflix is a popular dataset for explicit CF, popular-
ized by the Netflix Prize competition. Netflix1 is a video
streaming website and is concerned with recommending
movies/videos to user. Due to the large dataset size, we
extract ratings from the year 2005. Nevertheless, the num-
ber of ratings is still 40 million.

• MovieLens is another popular benchmark for recommen-
dation. Once again, this dataset2 is concerned with movie
ratings. We utilize three different sizes of this dataset
which have 20M (MovieLens20M), 1M (MovieLens1M)
and 100K (MovieLens100K) respectively where the suf-
fix denotes the number of interations in the dataset.

• IMDb is another movie-based CF dataset constructed by
(Diao et al. 2014). IMDb3 is also a movie rating website
and comprises user preference scores for movies. How-
ever, different from Netflix and MovieLens, the rating
scale of this dataset is from 1− 10.

• Amazon Product Reviews is a review rating dataset4
based on customer reviews on Amazon (McAuley et al.
2015; He and McAuley 2016). We use multiple ver-
sions of this dataset which have been split into product
categories. More specifically, we use four categories -
Gourmet Food, Kindle Store, CDs and Vinyl, and finally
Beauty. Note that subsets were selected largely based on
domain diversity and also dataset size.

All datasets were setup and filtered to a 20-core setting. The
only exception is the Netflix dataset which we had to use
a 100-core setting due to hardware limitations. Notably, the
resulting Netflix dataset still contains over 40 million inter-
actions which still poses a computational challenge for high
end graphic cards. Table 1 reports the dataset statistics of
all datasets (after filtering). For all datasets, we use a time-
based split, i.e., we sort all of a user’s items by timestamps
and withhold the last two as the development and testing sets
respectively.

Dataset Ratings Users Items Density
Netflix 44M 75K 13K 4.5

MovieLens20M 16M 53K 27K 1.1
MovieLens1M 1M 6K 4K 4.2

MovieLens100K 100K 1.6K 0.9K 6.0
IMDb 117K 0.8K 114K 0.1

Grocery Food 120K 3K 39K 0.1
Kindle Store 800K 15K 185K 0.03

CDs and Vinyl 933K 16K 290K 0.02
Beauty 92K 3K 42K 0.07

Table 1: Statistics of nine datasets adopted in our experi-
mental evaluation. Density reports the number of interac-
tions with respect to the total size of user/item matrix.

1https://www.netflix.com/browse.
2https://grouplens.org/datasets/movielens/
3https://www.imdb.com/.
4http://jmcauley.ucsd.edu/data/amazon/

Competitive Baselines
We compare with two standard baselines and two state-of-
the-art models.

• Matrix Factorization (MF) is a popular standard base-
line for CF. MF models each user and item pair using the
inner product p� q.

• Factorization Machines (FM) is a strong CF baseline
proposed in (Rendle 2010). It learns pairwise feature in-
teractions using factorized parameters. Following (Zheng,
Noroozi, and Yu 2017), we concatenate the user and item
embedding as input into a standard FM model.

• Attentional Factorization Machines (AFM) is a state-
of-the-art model proposed by Xiao et al. (Xiao et al.
2017). This model follows the implementation of our FM
model. However, an attention mechanism is applied on
top of FM enabling it to select the best and most informa-
tive pairwise features to be used for prediction.

• Neural Matrix Factorization (NeuMF) is a state-of-the-
art model proposed in (He et al. 2017). It proposes a joint
matrix factorization and neural network approach, achiev-
ing highly competitive performance on multiple recom-
mendation benchmarks. We use an identical structure, i.e.,
combining the generalized MF and a three-layered pyra-
midal multi-layered perceptron (MLP). Note that there are
dual embedding spaces for the MF/MLP model. Notably,
under our problem formulation, the recent Neural Factor-
ization Machines (He and Chua 2017) is subsumed by
NeuMF.

Experimental Setup
The evaluation metric employed is the standard mean
squared error (MSE). We implement all models in Tensor-
flow5.The latent dimensions (embedding size) of all base-
lines are tuned6 in the range of {4, 8, 16, 32} since we found
that for most datasets, performance does not increase be-
yond k = 32. The batch size is set to 1024 in all our experi-
ments. All methods are optimized with Adam (Kingma and
Ba 2014) with a learning rate of 0.0003 (varying the learn-
ing rate in the range of [0.001, 0.0001] did not yield any im-
provements). All models are optimized with sigmoid cross
entropy loss since we found that it was significantly more
stable compared to minimizing the raw mean squared error.
Therefore, rating values are scaled to [0, 1] and then renor-
malized upon inference. A dropout of 0.2 is applied to all
feed-forward layers. For all FM based models, the number of
latent factors is tuned amongst {4, 8}. We train each model
for a maximum of 50 epochs and compute the score on the
held-out set at every epoch. We apply early stopping, i.e., we
stop training if performance on the held-out set does not im-
prove after 5 epochs. We report the test scores on the model
with the best score on the held-out set. We additionally tune
between using circular correlation and circular convolution
for our HFM model.

5https://www.tensorflow.org/.
6Due to hardware limitations we could not tune the latent di-

mensions on MovieLens20M and Netflix and set it to a standard
k = 16 for all datasets.
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RQ1 - Does HFM achieve state-of-the-art
performance?
Table 2 reports an overall performance comparison of all
compared models and baselines. Firstly, we note that HFM+
(and HFM) consistently achieves state-of-the-art perfor-
mance, outperforming strong baselines on all nine bench-
mark datasets. Amongst the baselines, we find that AFM
generally outperforms FM (6 out of 9 datasets). FM strongly
outperforms MF on 5 out of 9 datasets, with a 200% im-
provement on the IMDB dataset. On the other 4 datasets,
FM performs marginally worse. Amongst all competitors,
NeuMF performs consistently well because of its ability to
model nonlinearity. Notably, it also uses dual embedding
spaces, which easily doubles its parameter size. On that note,
while FM is strongly outperformed by NeuMF, HFM comes
close in performance to NeuMF. Finally, HFM+ consistently
outperforms NeuMF on all datasets.

RQ2 - Does HRR improve FMs?
Table 3 reports the relative performance improvement of our
proposed HFM model and FM. We observe that, across all
latent dimensions, our proposed HFMs are superior to FM.
Given that HFMs are just HRR-enhanced FMs, this ascer-
tains the effectiveness of using HRR in FMs. Aside from the
robust improvement, the improvements over selected best
models are also notable, ranging from 1%−4% across seven
datasets. One interesting observation is that performance im-
provements are relatively higher with smaller parameteriza-
tion (e.g., IMDB, food and CDs). The least improvement
often comes from k = 16 and higher performance gains
are obtained at k = 4 or k = 8. We believe that this
is because HRRs augment the representation capability of
the FM model. When both models have large latent dimen-
sions, the parameters of the FMs may be sufficient on cer-
tain datasets, reducing the benefits of using HRR. Lastly, we
note that HFM+ outperforms FM on almost all dimensions
and datasets - with a relative improvement of 12.5% on the
netflix dataset. All in all, we are able to reasonably improve
the performance of the base FM across all latent dimensions
without incurring any additional parameter costs.

RQ3 - What are the impacts of Hyperparameters
on model performance?
Figure 3 and Figure 4 report the effect of varying the latent
dimensions k for all models on two datasets. The optimal
dimensions are k = 32 (IMDB) and k = 24 (Kindle). On
IMDB, we observe the performance of HFM is clearly su-
perior to FM. On Kindle, the performance is significantly
better at smaller k but converges to marginal improvement
at higher k. Notably, the best performance of HFM (k = 8)
on Kindle is much better than AFM. On the Amazon Kindle
dataset, we also observe that HFM+ outperforms NeuMF on
all latent dimensions.

Related Work
The term Collaborative Filtering was first coined by (Gold-
berg et al. 1992), who proposed the first recommender sys-
tem Tapestry. Many prior research in this field utilised a
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Figure 3: Effect of Latent Dimensions on Performance
(IMDb dataset). HFM outperforms FM on all dimensions
and HFM+ achieves the overall best performance.
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Figure 4: Effect of Latent Dimensions on Performance
(Amazon Reviews Kindle). Across all dimensions, HFM
is always better than FM and HFM+ is always better than
NeuMF and all other baselines.

factorization-based approach to learn user-item associations.
In particular, probabilistic matrix factorization (Mnih and
Salakhutdinov 2008) and SVD (Koren 2008) were amongst
the more popular CF algorithms. Factorization machines
(Rendle 2010; 2012) were later proposed as a general-
purpose machine learning model, i.e., regression and clas-
sification. Nevertheless, FMs also see wide adoption across
a potpourri of recommendation tasks (Juan et al. 2016;
Rendle et al. 2011; Zheng, Noroozi, and Yu 2017; Tay, Luu,
and Hui 2018; Pasricha and McAuley 2018).

Today, deep learning based approaches have
claimed state-of-the-art in many recommendation
and CF tasks (Zhang et al. 2017; He et al. 2017;
Tay, Luu, and Hui 2018; Zhang et al. 2018;
Tay, Anh Tuan, and Hui 2018). (He et al. 2017) showed
that the standard matrix factorization can be formulated as
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Dataset MF FM AFM NEUMF HFM HFM+
Netflix 0.687 0.746 0.742 0.677 0.719 0.663
MovieLens20M 0.711 0.742 0.766 0.711 0.729 0.708
MovieLens1M 1.149 1.144 1.155 1.142 1.134 1.142
MovieLens100K 1.037 1.067 1.046 1.042 1.031 1.030
IMDb 7.131 3.545 3.544 3.424 3.429 3.374
Beauty 3.360 1.353 1.311 1.293 1.300 1.274
Cds and Vinyl 1.923 1.013 1.012 0.991 1.000 0.979
Grocery Food 2.828 1.222 1.198 1.194 1.208 1.164
Kindle Stoe 1.528 0.663 0.653 0.642 0.645 0.631

Table 2: Performance comparison (mean squared error) of all models on 9 benchmark datasets. Best result is in boldface. HFM
outperforms FM and HFM+ outperforms all baselines.

Dataset HFM vs FM HFM+ vs FM
4 8 16 Best 4 8 16 Best

Netflix - - +3.9% +3.9% - - +12.5% +12.5%
MovieLens20M - - +1.8% +1.8% - - +4.9% +4.9%
MovieLens1M +1.5% +1.1% +0.9% +1.8% +0.3% +0.9% +0.2% +0.2%
MovieLens100K +0.8% +3.7% +3.5% +3.5% +5.0% +3.1% +1.1% +3.6%
IMDb +7.2% +2.7% +1.5% +3.4% +11% +8.1% +6.5% +5.1%
Beauty +5.2% +3.9% +4.1% +4.1% +3.9% +6.3% +3.3% +6.2%
CDs and Vinyl +1.4% +0.4% +0.1% +1.0% +1.5% +1.0% +2.2% +3.5%
Grocery Food +1.2% +1.0% +0.7% +1.2% +3.2% +2.5% +2.2% +5.0%
Kindle Store +1.5% +3.4% +0.1% +2.8% +2.2% +3.7% +1.1% +5.1%

Table 3: Relative Performance Improvement (+%) against FM model across various latent dimension size k. ‘Best’ settings
refer to the performance improvement over the best values of k for both models in Table 2. HFM provides a modest to large
boost to the FM model on all benchmark datasets. Notably, HFM does not increase the parameter size of the FM model.

a network. The authors go on to propose Neural Matrix
Factorization (NeuMF), a combined model that takes advan-
tages of factorization models and nonlinear multi-layered
perceptrons. FMs have also received neural makeovers. (He
and Chua 2017) proposed enhancing standard FMs with
nonlinear layers while (Xiao et al. 2017) equipped FMs with
attention layers. This enables a more selective modeling
of feature interactions with attractive properties such as
avoiding overfitting. DeepFM (Guo et al. 2017), proposed
for CTR prediction, combines the prediction scores of a
deep neural network and FM model.

Owing to its effectiveness in capturing feature interac-
tions, FMs have also been recently adopted in other varia-
tions of recommender tasks such as review-based or sequen-
tial recommender systems. DeepCoNN (Zheng, Noroozi,
and Yu 2017) used a FM on top of user and item convo-
lutional neural network (CNN) for review rating prediction.
The recent Multi-Pointer Co-Attention Networks (Tay, Luu,
and Hui 2018) similarly adopts a FM prediction layer. (Pas-
richa and McAuley 2018) proposed a translational sequen-
tial recommender model based on factorization machines.

Our work is strongly inspired by applications of HRR
(Plate 1995) and associative memory models (Gabor 1969).
Holographic recurrent networks (HRN) (Plate 1992) pro-
posed using HRRs for recursive computation within the
recurrent network cell. Associative LSTMs (Danihelka et
al. 2016) proposed enhancing the memory of the LSTM
cell using HRRs, albeit using complex-valued parameters.

(Tay et al. 2017) proposed using HRRs for matching ques-
tion answer pairs. (Nickel, Rosasco, and Poggio 2016)
proposed HOLE, a knowledge graph embedding that ex-
ploits circular correlation for learning entity relationships.
(Hayashi and Shimbo 2017) showed the equivalence of
HRRs with complex-valued inner product, drawing paral-
lels with HOLE and ComplEx, a complex-valued embed-
ding model for link prediction (Trouillon et al. 2016).

Conclusion

We proposed Holographic Factorization Machines (HFM), a
novel application of Holographic Reduced Representations
(HRRs) to FMs. HFM achieves superior performance rel-
ative to standard FMs, owing to enhanced representation
capacity due to compression of outer products and asso-
ciative retrieval mechanisms. Additionally, we equip HFMs
with the ability to handle nonlinear complexities (nonlinear
HFM, i.e., HFM+), achieving state-of-the-art performance.
Experimental results on nine diverse benchmark datasets
demonstrate the effectiveness of HFM. Moreover, our ab-
lative studies show that HFM also provides robust improve-
ments to the base FM model across all latent dimensions and
datasets without actually increasing the parameter size of the
model.
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